Submitted:
01 February 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
I. Introduction
II. Mitophagy Decline Drives Primary Sarcopenia
III. Evidence of Mitophagy Impairment in Aged Skeletal Muscle
IV. Autophagy–Mitophagy Axis in Muscle Degeneration
V. Natural Mitophagy Inducers: Urolithin A and Spermidine
VI. Translational Evidence in Humans and Animal Models
VII. Therapeutic Perspective: Targeting Mitophagy to Reverse Sarcopenia
VIII. Future Directions and Clinical Relevance
IX. Acknowledgments and Conflicts of Interest
References
- Lane, N.; Martin, W., “The energetics of genome complexity,” Nature, vol. 467, no. 7318, pp. 929–934, Oct. 2010. [CrossRef]
- Scheibye-Knudsen, M.; Fang, E.F.; Croteau, D.L.; Wilson, D.M.; Bohr, V.A., “Protecting the mitochondrial powerhouse,” Trends Cell Biol., vol. 25, no. 3, pp. 158–170, Mar. 2015. [CrossRef]
- Perry, S.W.; Norman, J.P.; Barbieri, J.; Brown, E.B.; Gelbard, H.A., “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques, vol. 50, no. 2, pp. 98–115, Feb. 2011. [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G., “The hallmarks of aging,” Cell, vol. 153, no. 6, p. 1194, Jun. 2013. [CrossRef]
- Fang, E.F.; Scheibye-Knudsen, M.; Chua, K.F.; Mattson, M.P.; Croteau, D.L.; Bohr, V.A., “Nuclear DNA damage signalling to mitochondria in ageing,” Nat. Rev. Mol. Cell Biol., vol. 17, no. 5, pp. 308–321, Apr. 2016. [CrossRef]
- Mattson, M.P.; Gleichmann, M.; Cheng, A., “Mitochondria in Neuroplasticity and Neurological Disorders,” Neuron, vol. 60, no. 5, pp. 748–766, Dec. 2008. [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N., “Mechanisms of mitophagy in cellular homeostasis, physiology and pathology,” Nat. Cell Biol., vol. 20, no. 9, pp. 1013–1022, Sep. 2018. [CrossRef]
- Elorza, A.A.; Soffia, J.P., “mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology,” Front. Cell Dev. Biol., vol. 9, Feb. 2021. [CrossRef]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B., “Mitochondrial electron transport chain, ROS generation and uncoupling (Review),” Int. J. Mol. Med., vol. 44, no. 1, pp. 3–15, 2019. [CrossRef]
- Liesa, M.; Shirihai, O.S., “Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure,” Cell Metab., vol. 17, no. 4, pp. 491–506, Apr. 2013. [CrossRef]
- Kluge, M.A.; Fetterman, J.L.; Vita, J.A., “Mitochondria and endothelial function,” Circ. Res., vol. 112, no. 8, pp. 1171–1188, Apr. 2013. [CrossRef]
- Westermann, B., “Mitochondrial fusion and fission in cell life and death,” Nat. Rev. Mol. Cell Biol., vol. 11, no. 12, pp. 872–884, Dec. 2010. [CrossRef]
- Novak, I., “Mitophagy: a complex mechanism of mitochondrial removal,” Antioxid. Redox Signal., vol. 17, no. 5, pp. 794–802, Sep. 2012. [CrossRef]
- Youle, R.J.; Narendra, D.P., “Mechanisms of mitophagy,” Nat. Rev. Mol. Cell Biol., vol. 12, no. 1, pp. 9–14, Jan. 2011. [CrossRef]
- Santos et al, R.X., “Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes,” Mol. Cell. Biochem., vol. 394, no. 1–2, pp. 13–22, Sep. 2014. [CrossRef]
- Kornmann, B., “Quality control in mitochondria: use it, break it, fix it, trash it,” F1000Prime Rep., vol. 6, Mar. 2014. [CrossRef]
- Held, N.M.; Houtkooper, R.H., “Mitochondrial quality control pathways as determinants of metabolic health,” Bioessays, vol. 37, no. 8, pp. 867–876, Aug. 2015. [CrossRef]
- Ashrafi, G.; Schwarz, T.L., “The pathways of mitophagy for quality control and clearance of mitochondria,” Cell Death Differ., vol. 20, no. 1, pp. 31–42, Jan. 2013. [CrossRef]
- Ruiz et al, L.M., “Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562,” Mitochondrion, vol. 29, pp. 18–30, Jul. 2016. [CrossRef]
- Liu, Y.J.; McIntyre, R.L.; Janssens, G.E.; Houtkooper, R.H., “Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease,” Mech. Ageing Dev., vol. 186, Mar. 2020. [CrossRef]
- Tanida, I.; Ueno, T.; Kominami, E., “LC3 and Autophagy,” Methods Mol. Biol., vol. 445, pp. 77–88, 2008. [CrossRef]
- Schweers et al, R.L., “NIX is required for programmed mitochondrial clearance during reticulocyte maturation,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 49, pp. 19500–19505, Dec. 2007. [CrossRef]
- Bassnett, S., “Lens organelle degradation,” Exp. Eye Res., vol. 74, no. 1, pp. 1–6, 2002. [CrossRef]
- Pua, H.H.; Guo, J.; Komatsu, M.; He, Y.-W., “Autophagy is essential for mitochondrial clearance in mature T lymphocytes,” J. Immunol., vol. 182, no. 7, pp. 4046–4055, Apr. 2009. [CrossRef]
- Sharpley et al, M.S., “Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition,” Cell, vol. 151, no. 2, pp. 333–343, Oct. 2012. [CrossRef]
- Rojansky, R.; Cha, M.Y.; Chan, D.C., “Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1,” Elife, vol. 5, no. NOVEMBER2016, Nov. 2016. [CrossRef]
- Sun et al, N., “Measuring In Vivo Mitophagy,” Mol. Cell, vol. 60, no. 4, pp. 685–696, Nov. 2015. [CrossRef]
- Mortensen et al, M., “Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 2, pp. 832–837, 2010. [CrossRef]
- Palikaras, K.; Daskalaki, I.; Markaki, M.; Tavernarakis, N., “Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover,” Pharmacol. Ther., vol. 178, pp. 157–174, Oct. 2017. [CrossRef]
- Zhang et al, Y., “Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing,” Nat. Immunol., vol. 20, no. 4, pp. 433–446, Apr. 2019. [CrossRef]
- McWilliams et al, T.G., “mito-QC illuminates mitophagy and mitochondrial architecture in vivo,” J. Cell Biol., vol. 214, no. 3, pp. 333–345, Aug. 2016. [CrossRef]
- Esteban-Martínez et al, L., “Programmed mitophagy is essential for the glycolytic switch during cell differentiation,” EMBO J., vol. 36, no. 12, pp. 1688–1706, Jun. 2017. [CrossRef]
- Sandoval et al, H., “Essential role for Nix in autophagic maturation of erythroid cells,” Nature, vol. 454, no. 7201, pp. 232–235, Jul. 2008. [CrossRef]
- López-Otín, C.; Kroemer, G., “Hallmarks of Health,” Cell, vol. 184, no. 1, pp. 33–63, Jan. 2021. [CrossRef]
- Wu et al, W., “ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy,” EMBO Rep., vol. 15, no. 5, pp. 566–575, 2014. [CrossRef]
- Ryu et al, D., “Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents,” Nat. Med., vol. 22, no. 8, pp. 879–888, Aug. 2016. [CrossRef]
- Green, D.R.; Galluzzi, L.; Kroemer, G., “Mitochondria and the autophagy-inflammation-cell death axis in organismal aging,” Science, vol. 333, no. 6046, pp. 1109–1112, Aug. 2011. [CrossRef]
- Wang, K.; Klionsky, D.J., “Mitochondria removal by autophagy,” Autophagy, vol. 7, no. 3, pp. 297–300, 2011. [CrossRef]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A., “Live strong and prosper: the importance of skeletal muscle strength for healthy ageing,” Biogerontology, vol. 17, no. 3, pp. 497–510, Jun. 2016. [CrossRef]
- Frontera, W.R.; Ochala, J., “Skeletal muscle: a brief review of structure and function,” Calcif. Tissue Int., vol. 96, no. 3, pp. 183–195, Mar. 2015. [CrossRef]
- Jorgenson, K.W.; Phillips, S.M.; Hornberger, T.A., “Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review,” Cells, vol. 9, no. 7, Jul. 2020. [CrossRef]
- Schiaffino, S.; Reggiani, C., “Fiber types in mammalian skeletal muscles,” Physiol. Rev., vol. 91, no. 4, pp. 1447–1531, Oct. 2011. [CrossRef]
- Bassel-Duby, R.; Olson, E.N., “Signaling pathways in skeletal muscle remodeling,” Annu. Rev. Biochem., vol. 75, pp. 19–37, 2006. [CrossRef]
- Tajsharghi, H., “Thick and thin filament gene mutations in striated muscle diseases,” Int. J. Mol. Sci., vol. 9, no. 7, pp. 1259–1275, Jul. 2008. [CrossRef]
- Johnson, M.A.; Polgar, J.; Weightman, D.; Appleton, D., “Data on the distribution of fibre types in thirty-six human muscles. An autopsy study,” J. Neurol. Sci., vol. 18, no. 1, pp. 111–129, 1973. [CrossRef]
- Fielding et al, R.A., “Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia,” J. Am. Med. Dir. Assoc., vol. 12, no. 4, pp. 249–256, 2011. [CrossRef]
- Roubenoff, R.; Heymsfield, S.B.; Kehayias, J.J.; Cannon, J.G.; Rosenberg, I.H., “Standardization of nomenclature of body composition in weight loss.,” Am. J. Clin. Nutr., vol. 66, no. 1, pp. 192–196, 1997. [CrossRef]
- Critchley, M., “THE NEUROLOGY OF OLD AGE.,” The Lancet, vol. 217, no. 5623, pp. 1221–1231, Jun. 1931. [CrossRef]
- Lexell, J.; Henriksson-Larsén, K.; Winblad, B.; Sjöström, M., “Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections,” Muscle Nerve, vol. 6, no. 8, pp. 588–595, 1983. [CrossRef]
- Rosenberg, I.H., “Summary comments,” Am. J. Clin. Nutr., vol. 50, no. 5, pp. 1231–1233, Nov. 1989. [CrossRef]
- Lexell, J., “Human aging, muscle mass, and fiber type composition,” J. Gerontol. A Biol. Sci. Med. Sci., vol. 50 Spec No, no. SPEC. ISSUE, pp. 11–16, 1995. [CrossRef]
- Cruz-Jentoft et al, A.J., “Sarcopenia: revised European consensus on definition and diagnosis,” Age Ageing, vol. 48, no. 4, p. 601, Jul. 2019. [CrossRef]
- Chen, H.; Ma, J.; Liu, A.; Cui, Y.; Ma, X., “The association between sarcopenia and fracture in middle-aged and elderly people: A systematic review and meta-analysis of cohort studies,” Injury, vol. 51, no. 4, pp. 804–811, Apr. 2020. [CrossRef]
- Chen et al, L.K., “Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment,” J. Am. Med. Dir. Assoc., vol. 21, no. 3, pp. 300-307.e2, Mar. 2020. [CrossRef]
- Doherty, T.J., “Invited review: Aging and sarcopenia,” J. Appl. Physiol. (1985)., vol. 95, no. 4, pp. 1717–1727, Oct. 2003. [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M., “Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review,” Front. Physiol., vol. 3, 2012. [CrossRef]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L., “Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases,” Lancet Diabetes Endocrinol., vol. 2, no. 10, pp. 819–829, 2014. [CrossRef]
- Degens, H.; Korhonen, M.T., “Factors contributing to the variability in muscle ageing,” Maturitas, vol. 73, no. 3, pp. 197–201, Nov. 2012. [CrossRef]
- Bann et al, D., “Light Intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the Lifestyle Interventions and Independence for Elders (LIFE) study,” PLoS One, vol. 10, no. 2, Feb. 2015. [CrossRef]
- Khanal et al, P., “The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women,” Genes (Basel)., vol. 11, no. 12, pp. 1–18, Dec. 2020. [CrossRef]
- Zempo, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Fuku, N.; Miyachi, M.; Murakami, H., “Heritability estimates of muscle strength-related phenotypes: A systematic review and meta-analysis,” Scand. J. Med. Sci. Sports, vol. 27, no. 12, pp. 1537–1546, Dec. 2017. [CrossRef]
- Roubenoff, R., “Sarcopenia: a major modifiable cause of frailty in the elderly,” J. Nutr. Health Aging, vol. 4, no. 3, pp. 140–142, 2000, Accessed: Nov. 14, 2025. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/10936900/.
- Organization, W.H., “The implications for training of embracing : a life course approach to health,” Dec. 31, 2000, World Health Organization. Accessed: Nov. 14, 2025. [Online]. Available: https://iris.who.int/handle/10665/69400.
- Organization, W.H., “Decade of Healthy Ageing: Plan of Action 2021-2030,” World Health Organisation, pp. 1–26, 2020, Accessed: Nov. 14, 2025. [Online]. Available: https://cdn.who.int/media/docs/default-source/decade-of-healthy-ageing/final-decade-proposal/decade-proposal-final-apr2020-en.pdf?sfvrsn=b4b75ebc_25&download=true.
- Harrison, J.E.; Weber, S.; Jakob, R.; Chute, C.G., “ICD-11: an international classification of diseases for the twenty-first century,” BMC Med. Inform. Decis. Mak., vol. 21, Nov. 2021. [CrossRef]
- Rolland, Y.; Van Kan, G.A.; Gillette-Guyonnet, S.; Vellas, B., “Cachexia versus sarcopenia,” Curr. Opin. Clin. Nutr. Metab. Care, vol. 14, no. 1, pp. 15–21, Jan. 2011. [CrossRef]
- Pascual-Fernández, J.; Fernández-Montero, A.; Córdova-Martínez, A.; Pastor, D.; Martínez-Rodríguez, A.; Roche, E., “Sarcopenia: Molecular Pathways and Potential Targets for Intervention,” Int. J. Mol. Sci., vol. 21, no. 22, pp. 1–16, Nov. 2020. [CrossRef]
- Larsson et al, L., “Sarcopenia: Aging-Related Loss of Muscle Mass and Function,” Physiol. Rev., vol. 99, no. 1, pp. 427–511, Jan. 2019. [CrossRef]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyère, O., “Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis,” PLoS One, vol. 12, no. 1, Jan. 2017. [CrossRef]
- Shou, J.; Chen, P.J.; Xiao, W.H., “Mechanism of increased risk of insulin resistance in aging skeletal muscle,” Diabetol. Metab. Syndr., vol. 12, no. 1, Feb. 2020. [CrossRef]
- Mankhong, S.; Kim, S.; Moon, S.; Kwak, H.B.; Park, D.H.; Kang, J.H., “Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy,” Cells, vol. 9, no. 6, Jun. 2020. [CrossRef]
- Hemenway, D.; Solnick, S.J.; Koeck, C.; Kytir, J., “The incidence of stairway injuries in Austria,” Accid. Anal. Prev., vol. 26, no. 5, pp. 675–679, 1994. [CrossRef]
- “[A study of falls experienced by institutionalized elderly] - PubMed.” Accessed: Nov. 19, 2025. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/1292738/.
- Gustafsson, T.; Ulfhake, B., “Sarcopenia: What Is the Origin of This Aging-Induced Disorder?,” Front. Genet., vol. 12, Jul. 2021. [CrossRef]
- Phillip, S.M., “Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects),” Appl. Physiol. Nutr. Metab., vol. 34, no. 3, pp. 403–410, Jun. 2009. [CrossRef]
- Hughes, V.A.; Frontera, W.R.; Roubenoff, R.; Evans, W.J.; Singh, M.A.F., “Longitudinal changes in body composition in older men and women: Role of body weight change and physical activity,” American Journal of Clinical Nutrition, vol. 76, no. 2, pp. 473–481, 2002. [CrossRef]
- Bowen, T.S.; Schuler, G.; Adams, V., “Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training,” J. Cachexia Sarcopenia Muscle, vol. 6, no. 3, pp. 197–207, Sep. 2015. [CrossRef]
- LARSSON, L.; BIRAL, D.; CAMPIONE, M.; SCHIAFFINO, S., “An age-related type IIB to IIX myosin heavy chain switching in rat skeletal muscle,” Acta Physiol. Scand., vol. 147, no. 2, pp. 227–234, 1993. [CrossRef]
- Larsson, L., “Motor units: remodeling in aged animals,” J. Gerontol. A Biol. Sci. Med. Sci., vol. 50 Spec No, no. SPEC. ISSUE, pp. 91–95, 1995. [CrossRef]
- Nilwik et al, R., “The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size,” Exp. Gerontol., vol. 48, no. 5, pp. 492–498, May 2013. [CrossRef]
- Talbot, J.; Maves, L., “Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease,” Wiley Interdiscip. Rev. Dev. Biol., vol. 5, no. 4, pp. 518–534, Jul. 2016. [CrossRef]
- Klitgaard, H.; Zhou, M.; Schiaffino, S.; Betto, R.; Salviati, G.; Saltin, B., “Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle,” Acta Physiol. Scand., vol. 140, no. 1, pp. 55–62, 1990. [CrossRef]
- Short et al, K.R., “Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training,” J. Appl. Physiol. (1985)., vol. 99, no. 1, pp. 95–102, Jul. 2005. [CrossRef]
- Lexell, J.; Downham, D.Y., “The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years,” Acta Neuropathol., vol. 81, no. 4, pp. 377–381, Mar. 1991. [CrossRef]
- Karlsen et al, A., “Lack of muscle fibre hypertrophy, myonuclear addition, and satellite cell pool expansion with resistance training in 83-94-year-old men and women,” Acta Physiol. (Oxf)., vol. 227, no. 1, 2019. [CrossRef]
- Fry et al, C.S., “Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis,” Skelet. Muscle, vol. 1, no. 1, Mar. 2011. [CrossRef]
- Holloszy, J.O.; Chen, M.; Cartee, G.D.; Young, J.C., “Skeletal muscle atrophy in old rats: Differential changes in the three fiber types,” Mech. Ageing Dev., vol. 60, no. 2, pp. 199–213, 1991. [CrossRef]
- Chan, D.C., “Mitochondria: Dynamic Organelles in Disease, Aging, and Development,” Cell, vol. 125, no. 7, pp. 1241–1252, Jun. 2006. [CrossRef]
- Crane, J.D.; Devries, M.C.; Safdar, A.; Hamadeh, M.J.; Tarnopolsky, M.A., “The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure,” J. Gerontol. A Biol. Sci. Med. Sci., vol. 65, no. 2, pp. 119–128, 2010. [CrossRef]
- Welle, S.; Bhatt, K.; Shah, B.; Needler, N.; Delehanty, J.M.; Thornton, C.A., “Reduced amount of mitochondrial DNA in aged human muscle,” J. Appl. Physiol. (1985)., vol. 94, no. 4, pp. 1479–1484, Apr. 2003. [CrossRef]
- Betts et al, J.G., “Anatomy and physiology,” p. 1300, 2022.
- Short, K.R.; Vittone, J.L.; Bigelow, M.L.; Proctor, D.N.; Nair, K.S., “Age and aerobic exercise training effects on whole body and muscle protein metabolism,” Am. J. Physiol. Endocrinol. Metab., vol. 286, no. 1, pp. 92–101, 2004. [CrossRef]
- Coen et al, P.M., “Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults,” J. Gerontol. A Biol. Sci. Med. Sci., vol. 68, no. 4, pp. 447–455, Apr. 2013. [CrossRef]
- Joseph et al, A.M., “The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals,” Aging Cell, vol. 11, no. 5, pp. 801–809, Oct. 2012. [CrossRef]
- Conley, K.E.; Jubrias, S.A.; Esselman, P.C., “Oxidative capacity and ageing in human muscle,” J. Physiol., vol. 526 Pt 1, no. Pt 1, pp. 203–210, Jul. 2000. [CrossRef]
- Petersen et al, K.F., “Mitochondrial dysfunction in the elderly: possible role in insulin resistance,” Science, vol. 300, no. 5622, pp. 1140–1142, May 2003. [CrossRef]
- Wallace, D.C., “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annu. Rev. Genet., vol. 39, pp. 359–407, 2005. [CrossRef]
- Kujoth et al, C.C., “Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging,” Science, vol. 309, no. 5733, pp. 481–484, Jul. 2005. [CrossRef]
- Trifunovic et al, A., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, May 2004. [CrossRef]
- Vermulst et al, M., “DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice,” Nat. Genet., vol. 40, no. 4, pp. 392–394, Apr. 2008. [CrossRef]
- Edgar et al, D., “Random Point Mutations with Major Effects on Protein-Coding Genes Are the Driving Force behind Premature Aging in mtDNA Mutator Mice,” Cell Metab., vol. 10, no. 2, pp. 131–138, Aug. 2009. [CrossRef]
- Hiona et al, A., “Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice,” PLoS One, vol. 5, no. 7, 2010. [CrossRef]
- Masiero, E.; Sandri, M., “Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles,” Autophagy, vol. 6, no. 2, pp. 307–309, Feb. 2010. [CrossRef]
- Marzetti et al, E., “Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials,” International Journal of Biochemistry and Cell Biology, vol. 45, no. 10, pp. 2288–2301, 2013. [CrossRef]
- Ferri, E.; Marzetti, E.; Calvani, R.; Picca, A.; Cesari, M.; Arosio, B., “Role of Age-Related Mitochondrial Dysfunction in Sarcopenia,” Int. J. Mol. Sci., vol. 21, no. 15, pp. 1–12, Aug. 2020. [CrossRef]
- Chabi, B.; Ljubicic, V.; Menzies, K.J.; Huang, J.H.; Saleem, A.; Hood, D.A., “Mitochondrial function and apoptotic susceptibility in aging skeletal muscle,” Aging Cell, vol. 7, no. 1, pp. 2–12, Feb. 2008. [CrossRef]
- Kruse et al, S.E., “Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner,” Aging Cell, vol. 15, no. 1, pp. 89–99, Feb. 2016. [CrossRef]
- Marcinek, D.J.; Schenkman, K.A.; Ciesielski, W.A.; Lee, D.; Conley, K.E., “Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle,” J. Physiol., vol. 569, no. Pt 2, pp. 467–473, Dec. 2005. [CrossRef]
- Drake, J.C.; Yan, Z., “Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing,” J. Physiol., vol. 595, no. 20, pp. 6391–6399, Oct. 2017. [CrossRef]
- Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Aghanejad, A.; Zhang, Y.; Ren, J., “Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing,” Ageing Res. Rev., vol. 62, Sep. 2020. [CrossRef]
- Gustafsson, Å.B.; Dorn, G.W., “Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process,” Physiol. Rev., vol. 99, no. 1, pp. 853–892, Jan. 2019. [CrossRef]
- Tian, H.; Chen, P.; Ren, J., “Physical exercise, autophagy and cardiometabolic stress in aging,” Aging, vol. 11, no. 15, pp. 5287–5288, Aug. 2019. [CrossRef]
- Rygiel, K.A.; Picard, M.; Turnbull, D.M., “The ageing neuromuscular system and sarcopenia: a mitochondrial perspective,” J. Physiol., vol. 594, no. 16, p. 4499, Aug. 2016. [CrossRef]
- Lundt, S.; Zhang, N.; Wang, X.; Polo-Parada, L.; Ding, S., “The effect of NAMPT deletion in projection neurons on the function and structure of neuromuscular junction (NMJ) in mice,” Sci. Rep., vol. 10, no. 1, Dec. 2020. [CrossRef]
- Lin, M.T.; Beal, M.F., “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, Oct. 2006. [CrossRef]
- Sun, N.; Youle, R.J.; Finkel, T., “The Mitochondrial Basis of Aging,” Mol. Cell, vol. 61, no. 5, pp. 654–666, Mar. 2016. [CrossRef]
- Gouspillou et al, G., “Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans,” FASEB J., vol. 28, no. 4, pp. 1621–1633, 2014. [CrossRef]
- Gouspillou et al, G., “Protective role of Parkin in skeletal muscle contractile and mitochondrial function,” J. Physiol., vol. 596, no. 13, pp. 2565–2579, Jul. 2018. [CrossRef]
- Arribat et al, Y., “Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training,” Acta Physiol. (Oxf)., vol. 225, no. 2, Feb. 2019. [CrossRef]
- Mejías-Peña et al, Y., “Effects of aerobic training on markers of autophagy in the elderly,” Age (Dordr)., vol. 38, no. 2, Apr. 2016. [CrossRef]
- Drummond et al, M.J., “Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison,” J. Gerontol. A Biol. Sci. Med. Sci., vol. 69, no. 8, pp. 1040–1048, 2014. [CrossRef]
- Russ, D.W.; Boyd, I.M.; McCoy, K.M.; McCorkle, K.W., “Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism,” Biogerontology, vol. 16, no. 6, pp. 747–759, Dec. 2015. [CrossRef]
- Sebastián et al, D., “Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway,” EMBO J., vol. 35, no. 15, pp. 1677–1693, Aug. 2016. [CrossRef]
- Carter, H.N.; Kim, Y.; Erlich, A.T.; Zarrin-khat, D.; Hood, D.A., “Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity,” J. Physiol., vol. 596, no. 16, pp. 3567–3584, Aug. 2018. [CrossRef]
- O’Leary, M.F.; Vainshtein, A.; Iqbal, S.; Ostojic, O.; Hood, D.A., “Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle,” Am. J. Physiol. Cell Physiol., vol. 304, no. 5, pp. 422–430, 2013. [CrossRef]
- Leduc-Gaudet, J.P.; Reynaud, O.; Hussain, S.N.; Gouspillou, G., “Parkin overexpression protects from ageing-related loss of muscle mass and strength,” J. Physiol., vol. 597, no. 7, pp. 1975–1991, Apr. 2019. [CrossRef]
- Masiero et al, E., “Autophagy Is Required to Maintain Muscle Mass,” Cell Metab., vol. 10, no. 6, pp. 507–515, Dec. 2009. [CrossRef]
- Pyo et al, J.O., “Overexpression of Atg5 in mice activates autophagy and extends lifespan,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 2300-, Aug. 2013. [CrossRef]
- García-Prat et al, L., “Autophagy maintains stemness by preventing senescence,” Nature, vol. 529, no. 7584, pp. 37–42, Jan. 2016. [CrossRef]
- Jiao, J.; Demontis, F., “Skeletal muscle autophagy and its role in sarcopenia and organismal aging,” Curr. Opin. Pharmacol., vol. 34, pp. 1–6, Jun. 2017. [CrossRef]
- Noda, N.N.; Inagaki, F., “Selective Autophagy: Role of Interaction between the Atg8 Family Interacting Motif and Atg8 Family Proteins,” Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, pp. 39–48, Jan. 2014. [CrossRef]
- Minois et al, N., “Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways,” Cell Death & Disease 2012 3:10, vol. 3, no. 10, pp. e401–e401, Oct. 2012. [CrossRef]
- Minois, N.; Rockenfeller, P.; Smith, T.K.; Carmona-Gutierrez, D., “Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition,” PLoS One, vol. 9, no. 7, Jul. 2014. [CrossRef]
- Tong, D.; Hill, J.A., “Spermidine Promotes Cardioprotective Autophagy,” Circ. Res., vol. 120, no. 8, pp. 1229–1231, Apr. 2017. [CrossRef]
- Yang et al, X., “Spermidine inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent mitophagy pathway in C. elegans,” Aging, vol. 12, no. 17, pp. 16852–16866, Sep. 2020. [CrossRef]
- Singh et al, A., “Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults,” Cell Rep. Med., vol. 3, no. 5, May 2022. [CrossRef]
- Liu et al, S., “Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults: A Randomized Clinical Trial,” JAMA Netw. Open, vol. 5, no. 1, Jan. 2022. [CrossRef]
- Andreux et al, P.A., “The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans,” Nat. Metab., vol. 1, no. 6, pp. 595–603, Jun. 2019. [CrossRef]
- Eisenberg et al, T., “Induction of autophagy by spermidine promotes longevity,” Nat. Cell Biol., vol. 11, no. 11, pp. 1305–1314, 2009. [CrossRef]
- Eisenberg et al, T., “Cardioprotection and lifespan extension by the natural polyamine spermidine,” Nat. Med., vol. 22, no. 12, pp. 1428–1438, Dec. 2016. [CrossRef]
- Ahsan et al, A., “Natural compounds modulate the autophagy with potential implication of stroke,” Acta Pharm. Sin. B, vol. 11, no. 7, pp. 1708–1720, Jul. 2021. [CrossRef]
- Christian, C.J.; Benian, G.M., “Animal models of sarcopenia,” Aging Cell, vol. 19, no. 10, Oct. 2020. [CrossRef]
- Rana et al, A., “Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster,” Nat. Commun., vol. 8, no. 1, Dec. 2017. [CrossRef]
- Piccirillo, R.; Demontis, F.; Perrimon, N.; Goldberg, A.L., “Mechanisms of muscle growth and atrophy in mammals and Drosophila,” Dev. Dyn., vol. 243, no. 2, pp. 201–215, Feb. 2014. [CrossRef]
- Demontis, F.; Piccirillo, R.; Goldberg, A.L.; Perrimon, N., “Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models,” Dis. Model. Mech., vol. 6, no. 6, pp. 1339–1352, Nov. 2013. [CrossRef]
- Taylor, M.V., “Comparison of Muscle Development in Drosophila and Vertebrates,” 2013, Accessed: Nov. 14, 2025. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK6226/.
- Nikonova, E.; Kao, S.Y.; Spletter, M.L., “Contributions of alternative splicing to muscle type development and function,” Semin. Cell Dev. Biol., vol. 104, pp. 65–80, Aug. 2020. [CrossRef]
- Park, C.; Jeong, J.-W.; Choi, Y.H., “Induction of Muscle Atrophy by Dexamethasone and Hydrogen Peroxide in Differentiated C2C12 Myotubes,” J. Life Sci., vol. 27, no. 12, pp. 1479–1485, 2017. [CrossRef]
- Siu, P.M.; Wang, Y.; Alway, S.E., “Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes,” Life Sci., vol. 84, no. 13–14, pp. 468–481, Mar. 2009. [CrossRef]
- Pierre, N.; Barbé, C.; Gilson, H.; Deldicque, L.; Raymackers, J.M.; Francaux, M., “Activation of ER stress by hydrogen peroxide in C2C12 myotubes,” Biochem. Biophys. Res. Commun., vol. 450, no. 1, pp. 459–463, Jul. 2014. [CrossRef]
- Fan, X.; Hussien, R.; Brooks, G.A., “H2O2-induced mitochondrial fragmentation in C2C12 myocytes,” Free Radic. Biol. Med., vol. 49, no. 11, pp. 1646–1654, Dec. 2010. [CrossRef]
- Zeng, Z.; Liang, J.; Wu, L.; Zhang, H.; Jun, L.V.; Chen, N., “Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control,” Front. Physiol., vol. 11, 2020. [CrossRef]
- Bian, A.L.; Hu, H.Y.; Rong, Y.D.; Wang, J.; Wang, J.X.; Zhou, X.Z., “A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α,” Eur. J. Med. Res., vol. 22, no. 1, Jul. 2017. [CrossRef]
- Nichenko et al, A.S., “Lifelong Ulk1-Mediated Autophagy Deficiency in Muscle Induces Mitochondrial Dysfunction and Contractile Weakness,” Int. J. Mol. Sci., vol. 22, no. 4, pp. 1–20, Feb. 2021. [CrossRef]
- Bian et al, A., “Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly,” BMC Musculoskelet. Disord., vol. 21, no. 1, Apr. 2020. [CrossRef]
- Haas, R.H., “Mitochondrial Dysfunction in Aging and Diseases of Aging,” Biology (Basel)., vol. 8, no. 2, Jun. 2019. [CrossRef]
- Georgakopoulos, N.D.; Wells, G.; Campanella, M., “The pharmacological regulation of cellular mitophagy,” Nat. Chem. Biol., vol. 13, no. 2, pp. 136–146, Jan. 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
