Submitted:
30 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Soil Sampling
2.3. Amendments
2.4. Sample Preparation
2.5. Granulometric Analysis
2.6. Chemical Composition
2.7. Metal Mobility in Soils
2.8. Metal Immobilization Experiments
2.9. Dose of Amendment
2.10. Phosphate Uptake Kinetic
2.11. pH Adjustment
2.12. SEM-EDS Analysis
2.13. XRD Analysis
3. Results
3.1. Soil chemical composition
3.2. XRD Results
3.4. SEM-EDS
3.5. ICP-AES Analyses
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
| 1 | Sampling was out from some of the authors for Corami’s Ph.D. |
References
- Chaturvedi, P. K.; Seth, C. S.; Misra, V. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus and hydroxyapatite). Chemosphere 2006, 64, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Q.; Logan, T.J.; Traina, S.J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ. Sci. Technol. 1995, 29, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ma, L. Q.; Rhue, D. R.; Appel, C. S. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution 131 2004, 435–444.
- El Bamiki, R.; Raji, O.; Ouabid, M.; Elghali, A.; Khadiri Yazami, O.; Bodinier, J. L. Phosphate rocks: A review of sedimentary and igneous occurrences in Morocco. Minerals 2021, 11(10), 1137. [Google Scholar] [CrossRef]
- Queralt, I.; Plana, F.; Eijsackers, H.J.P.; Hamers, T. Partioning of heavy metals in particles size fractions: A tool to predict metal mobility and distribution in the environment. Pp.276278; 8ed.) first European Conference on Integrated Research for Soil and Sediment Protection and Remediation. Kluwer Academic Publ.: Dordrecht, the Netherlands, 1992. [Google Scholar]
- Shen, Q.; Xiang, J.; Zhang, M. Distribution and chemical speciation of heavy metals in various size fractions of aggregates from zonal soils. International Journal of Environmental Analytical Chemistry 2022, 102(16), 4272–4287. [Google Scholar] [CrossRef]
- Ma, L.Q.; Rao, G.N. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. J. Environ. Qual. 1997, 26, 788–794. [Google Scholar] [CrossRef]
- Corami; Mignardi, S.; Ferrini, V. Copper and Zinc decontamination from single- and binary- metal solutions using hydroxyapatite. Journal of Hazardous Materials 146 2007, 164–170. [CrossRef]
- Gómez del Río, J. A.; Morando, P. J.; Cicerone, D. S. Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Z, and Co by calcite and hydroxyapatite. Journal of Environmental Management 71 2004, 169–177.
- Mignardi, Corami S.; Ferrini, V. Cadmium removal from single- and multi-metal (Cd+Zn+Pb+Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science 317 2008, 402–408.
- Mignardi, S.; Corami, A.; Ferrini, V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere 2012, 86(4), 354–360. [Google Scholar] [CrossRef]
- Ma, Q. Y.; Logan, T. J.; Traina, S. J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental science & technology 1995, 29(4), 1118–1126. [Google Scholar]
- Melamed, R.; Cao, X.; Chen, M.; Ma, L. Q. Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment 2003, 305(1-3), 117–127. [Google Scholar] [CrossRef]
- Corami. Phosphate-induced heavy metals immobilization in aqueous solution and soils. Ph.D. thesis, 2005. [Google Scholar]
- Miretzky, P.; Fernandez, A. Phosphates for Pb immobilization in soils: a review. Organic Farming, Pest Control and Remediation of Soil Pollutants: Organic farming, pest control and remediation of soil pollutants 2009, 351–370. [Google Scholar]
- Osborne, L. R.; Baker, L. L.; Strawn, D. G. Lead immobilization and phosphorus availability in phosphate-amended, mine-contaminated soils. Journal of environmental quality 2015, 44(1), 183–190. [Google Scholar] [CrossRef]
- Raicevic, S.; Kaludjerovic-Radoicic, T.; Zouboulis, A. I. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. Journal of Hazardous Materials B117 2005, 41–53. [CrossRef] [PubMed]
- Smičiklas; Dimović, S.; Plećaš, I.; Mitrić, M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research vol 40(issue 12 2006), 2267–2274. [CrossRef] [PubMed]
- Cao, X.; Ma, L. Q.; Chen, M.; Singh, S. P.; Harris, W. G. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environmental Science and Technology 2002, vol. 36(no. 24), 296–304. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wright, J. V.; Conca, J. L.; Perrung, L. M. Effects of pH on heavy metal sorption on mineral apatite. Environmental Science and Technology 1997, 31 3, 624–631. [Google Scholar] [CrossRef]
- Corami, A.; Mignardi, S.; Ferrini, V. Removal of lead, copper, zinc and cadmium from water using phosphate rock. Acta Geologica Sinica-English Edition 2008, 82(6), 1223–1228. [Google Scholar] [CrossRef]
- Tang, X. Y.; Zhu, Y. G.; Chen, S. B.; Tang, L.L.; Chen, X. P. Assessment of the effectiveness of different phosphorous fertilizers to remediate Pb-contaminated soil using in vitro test. Environmental International 30 2004, 531–537.
- Singh, S. P.; Ma, L. Q.; Harris, W. G. Heavy metal interaction with phosphatic clay: sorption and desorption behaviour. Journal of Environmental Quality 30 n 6 2001, 1961–1968.
- Laperche, V.; Logan, T. J.; Gaddam, P.; Traina, S. J. Chemical mineralogical characterization of Pb in a contaminated soil: reactions with synthetic apatite. Environment Science and Technology 1996, 30, 3321–3326. [Google Scholar]
- Peng, J-f-; Song, Y-h; YuanX, P. YuanX-y; Cui, G-l.; Qiu. The remediation of heavy metals contaminated sediments. Journal of Hazardous Materials 161, 2009 633–640. [CrossRef] [PubMed]
- Caporale, A. G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports 2016, 2(1), 15–27. [Google Scholar]
- Oburgera, E; Vergara Cida, C; Schwertbergera, D; Roschitza, C; Wenzel, WW. Response. 2020. [Google Scholar]
- of tungsten (W) solubility and chemical fractionation to changes in soil pH and soil aging. Sci.
- Total Environ. 2020, 731, 139224.
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science 2022, 73(1), e13203. [Google Scholar] [CrossRef]
- Xu, T; Nan, F; Jiang, X; Tang, Y; Zeng, Y; Zhang, W; Shi, B. Effect of soil pH on thetransport, fractionation, and oxidation of chromium (III). Ecotoxicol Environ Saf. 2020, 195, 110459. [Google Scholar] [CrossRef]
- Elzahabi, M.; Yong, R.N. pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geology 2001, 60, 61–68. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Beesley, L. Biochar Application to a Contaminated Soil Reduces the Availability and Plant Uptake of Zinc, Lead and Cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef]
- Mbasabire, P.; Murindangabo, Y. T.; Brom, J.; Byukusenge, P.; Ufitikirezi, J. D. D. M.; Uwihanganye, J.; Umurungi, S. N.; Ntezimana, M. G.; Karimunda, K.; Bwimba, R. Remediation of Heavy Metal-Contaminated Soils Using Phosphate-Enriched Sewage Sludge Biochar. Sustainability 2025, 17(16), 7345. [Google Scholar]
- Martinez, CE; Motto, HL. Solubility of lead, zinc and copper added to mineral soils. 2000. [Google Scholar] [CrossRef]
- Environmental Pollution 107, 153–158.
- Rieuwerts, JS; Ashmore, MR; Farago, ME; Thornton, I. The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils. Science of The Total Environment 2006, 366(2–3), 864–875. [Google Scholar] [CrossRef] [PubMed]
- Udovic, M.; Lestan, D. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 2009, 74(10), 1367–1373. [Google Scholar] [CrossRef]
- Maslova, M. V.; Ivanenko, V. I.; Yanicheva, N. Y.; Mudruk, N. V. Comparison of the sorption kinetics of lead (II) and zinc (II) on titanium phosphate ion-exchanger. International Journal of Molecular Sciences 2020, 21(2), 447. [Google Scholar] [CrossRef]
- Dumontet, S.; Levesque, M.; Mathur, S. P. Limited downward migration of pollutant metals (Cu, Zn, Ni, and Pb) in acidic virgin peat soils near a smelter. Water, Air, and Soil Pollution 1990, 49(3), 329–342. [Google Scholar] [CrossRef]
- Corami, A. Soil Pollution and Phytoremediation. Environmental Science and Engineering 2017, vol. 11. [Google Scholar]
- Liu, J.; Tang, L.; Peng, Z.; Gao, W.; Xiang, C.; Chen, W.; Jiang, J.; Guo, J.; Xue, S. The heterogeneous distribution of heavy metal (loid) s at a smelting site and its potential implication on groundwater. Science of The Total Environment 2024, 948, 174944. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, L.; Ni, G.; Yuan, X.; He, S.; Miao, S. Prediction of heavy metal spatial distribution in soils of typical industrial zones utilizing 3D convolutional neural networks. Scientific Reports 2025, 15(1), 396. [Google Scholar] [CrossRef] [PubMed]
- Ciapparelli, I. C.; de Iorio, A. F.; García, A. R. Phosphorus downward movement in soil highly charged with cattle manure. Environmental earth sciences 2016, 75(7), 568. [Google Scholar]
- Wang, Y.; Chen, F.; Zhao, H.; Xie, D.; Ni, J.; Liao, D. Characteristics of agricultural phosphorus migration in different soil layers on purple soil sloping cropland under natural rainfall conditions. Frontiers in Environmental Science 2023, 11, 1230565. [Google Scholar] [CrossRef]
- Tang, Z.; Chi, Z.; Jiang, F.; Zhao, M.; Fu, S.; Wei, L.; Feng, Q.; Wu, Y.; Xu, N. Mechanisms and Implications of Phosphate Retention in Soils: Insights from Batch Adsorption Experiments and Geochemical Modeling. Water 2025, 17(7), 998. [Google Scholar] [CrossRef]
- McGrellis, S.; Serafini, J-N.; JeanJeanJ, J. JeanJeanJ-L.; Pastol, M.; Fedoroff. Influence of the sorption protocol on the uptake of cadmium ions in calcium hydroxyapatite. Separation and Purification Technology vol 24, 1-2 2001 129-138.
- Boisson, J.; Ruttens, A.; Mench, M.; Vangronsveld, J. Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environmental Pollution 104 1999, 225–233. [CrossRef]
- Conca, J.L.; Lu, N.; Parker, G.; Moore, B.; Adams, A.; Wright, J.; Heller, P. Second International Conference on Remediation of chlorinated and recalcitrant compounds. Monterey CA USA, 22-25 May 2000; pp. 319–326. [Google Scholar]
- Knox, S.; Kaplan, D. I.; Adriano, D. C.; Hinton, T. G.; Wilson, M. D. Apatite and phillipsite as sequestering agents for metals and radionuclide. Journal of Environmental Quality 2003, 32, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Schwartz, F. W.; Traina, S. J. Sorption of Zn 2+ and Cd 2+ on hydroxyapatite surfaces. Environmental Science Technology 1994, 28, 187–206. [Google Scholar]
- Da Rocha, N. C. C.; De Campos, R. C.; Rossi, A. M.; Moreira, E. L.; Barbosa, A.; Moure, G. T. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment. Environmental Science Technology 36, 2002 1630–1635.
- Mouflih, Aklil M.; Sebti, M. S. Removal of heavy metal ions from water by using calcined phosphate as new adsorbent. Journal Hazardous Material 112 2004, 183–190.
- FAO. 2017. Available online: https://www.fao.org/newsroom/story/cherishing-the-ground-we-walk-on/en.
- Stefanakis, A. I.; Calheiros, C. S.; Nikolaou, I. Nature-based solutions as a tool in the new circular economic model for climate change adaptation. Circular Economy and Sustainability 2021, 1(1), 303–318. [Google Scholar] [CrossRef]
- Breure, A. M.; Lijzen, J. P. A.; Maring, L. Soil and land management in a circular economy. Science of the Total Environment 2018, 624, 1125–1130. [Google Scholar] [PubMed]
- Gómez-Sagasti, M. T.; Anza, M.; Hidalgo, J.; Artetxe, U.; Garbisu, C.; Becerril, J. M. Recent trends in sustainable remediation of Pb-contaminated shooting range soils: rethinking waste management within a circular economy. Processes 2021, 9(4), 572. [Google Scholar] [CrossRef]










| Samples (with hydrocarbons) | Samples (no hydrocarbons) |
| 1; 2; 6; 7; 9; 18; 19; 20; 26 | I; II; III; IV; V; VI; VIII |
| HA | FLO | MN | MR | |
|---|---|---|---|---|
| Ca (%) | 38.30 | 42.12 | 44.40 | 46.53 |
| P (%) | 16.80 | 27.81 | 23.50 | 28.35 |
| Ca/P | 1.67 | 1.51 | 1.91 | 1.66 |
| Sample | Amendment | Metal immobilization (%) | pH | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Cd | Co | Cr | Cu | Mn | Ni | Pb | Zn | Ini. | End | |
| HA | ------- | > 99 | > 99 | > 99 | 87,63 | > 99 | > 99 | > 99 | 7,78 | 8,86 | |
| MR | ------- | > 99 | > 99 | > 99 | 69,09 | > 99 | > 99 | > 99 | 9,17 | 9,72 | |
| MN | ------- | > 99 | > 99 | > 99 | 36,36 | > 99 | > 99 | > 99 | 9,08 | 9,66 | |
| FLO | ------- | > 99 | > 99 | 36,06 | > 99 | > 99 | > 99 | > 99 | 9,08 | 9,48 | |
| 2 | HA | ------- | > 99 | > 99 | > 99 | 87,63 | > 99 | > 99 | > 99 | 7,78 | 8,86 |
| MR | ------- | > 99 | > 99 | > 99 | 69,09 | > 99 | > 99 | > 99 | 9,17 | 9,72 | |
| MN | ------- | > 99 | > 99 | > 99 | 36,36 | > 99 | > 99 | > 99 | 9,08 | 9,66 | |
| FLO | ------- | > 99 | > 99 | 36,06 | > 99 | > 99 | > 99 | > 99 | 9,08 | 9,48 | |
| 6 | HA | 41,66 | 47,72 | 50 | 14,28 | 39,77 | 77,39 | > 99 | 76,92 | 8,06 | 9,67 |
| MR | 36,11 | 43,69 | 46,42 | 11,42 | 39,77 | > 99 | 53,45 | 76,15 | 10,1 | 10,8 | |
| MN | 45,83 | 24,93 | 61,6 | 14,28 | 40,9 | 80,43 | > 99 | 46,92 | 10,05 | 10,78 | |
| FLO | 38,88 | 41,01 | 49,1 | <1 | 38,63 | 71,74 | > 99 | > 99 | 9,67 | 9,48 | |
| 7 | HA | ------- | > 99 | 34,54 | 23,8 | 35,22 | 75,86 | > 99 | 50 | 8,43 | 9,09 |
| MR | ------- | 32,81 | 49,09 | 28,57 | 38,63 | > 99 | 76,31 | > 99 | 10,1 | 10,4 | |
| MN | ------- | 15,62 | 45,45 | 28,57 | 39,77 | 58,62 | > 99 | 59,16 | 10,13 | 10,54 | |
| FLO | ------- | 28,12 | 43,63 | 9,52 | 39,77 | 62,06 | > 99 | <1 | 9,93 | 9,81 | |
| 9 | HA | ------- | > 99 | 77 | > 99 | > 99 | > 99 | > 99 | > 99 | 9,04 | 9,87 |
| MR | ------- | > 99 | 77 | > 99 | > 99 | > 99 | > 99 | > 99 | 10,06 | 10,7 | |
| MN | ------- | > 99 | 90,5 | > 99 | 88,83 | > 99 | > 99 | > 99 | 10,1 | 10,6 | |
| FLO | ------- | > 99 | 83,6 | > 99 | 92,9 | > 99 | > 99 | > 99 | 9,64 | 9,54 | |
| 18 | HA | ------- | 25,71 | 40,37 | <1 | 38,63 | > 99 | > 99 | 44,93 | 8,92 | 8,68 |
| MR | ------- | 31,42 | 47,69 | 3,57 | 38,63 | > 99 | > 99 | 92,72 | 9,28 | 9,59 | |
| MN | ------- | 32,85 | 28,87 | <1 | 38,63 | > 99 | 90,71 | > 99 | 9,6 | 9,62 | |
| FLO | ------- | 30 | 41,42 | <1 | 38,63 | 47,77 | > 99 | > 99 | 9,77 | 9,86 | |
| 19 | HA | 67,5 | 27,02 | 48,56 | <1 | 20 | > 99 | > 99 | > 99 | 8,7 | 9,36 |
| MR | 67,5 | 35,13 | 59,87 | <1 | 27,5 | > 99 | > 99 | > 99 | 9,83 | 9,87 | |
| MN | 70,62 | 22,97 | 54,73 | <1 | 25 | > 99 | 88,51 | > 99 | 9,82 | 9,87 | |
| FLO | 72,5 | 33,78 | 52,67 | <1 | 28,75 | 28,75 | > 99 | > 99 | 9,57 | 9,61 | |
| 20 | HA | ------- | > 99 | > 99 | > 99 | 95,26 | > 99 | > 99 | > 99 | 8,79 | 9,06 |
| MR | ------- | > 99 | > 99 | > 99 | 89,35 | > 99 | > 99 | > 99 | 9,21 | 9,24 | |
| MN | ------- | 63,47 | > 99 | > 99 | > 99 | > 99 | > 99 | > 99 | 8,73 | 9,28 | |
| FLO | ------- | 47,39 | > 99 | > 99 | > 99 | > 99 | 95,83 | > 99 | 9,12 | 9,13 | |
| 26 | HA | ------- | > 99 | > 99 | > 99 | > 99 | > 99 | > 99 | > 99 | 8,13 | 8,92 |
| MR | ------- | 50,74 | 15,68 | 16,12 | 51,13 | <1 | > 99 | > 99 | 9,68 | 9,72 | |
| MN | ------- | 94,77 | 39,21 | > 99 | 85,45 | > 99 | > 99 | <1 | 9,57 | 9,13 | |
| FLO | ------- | 74,62 | 95,15 | > 99 | 36,36 | > 99 | 31,42 | > 99 | 9,2 | 9,21 | |
| II | HA | ------- | 79,82 | 78,13 | > 99 | 28,7 | 54,09 | > 99 | 92,28 | 8,43 | 8,53 |
| MR | ------- | 91,22 | 95,24 | > 99 | 29,62 | > 99 | > 99 | 76,57 | 9,8 | 9,91 | |
| MN | ------- | 89,47 | 59,12 | > 99 | 13,8 | 81,31 | > 99 | 58,85 | 9,89 | 9,09 | |
| FLO | ------- | 95,96 | 86,59 | 66,73 | 5,55 | 86,72 | > 99 | 50,28 | 9,6 | 9,86 | |
| III | HA | 36,48 | 47,26 | 57,05 | 55,26 | 44 | > 99 | <1 | 37,34 | 8,77 | 8,72 |
| MR | 44,59 | 53,34 | 62,65 | 44,73 | 41 | > 99 | > 99 | 39,24 | 8,44 | 8,81 | |
| MN | 35,13 | 40,16 | 54,24 | 48,68 | 34 | > 99 | 65,38 | 92,08 | 9,67 | 9,68 | |
| FLO | 47,29 | 57,4 | 57 | 42,1 | 19 | 76 | > 99 | 77,84 | 9,57 | 9,77 | |
| IV | HA | ------- | > 99 | > 99 | > 99 | > 99 | > 99 | > 99 | > 99 | 8,45 | 8,91 |
| MR | ------- | 86,62 | 7,95 | 8,69 | 58,24 | 7,5 | 96,23 | > 99 | 8,84 | 8,77 | |
| MN | ------- | > 99 | 28,87 | > 99 | 68,13 | > 99 | > 99 | <1 | 9,54 | 8,79 | |
| FLO | ------- | 77,14 | 74,89 | > 99 | 62,08 | 85 | > 99 | > 99 | 9,33 | 9,91 | |
| VI | HA | ------- | 67,3 | 96,67 | 74,69 | 19,44 | 87,3 | > 99 | 68,88 | 8,95 | 8,96 |
| MR | ------- | 56,66 | 62,05 | 87,75 | 24,07 | 81,9 | <1 | 49,62 | 9,85 | 9,88 | |
| MN | ------- | 56,66 | 97,34 | > 99 | 9,26 | 47,61 | 68,75 | 82,96 | 9,77 | 9,83 | |
| FLO | ------- | 91,6 | 99,28 | 69,38 | 10,18 | > 99 | > 99 | 46,29 | 9,53 | 8,9 | |
| VIII | HA | > 99 | 72,97 | 70,56 | > 99 | 16,32 | 86,31 | > 99 | 81,27 | 8,15 | 8,97 |
| MR | > 99 | 93,24 | 71,73 | 61,5 | 20,4 | > 99 | 38,09 | > 99 | 9,81 | 9,26 | |
| MN | > 99 | 68,91 | 76,6 | 58 | 14,28 | 80,7 | > 99 | 96,21 | 9,74 | 9,5 | |
| FLO | > 99 | 75,94 | 72,7 | 87,5 | 8,16 | 43,86 | > 99 | <1 | 9,68 | 9,6 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
