Submitted:
30 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Air-Coupled Ultrasound Sensing
2.1. Generation and Reception of Low Frequency Ultrasound
2.2. ACU Application in Physiological Monitoring and Medical Robotics
3. Sensor Technologies
3.1. Sensors Design and Characterization
3.2. Sensors Materials
3.3. Piezoceramic Sensor Design
3.4. Piezopolymeric Sensor Design

| Geometry | Frequency (kHz) |
Bandwidth (kHz) |
Directivity | Sensitivity (dB) |
Applications | Ref. |
|---|---|---|---|---|---|---|
| Cylindrical | 40, 80 | 8, 10 | H: 360 V: ±40 |
-76, -90 | Positioning, ranging | [18] |
| Hemi-cylindrical | 30–65 | 35 | H: - V: ±15 |
-52 | Obstacle detection | [18] |
| Semi-conical | 24–36 | 12 | H: ±50 V: ±60 |
N/A | Robotic sensing | [75] |
| Truncated conical | 25–36 | 11 | H: 360 V: ±70 |
N/A | 3D positioning | [75] |
| Spiral-shaped | 30–95 | ~60 | H: 360 V: 360 |
H: -89.1 to -96.1 V: -94.2 to -103.8 |
Biomimetic sonar | [96] |
| Quasi-spherical | 30–50 | 20 | H: 360 V: ±120 |
N/A | Localization | [18] |
3.5. MEMS-Based Sensor Design
| Technology | Geometry | Materials | Dimensions | Frequency range (kHz) |
Bandwidth trend | SPL (examples) | Ref. |
|---|---|---|---|---|---|---|---|
| CMUT | membrane | Si/SiN | ≈32 × 32 µm²; ≈250 nm gap | 20-100 | ≈82 dB @ 40 kHz (8.9 cm) | [103] | |
| PMUT | membrane | PZT or AlN/ScAlN | tens–hundreds µm | ≈40 | 100.3 dB @ 40 kHz (33 cm); >120 dB @ 10 cm (array) | [104] |
4. Electronic Interface for Low-Frequency Ultrasonic Sensors
5. Signal Processing Strategies
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassanpour, A.; Yang, B. Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches. Sensors 2025, 25, 4792. [Google Scholar] [CrossRef] [PubMed]
- Al-Naji, A.; Al-Askery, A.J.; Gharghan, S.K.; Chahl, J. A System for Monitoring Breathing Activity Using an Ultrasonic Radar Detection with Low Power Consumption. J. Sens. Actuator Netw. 2019, 8, 32. [Google Scholar] [CrossRef]
- Kabiri, M.; Cimarelli, C.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H. A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives. Sensors 2022, 23, 188. [Google Scholar] [CrossRef] [PubMed]
- Tsao, J.Y.; Crawford, M.H.; Coltrin, M.E.; Fischer, A.J.; Koleske, D.D.; Subramania, G.S.; Wang, G.T.; Wierer, J.J.; Karlicek, R.F., Jr. Toward smart and ultra-efficient solid-state lighting. Advanced Optical Materials 2014, 2(9), 809–836. [Google Scholar] [CrossRef]
- Madore, B.; Preiswerk, F.; Bredfeldt, J.S.; Zong, S.; Cheng, C.-C. Ultrasound-based sensors to monitor physiological motion. Med. Phys. 2021, 48, 3614–3622. [Google Scholar] [CrossRef]
- Niérat, M.-C.; Laveneziana, P.; Dubé, B.-P.; Shirkovskiy, P.; Ing, R.-K.; Similowski, T. Physiological Validation of an Airborne Ultrasound Based Surface Motion Camera for a Contactless Characterization of Breathing Pattern in Humans. Front. Physiol. 2019, 10, 680. [Google Scholar] [CrossRef]
- Abreu, D.; Toledo, J.; Codina, B.; Suárez, A. Low-Cost Ultrasonic Range Improvements for an Assistive Device. Sensors 2021, 21, 4250. [Google Scholar] [CrossRef]
- Qiu, Z.; Lu, Y.; Qiu, Z. Review of Ultrasonic Ranging Methods and Their Current Challenges. Micromachines 2022, 13, 520. [Google Scholar] [CrossRef]
- Diebold, C.A.; Salles, A.; Moss, C.F. Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception. Sensors 2020, 20, 2958. [Google Scholar] [CrossRef]
- Marzo, A.; Corkett, T.; Drinkwater, B.W. Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, And Frequency Control 2018, 65, 102–111. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Q.; Lian, G.; Wang, X.; Song, X.; Zhang, X. Investigation of an air-coupled transducer with a closed-cell material matching strategy and an optimization design considering the electrical input impedance. Ultrasonics 2021, 115, 106477. [Google Scholar] [PubMed]
- Fiorillo, A.S. Noise analysis in air-coupled PVDF ultrasonic sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, And Frequency Control 2000, 47(6), 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.P.; Hayward, G.; Gomez, T.E. An air-coupled ultrasonic matching layer employing half wavelength cavity resonance, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), Atlanta, GA, USA, 2001; 2, pp. 965–968. [Google Scholar]
- Xu, J.; Ye, Y.; Dong, T.; Yang, Z.; Pires, N.M.M.; Zhou, Y.; Tao, F.; Wang, J.; Zhang, J.; Luo, G.; Zhao, L.; Mao, Q.; Wang, Y.; Jiang, Z. State of the Art of Low-Frequency Acoustic Modulation: Intensity Enhancement and Directional Control. Adv. Sci. 2025, 12, 2410695. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mei, L.; Liu, R.; Jiang, W.; Yin, Z.; Deng, X.; He, T. Multi-modal fusion sensing: A comprehensive review of millimeter-wave radar and its integration with other modalities. IEEE Communications Surveys & Tutorials 2024, 27(1), 322–352. [Google Scholar]
- Redij, R.; Kaur, A.; Muddaloor, P.; Sethi, A.K.; Aedma, K.; Rajagopal, A.; Gopalakrishnan, K.; Yadav, A.; Damani, D.N.; Chedid, V.G.; Wang, X.J.; Aakre, C.A.; Ryu, A.J.; Arunachalam, S. Practicing Digital Gastroenterology through Phonoenterography Leveraging Artificial Intelligence: Future Perspectives Using Microwave Systems. Sensors 2023, 23, 2302. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54(7), 1804–1816. [Google Scholar] [CrossRef]
- Pullano, S.A.; Critello, C.D.; Bianco, M.G.; Menniti, M.; Fiorillo, A.S. PVDF ultrasonic sensors for in-air applications: a review. IEEE Transactions on Ultrasonics, Ferroelectrics, And Frequency Control 2021, 68(7), 2324–2335. [Google Scholar]
- Zhang, Y.; Jin, T.; Deng, Y. A low-voltage-driven MEMS ultrasonic phased-array transducer for fast 3D volumetric imaging. Microsyst Nanoeng 2024, 10, 128. [Google Scholar]
- Peng, X.; Hu, L.; Liu, W.; Fu, X. Model-Based Analysis and Regulating Approach of Air-Coupled Transducers with Spurious Resonance. Sensors 2020, 20, 6184. [Google Scholar] [CrossRef]
- Rathod, V.T. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers. Sensors 2020, 20, 4051. [Google Scholar] [CrossRef]
- Lin, J.L.; Kao, C.L.; Wu, S.W.; Hsu, H.J.; Lin, H.C.; Li, C.Y.; Chen, C.Y.; Huang, C.H. Air-coupled piezoelectric micromachined ultrasonic transducer array based on low-cost and large remnant polarization PZT thin film. Sci Rep 2025, 15(1), 38158. [Google Scholar] [CrossRef] [PubMed]
- Demi, L. Practical Guide to Ultrasound Beam Forming: Beam Pattern and Image Reconstruction Analysis. Appl. Sci. 2018, 8, 1544. [Google Scholar] [CrossRef]
- Xin, Y.; Sun, H.; Tian, H.; Guo, C.; Li, X.; Wang, S.; Wang, C. The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: A brief review. Ferroelectrics 2016, 502(1), 28–42. [Google Scholar] [CrossRef]
- Van Neer, P.L.M.J.; Peters, L.C.J.M.; Verbeek, R.G.F.A. Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures. Nat Commun 2024, 15, 2802. [Google Scholar] [CrossRef]
- Dahl, T.; Ealo, J.L.; Bang, H.J.; Holm, S.; Khuri-Yakub, P. Applications of airborne ultrasound in human–computer interaction. Ultrasonics 2014, 54(7), 1912–1921. [Google Scholar] [CrossRef]
- Tovar-Lopez, F.J. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. Sensors 2023, 23, 5406. [Google Scholar] [CrossRef]
- Carotenuto, R.; Pezzimenti, F.; Della Corte, F.G.; Iero, D.; Merenda, M. Ranging with Frequency Dependent Ultrasound Air Attenuation. Sensors 2021, 21(15), 4963. [Google Scholar] [CrossRef]
- Turo, A.; Salazar, J.; Chavez, J.A.; Kichou, H.B.; Gomez, T.E.; De Espinosa, F.M.; Garcia-Hernandez, M.J. Ultra-low noise front-end electronics for air-coupled ultrasonic non-destructive evaluation. NDT & E International 2003, 36(2), 93–100. [Google Scholar]
- Mehta, A.; Vasudev, H. Advances in welding sensing information processing and modelling technology: an overview. Journal of Adhesion Science and Technology 2024, 38(4), 1–45. [Google Scholar] [CrossRef]
- Schmid, S.; Dürrmeier, F.; Grosse, C. Spatial and Temporal Deep Learning in Air-Coupled Ultrasonic Testing for Enabling NDE 4.0. Journal of Nondestructive Evaluation 2023, 42, 84. [Google Scholar] [CrossRef]
- Álvarez-Arenas, T.G.; Camacho, J. Air-Coupled and Resonant Pulse-Echo Ultrasonic Technique. Sensors 2019, 19, 2221. [Google Scholar] [CrossRef] [PubMed]
- Larsen, O.N.; Radford, C. Acoustic Conditions Affecting Sound Communication in Air and Underwater. In Effects of Anthropogenic Noise on Animals; Slabbekoorn, H.; Dooling, R.J.; Popper, A.N.; Fay, R.R., Eds.; Springer: New York, NY, USA, 2018; Springer Handbook of Auditory Research, 66, 109–144.
- Olisa, S.C.; Khan, M.A.; Starr, A. Review of Current Guided Wave Ultrasonic Testing (GWUT) Limitations and Future Directions. Sensors 2021, 21, 811. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, Q.; Xuan, L.; Lin, Z.; Yang, Z.; Huang, X.; Li, Z.; Gao, W.; Ren, J.; Shi, J.; Zou, X. Ultrasonic technology for predicting beef thawing degree and endpoint. Journal of Food Engineering 2024, 383, 112236. [Google Scholar] [CrossRef]
- Orellana, A.E.M.; Mendler, A.; Schmid, S.; Grosse, C.U. Predictive probability of detection curves for ultrasonic testing. NDT & E International 2025, 153, 103346. [Google Scholar]
- Dardouri, A.; Othmani, C.; Salah, I.B.; Zhang, B.; Njeh, A. Guided waves in sandwich plates: revealing an approximate threshold of contrast material properties for Legendre polynomial method limitations. Acta Mechanica Sinica 2025, 41(6), 424272. [Google Scholar] [CrossRef]
- Kachanov, V.K.; Sokolov, I.V.; Karavaev, M.A. Selecting optimum air gap length in air-coupled ultrasonic through-transmission testing of products made of polymer materials. Russian Journal of Nondestructive Testing 2025, 61(5), 505–516. [Google Scholar] [CrossRef]
- Boccaccio, M.; Rachiglia, P.; Malfense Fierro, G.P.; Pio Pucillo, G.; Meo, M. Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging. Sensors 2021, 21, 1170. [Google Scholar] [CrossRef]
- Jeger-Madiot, N.; Gateau, J.; Fink, M.; Ing, R.K. Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography. Medical Engineering & Physics 2017, 50, 96–102. [Google Scholar]
- Jeng, G.S.; Chen, S.; Hsieh, L.T.; Lo, M.T. Contactless Respiratory Waveform Estimation Using Ultrasound Planar Array. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control 2025, 5, 23–32. [Google Scholar] [CrossRef]
- Ambrosanio, M.; Franceschini, S.; Grassini, G.; Baselice, F. A multi-channel ultrasound system for non-contact heart rate monitoring. IEEE Sensors Journal 2020, 20(4), 2064–2074. [Google Scholar]
- Cailly, W.; Gonzalez-Diaz, R.; Nieminen, H. J Accuracy and robustness of an air-ultrasound method for non-contact heart rate and heart rate variability measurements Open Access. J. Acoust. Soc. Am. 2018, 158, 2979–2994. [Google Scholar] [CrossRef] [PubMed]
- Shahshahani, A.; Zilic, Z.; Bhadra, S. An ultrasound-based biomedical system for continuous cardiopulmonary monitoring: A single sensor for multiple information. IEEE Transactions on Biomedical Engineering 2020, 67(1), 268–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, D.; Wang, L.; Zheng, Y.; Gu, T.; Dorizzi, B.; Zhou, X. Contactless respiration monitoring using ultrasound signal with off-the-shelf audio devices. IEEE Internet of Things Journal 2019, 6(2), 2959–2973. [Google Scholar] [CrossRef]
- Min, S.D.; Kim, J.K.; Shin, H.S.; Yun, Y.H.; Lee, C.K.; Lee, M. Noncontact respiration rate measurement system using an ultrasonic proximity sensor. IEEE Sensors Journal 2010, 10(11), 1732–1739. [Google Scholar] [CrossRef]
- Singh, A.; Rehman, S.U.; Yongchareon, S.; Chong, P.H.J. Multi-resident non-contact vital sign monitoring using radar: A review. IEEE Sensors Journal 2020, 21(4), 4061–4084. [Google Scholar] [CrossRef]
- Rehouma, H.; Noumeir, R.; Essouri, S.; Jouvet, P. Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. Sensors 2020, 20, 7252. [Google Scholar] [CrossRef]
- Gatzoulis, L.; Iakovidis, I. Wearable and portable eHealth systems. IEEE Engineering in Medicine and Biology Magazine 2007, 26(5), 51–56. [Google Scholar] [CrossRef]
- Chen, A.; Rhoades, R.D.; Halton, A.J.; Booth, J.C.; Shi, X.; Bu, X.; Wu, N.; Chae, J. Wireless Wearable Ultrasound Sensor to Characterize Respiratory Behavior. Methods in Molecular Biology 2022, 2393, 671−682. [Google Scholar]
- Massaroni, C.; Nicoló, A.; Sacchetti, M.; Schena, E. Contactless methods for measuring respiratory rate: A review. IEEE Sensors J. 2021, 21(11), 12821–12839. [Google Scholar] [CrossRef]
- Selvaraju, V.; Spicher, N.; Wang, J.; Ganapathy, N.; Warnecke, J.M.; Leonhardt, S.; Swaminathan, R.; Deserno, T.M. Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review. Sensors 2022, 22, 4097. [Google Scholar] [CrossRef]
- Moon, H.H.; Lee, G.Y.; Kim, G.S.; Ra, G.L.; Jeong, J.S. Bidirectional non-contact ultrasound imaging using MHz-band air-coupled ultrasound transducer for skin assessment: A feasibility study. Ultrasonics 2025, 161, 107948. [Google Scholar] [CrossRef]
- Kawai, K.; Ohara, R.; Sato, S.; Ishii, T.; Izumi, S.; Kawaguchi, H. Contactless respiration measurement system using 25-kHz spatial ultrasound Doppler sensor. 2023 IEEE International Ultrasonics Symposium, Montreal, QC, Canada, 3-8 September 2023. [Google Scholar]
- Melo, D.F.; Silva, B.M.; Pombo, N.; Xu, L. Internet of things assisted monitoring using ultrasound-based gesture recognition contactless system. IEEE Access 2021, 9, 90185–90194. [Google Scholar] [CrossRef]
- Sgambato, B.G.; Hasbani, M.H.; Barsakcioglu, D.Y.; Ibáñez, J.; Jakob, A.; Fournelle, M.; Tang, M.T.; Farina, D. High performance wearable ultrasound as a human-machine interface for wrist and hand kinematic tracking. IEEE Transactions on Biomedical Engineering 2024, 71(2), 484–493. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, S.; Choi, A. Ultrasonic Sound Guide System with Eyeglass Device for the Visually Impaired. Sensors 2022, 22, 3077. [Google Scholar] [CrossRef] [PubMed]
- Panazan, C.-E.; Dulf, E.-H. Intelligent Cane for Assisting the Visually Impaired. Technologies 2024, 12, 75. [Google Scholar] [CrossRef]
- Mousse, Mikaël A. Visually Impaired People Monitoring in a Smart Home using Electronic White Cane. International Journal of Computer Science and Information Technology 2022, 14, 101−110. [Google Scholar] [CrossRef]
- Bai, J.; Lian, S.; Liu, Z.; Wang, K.; Liu, D. Smart guiding glasses for visually impaired people in indoor environment. IEEE Transactions on Consumer Electronics 2017, 63(3), 258−266. [Google Scholar] [CrossRef]
- Franceschini, S.; Ambrosanio, M.; Autorino, M. M.; Baselice, F. A Novel Ultrasound System for Contactless Quantitative Measurements of Finger Tapping: A Feasibility Study. 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom), Nara, Japan, 2024; pp. 1–5. [Google Scholar]
- Sohl-Dickstein, J.; Teng, S.; Gaub, B.M.; Rodgers, C.C.; Li, C.; DeWeese, M.R.; Harper, N.S. A Device for Human Ultrasonic Echolocation. IEEE Trans Biomed Eng. 2015, 62(6), 1526–1534. [Google Scholar]
- He, K. Ultrasound-based human machine interfaces for hand gesture recognition: A scoping review and future direction. IEEE Transactions on Medical Robotics and Bionics 2025, 7(1), 200–212. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, X.; Li, Y.; Zhou, D.; He, K.; Liu, H. Ultrasound-based sensing models for finger motion classification. IEEE Journal of Biomedical and Health Informatics 2018, 22(5), 1395–1405. [Google Scholar] [CrossRef]
- Blum, F.; Jarzynski, J.; Jacobs, L.J. A focused two-dimensional air-coupled ultrasonic array for non-contact generation. NDT & E International 2005, 38(8), 634–642. [Google Scholar]
- Ma, H.; Wang, Z.; Cheng, Z.; He, G.; Feng, T.; Zuo, C.; Qiu, H. Multiscale confocal photoacoustic dermoscopy to evaluate skin health. Quantitative Imaging in Medicine and Surgery 2022, 12(5), 2696. [Google Scholar] [CrossRef] [PubMed]
- Salim, M.S.; Abd Malek, M.F.; Heng, R.B.W.; Juni, K.M.; Sabri, N. Capacitive micromachined ultrasonic transducers: Technology and application. Journal of Medical Ultrasound 2012, 20(1), 8−31. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, M.; Li, B.; Gao, G.; Jiang, Z. Rapid In Situ Coating of Covered Stents with Highly Tough, Biocompatible Membrane for Emergency Coronary Artery Perforation. Biomolecules 2025, 15, 1608. [Google Scholar] [CrossRef] [PubMed]
- Fritze, H. High-temperature bulk acoustic wave sensors. Measurement Science and Technology 2010, 22(1), 012002. [Google Scholar] [CrossRef]
- Matko, V.; Milanovič, M. Detection Principles of Temperature Compensated Oscillators with Reactance Influence on Piezoelectric Resonator. Sensors 2020, 20, 802. [Google Scholar] [CrossRef]
- Carr, A.R.; Chan, Y.J.; Reuel, N.F. Contact-Free, Passive, electromagnetic resonant sensors for enclosed biomedical applications: A perspective on opportunities and challenges. ACS Sensors 2023, 8(3), 943−955. [Google Scholar] [CrossRef]
- Bera, T.K. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering 2014, 2014(1), 381251. [Google Scholar] [CrossRef]
- Seeber, B.U.; Kerber, S.; Hafter, E.R. A system to simulate and reproduce audio–visual environments for spatial hearing research. Hearing Research 2010, 260(1-2), 1–10. [Google Scholar] [CrossRef]
- Zeqiri, B.; Scholl, W.; Robinson, S.P. Measurement and testing of the acoustic properties of materials: a review. Metrologia 2010, 47(2), S156. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Lin, L.; Sun, X. Truncated Conical PVDF Film Transducer for Air Ultrasound. IEEE Sensors Journal 2019, 19, 8618−8625. [Google Scholar] [CrossRef]
- Turner, R.C.; Fuierer, P.A.; Newnham, R.E.; Shrout, T.R. Materials for high temperature acoustic and vibration sensors: A review. Applied Acoustics 1994, 41(4), 299–324. [Google Scholar] [CrossRef]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT & E International 2006, 39(7), 525–541. [Google Scholar] [CrossRef]
- Angiulli, G.; Versaci, M.; Burrascano, P.; Laganá, F. A Data-Driven Gaussian Process Regression Model for Concrete Complex Dielectric Permittivity Characterization. Sensors 2025, 25, 6350. [Google Scholar] [CrossRef] [PubMed]
- Pratticò, D.; Laganà, F. Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment. Signals 2025, 6, 38. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Shen, G. Advanced Sensory Hardware for Intelligent Eye-Machine Interfacing: from Wearables to Bionics. Advanced Functional Materials 2025, 35(37), 2503519. [Google Scholar] [CrossRef]
- Al-Sakaji, B.A.K.; Al-Asheh, S.; Maraqa, M.A. A Review on the Development of an Integer System Coupling Forward Osmosis Membrane and Ultrasound Waves for Water Desalination Processes. Polymers 2022, 14, 2710. [Google Scholar] [CrossRef]
- He, B.; Ji, X.; Li, G.; Cheng, B. Key technologies and applications of UAVs in underground space: a review. IEEE Transactions on Cognitive Communications and Networking 2024, 10(3), 1026–1049. [Google Scholar] [CrossRef]
- Rathod, V.T. A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers. Electronics 2019, 8, 169. [Google Scholar] [CrossRef]
- Banafaa, M.; Muqaibel, A.H. Tropospheric Ducting: A Comprehensive Review and Machine Learning based Classification Advancements. IEEE Access 2025, 13, 22510–22534. [Google Scholar] [CrossRef]
- Gao, R.; Liang, M.; Dong, H.; Luo, X.; Suganthan, P.N. Underwater acoustic signal denoising algorithms: A survey of the state-of-the-art. IEEE Transactions on Instrumentation and Measurement 2025, 74, 1–18. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H.; He, X.; Jin, S.; Chen, P.; Xu, M. Research advances on non-line-of-sight imaging technology. Journal of Shanghai Jiaotong University (Science) 2025, 30(5), 833–854. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S.K. Thermally conducting polymer composites with EMI shielding: a review. Journal of Electronic Materials 2020, 49(3), 1749–1764. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, H.; Cheng, L.; Guo, S.; Liu, T.; Chen, D.; Huang, S.; Hu, Z.; Wang, Y.; Zhou, Y. Structure design, surface modification, and application of CNT microwave-absorbing composites. Advanced Sustainable Systems 2023, 7(12), 2300272. [Google Scholar] [CrossRef]
- Fekiač, J.J.; Krbata, M.; Kohutiar, M.; Janík, R.; Kakošová, L.; Breznická, A.; Eckert, M.; Mikuš, P. Comprehensive Review: Optimization of Epoxy Composites, Mechanical Properties, & Technological Trends. Polymers 2025, 17, 271. [Google Scholar] [CrossRef] [PubMed]
- Šutka, A.; Lapčinskis, L.; He, D.; Kim, H.; Berry, J.D.; Bai, J.; Knite, M.; Ellis, A.V.; Jeong, C.K.; Sherrell, P. C. Engineering polymer interfaces: a review toward controlling triboelectric surface charge. Advanced Materials Interfaces 2023, 10(26), 2300323. [Google Scholar] [CrossRef]
- Hiremath, N.; Kumar, V.; Motahari, N.; Shukla, D. An Overview of Acoustic Impedance Measurement Techniques and Future Prospects. Metrology 2021, 1, 17–38. [Google Scholar] [CrossRef]
- Pillai, G.; Li, S.S. Piezoelectric MEMS resonators: A review. IEEE Sensors Journal 2021, 21(11), 12589–12605. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Advanced Materials 2011, 23(9), 1062–1087. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhong, C.; Zhang, Y.; Qiu, Y.; Qin, L. Flexible Electronics: Advancements and Applications of Flexible Piezoelectric Composites in Modern Sensing Technologies. Micromachines 2024, 15, 982. [Google Scholar] [CrossRef]
- Nivedhitha, D. M.; Jeyanthi, S. Polyvinylidene fluoride, an advanced futuristic smart polymer material: A comprehensive review. Polymers for Advanced Technologies 2023, 34(2), 474–505. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Critello, C.D. Spiral-shaped biologically-inspired ultrasonic sensor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2020, 67(3), 635–642. [Google Scholar] [CrossRef] [PubMed]
- Pullano, S.A.; Bianco, M.G.; Critello, D.C.; Menniti, M.; La Gatta, A.; Fiorillo, A.S. A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals. Sensors 2020, 20, 5042. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Kuc, R. Biosonar-inspired technology: goals, challenges and insights. Bioinspiration & biomimetics 2007, 2(4), S146. [Google Scholar]
- Roy, S.; Azad, A.W.; Baidya, S.; Alam, M.K.; Khan, F. Powering solutions for biomedical sensors and implants inside the human body: A comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Transactions on Power Electronics 2022, 37(10), 12237–12263. [Google Scholar] [CrossRef]
- Wu, T.; You, D.; Gao, H.; Lian, P.; Ma, W.; Zhou, X.; Wang, C.; Luo, J.; Zhang, H.; Tan, H. Research Status and Development Trend of Piezoelectric Accelerometer. Crystals 2023, 13, 1363. [Google Scholar] [CrossRef]
- Bibbò, L.; Angiulli, G.; Laganà, F.; Pratticò, D.; Cotroneo, F.; La Foresta, F.; Versaci, M. MEMS and IoT in HAR: Effective Monitoring for the Health of Older People. Appl. Sci. 2025, 15, 4306. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef]
- Birjis, Y.; Swaminathan, S.; Nazemi, H.; Raj, G.C.A.; Munirathinam, P.; Abu-Libdeh, A.; Emadi, A. Piezoelectric Micromachined Ultrasonic Transducers (PMUTs): Performance Metrics, Advancements, and Applications. Sensors 2022, 22, 9151. [Google Scholar] [CrossRef]
- Wong, S.J.; Roy, K.; Lee, C.; Zhu, Y. Thin-film piezoelectric micromachined ultrasound transducers in biomedical applications: A review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2024, 71(6), 622–637. [Google Scholar] [CrossRef]
- Svilainis, L.; Dumbrava, V. Design of a Low-Noise Preamplifier for Ultrasonic Transducers. Ultragarsas (Ultrasound) 2005, 55, 28–32. [Google Scholar]
- Choi, H. Design of Preamplifier for Ultrasound Transducers. Sensors 2024, 24, 786. [Google Scholar] [CrossRef] [PubMed]
- Zamora, I.; Ledesma, E.; Uranga, A.; Barniol, N. Miniaturized 0.13-µm CMOS Front-End Analog for AlN PMUT Arrays. Sensors 2020, 20, 1205. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, R.; Barile, G.; Stornelli, V.; Ciarrocchi, D.; Fonte, M.; Zompanti, A.; Ferri, G. A novel current-mode EMG interface. Proc. Int. Workshop Advances in Sensors and Interfaces (IWASI), Manfredonia, Italy, 2025; pp. 1–6. [Google Scholar]
- Ozer, E.; Kacar, F. Current-mode PID controller using second-generation voltage conveyor (VCII). J. Circuits Syst. Comput. 2022, 31(17), 2250295. [Google Scholar] [CrossRef]
- Olivieri, R.; Di Lizio, G.A.; Barile, G.; Stornelli, V.; Ferri, G.; Minaei, S. Conveyor-based single-input triple-output second-order LP/BP and cascaded first-order HP filters. Electronics 2025, 14, 3514. [Google Scholar] [CrossRef]
- Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. A Review on VCII Applications in Signal Conditioning for Sensors and Bioelectrical Signals: New Opportunities. Sensors 2022, 22, 3578. [Google Scholar] [CrossRef]
- O’Reilly, M.A.; Hynynen, K. A PVDF Receiver for Ultrasound Monitoring of Transcranial Focused Ultrasound Therapy. IEEE Transactions on Biomedical Engineering 2010, 57, 2286–2294. [Google Scholar] [CrossRef]
- Pullano, S.A.; Fiorillo, A.S.; Barile, G.; Stornelli, V.; Ferri, G. A Second-Generation Voltage-Conveyor-Based Interface for Ultrasonic PVDF Sensors. Micromachines 2021, 12, 99. [Google Scholar] [CrossRef]
- Barile, G.; Pullano, S.A.; Fiorillo, A.S.; Ferri, G. A Broadband Approach for the Generation and Reception of Low-Frequency Ultrasounds In-Air for Sonar Applications. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iași, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar]
- Lin, Y.; O’Reilly, M.A.; Hynynen, K. A PVDF Receiver for Acoustic Monitoring of Microbubble-Mediated Ultrasound Brain Therapy. Sensors 2023, 23, 1369. [Google Scholar] [CrossRef]
- Rui, G.; Allahyarov, E.; Zhu, Z.; Huang, Y.; Wongwirat, T.; Zou, Q.; Taylor, P.L.; Zhu, L. Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers. Responsive Materials 2024, 2(3), e20240002. [Google Scholar] [CrossRef]
- Kashdan, J. T.; Shrimpton, J. S.; Whybrew, A. Two-phase flow characterization by automated digital image analysis. Part 1: fundamental principles and calibration of the technique. Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems 2003, 20(6), 387–397. [Google Scholar]
- Boujenoui, A.; El Atlas, N.; Bybi, A.; Reskal, H.; Elmaimouni, L. Advances in Crosstalk Reduction Techniques for Ultrasonic Transducer Arrays. Sensors 2025, 25, 7666. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Gu, X.; Jin, H. Coded Excitation for Ultrasonic Testing: A Review. Sensors 2024, 24, 2167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Ma, Y.; Zhou, Z.; Guo, W.; Zhu, J.; Zhu, X. Underwater Acoustic Signal Denoising with Diffusion-based Generative Models. Signal Processing 2025, 242, 110430. [Google Scholar] [CrossRef]
- Boris, I.; Barashok, K.; Choi, Y.; Choi, Y.; Aslam, M.; Lee, J. Machine learning techniques in ultrasonics-based defect detection and material characterization: A comprehensive review. Advances in Mechanical Engineering 2025, 17(6), 1−41. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Jiao, Z.; Song, L.; Wang, Z.; Zhang, Q.; Liu, Y.; Qin, W. Opportunities and challenges of ultrasonic diagnostic techniques for plant-based food monitoring: Principle, machine system, and application strategies. Critical Reviews in Food Science and Nutrition 2025, 65(28), 5632–5651. [Google Scholar] [CrossRef]
- Sethi, A.K.; Muddaloor, P.; Anvekar, P.; Agarwal, J.; Mohan, A.; Singh, M.; Gopalakrishnan, K.; Yadav, A.; Adhikari, A.; Damani, D.; Kulkarni, K.; Aakre, C.A.; Ryu, A.J.; Iyer, V.N.; Arunachalam, S.P. Digital Pulmonology Practice with Phonopulmography Leveraging Artificial Intelligence: Future Perspectives Using Dual Microwave Acoustic Sensing and Imaging. Sensors 2023, 23, 5514. [Google Scholar] [CrossRef]
- Alzahab, N.A.; Apollonio, L.; Di Iorio, A.; Alshalak, M.; Iarlori, S.; Ferracuti, F.; Monteriù, A.; Porcaro, C. Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review. Brain Sci. 2021, 11, 75. [Google Scholar] [CrossRef]
- Pullano, S. A.; Oliva, G.; Presta, P.; Carullo, N.; Musolino, M.; Andreucci, M.; Bolignano, D.; Fiorillo, A.S.; Coppolino, G. A portable easy-to-use triboelectric sensor for arteriovenous fistula monitoring in dialysis patients. Sensors International 2025, 6, 100309. [Google Scholar] [CrossRef]
- Ramadas, C.; Janardhan Padiyar, M.; Balasubramaniam, K.; Joshi, M.; Krishnamurthy, C.V. Delamination size detection using time of flight of anti-symmetric (Ao) and mode converted Ao mode of guided Lamb waves. J Intell Mater Syst Struct 2010, 21, 817–825. [Google Scholar]
- Fan, Z.; Bai, K.; Chen, C. Ultrasonic testing in the field of engineering joining. The International Journal of Advanced Manufacturing Technology 2024, 132(9), 4135–4160. [Google Scholar] [CrossRef]
- Ramaswami, M. Network plasticity in adaptive filtering and behavioral habituation. Neuron 2014, 82(6), 1216−1229. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Materials and Structures 2016, 25(5), 053001. [Google Scholar] [CrossRef]
- Ostrysz, M.; Szczepaniak, Z.; Sondej, T. Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review. Sensors 2026, 26, 359. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Z.; Ren, Z.; Li, D.; Xu, C.; Wang, L.; Liu, W.; Zhuge, Y.; Zhou, G.; Lee, C. Advances in Intelligent Nano-Micro-Scale Sensors and Actuators: Moving toward Self-Sustained Edge AI Microsystems. Advanced Materials 2025, 37(50), e10417. [Google Scholar] [CrossRef]







| Application | Operating Mode | Transducers (Material/Type) |
Frequency range (kHz) | Bandwidth | Sensitivity | SPL | Electronic Interfaces |
Ref. |
|---|---|---|---|---|---|---|---|---|
| Vibrocardiography (HR) | Pulse-Wave Doppler | PZT 20-1330 (APC International Ltd) transducer + ultrasonic microphone FG-23329, Knowles Electronics receiver | 20-60 (operating frequency), 50 (carrier frequency PW Doppler) | 20-60 kHz (Emission-reception system), 10-100 kHz (electronic preamplifier) | -53 dB | N/A | Agilent U2542A DAQ + microphone, preamplifier | [40] |
| Respiratory Rate Monitoring | TOF | UNDK 20U6903 ultrasonic proximity sensor (Integrated Tx/Rx) | 240 (proximity sensor) | N/A | N/A | N/A | 0-10 V DC analog output+ BIOPAC MP150 DAQ | [46] |
| Respiratory Waveform Estimation | Pulsed excitation: pulsed Doppler; FMCW: FMCW Doppler | Emitter: 5 W speaker; Receiver: 4x4 MEMS array (UMA-16, SPH1668LM4H) | Pulsed: 18; FMCW: 16.8-20.8; Beamforming pulses: 8 | 4 kHz (16.8-20.8 kHz) | -29 dB | N/A | Microphone array + amplification + ADC (44.1 kHz) + digital processing | [41] |
| Heart rate and heart rate variability (HRV) | Air-ultrasound transducer + motion tracking | MCUSD40A100B17RS | ~100 | N/A | N/A | N/A | GRASTM 12AA 2-channel power module |
[43] |
| Chest vibrometry (RR) | TOF /phase-delay; cross-correlation of successive echoes, measuring surface normal velocity | Emitter:37 piezoelectric diaphragms (Murata 7BB-20-6), used all in parallel for ultrasonic emission, Receiver: 6 high-frequency microphones (Knowles FG-23329) connected in parallel | 20-60 | 40 kHz | -53 dB each | N/A | Piezoelectric array driven by single electronic amplifier (emission) + microphone signal 40 dB amplified, analog front-end+ Agilent U2542A DAQ | [6] |
| Multi-channel ultrasound system for HR monitoring | CW ultrasound Doppler (phase-based) | Piezoelectric US (SensComp 40LT16 transmitter / 40 LR 16 receiver) | 40 | 2 @ -6 dB | -65 dB | 120 dB min | VCO + phase detector (XOR) + LPF + ADC | [46] |
| Air-ultrasound skin motion HR/HRV | TOF air-ultrasound distance measurement | Air-coupled piezoelectric ultrasound transducers (Multicomp Pro MCUSD40A100B17RS) | 100 (operating frequency), 95-105 (chirped excitation) | 89-111 kHz (transducer bandwidth, 22 kHz (-6 dB electroacoustic response) | N/A | N/A | High-voltage waveform generator, impedance matching circuit, air-ultrasound transceiver, digitizer | [50] |
| Application | Operating Mode | Transducers (Material/Type) | Frequency range (kHz) | Bandwidth | Sensitivity | SPL | Electronic Interfaces | Ref. |
|---|---|---|---|---|---|---|---|---|
| Hand gesture / person identification | Pulse-echo / time-of-flight | HC-SR04 ultrasonic distance sensor module | 40 | 1-3 kHz | -65/-75 dB | 110-120 dB | Arduino Mega 2560 + ATtiny85; | [55] |
| Human ultrasonic echolocation device | Pulsed Frequency-Modulated (FM) ultrasonic chirps | Ultrasonic loudspeaker (Tx) Fostex FT17H Realistic Super Tweeter + 2 Ultrasonic microphones (Rx, binaural) Bruel & Kjaer Type 4939 microphones | 5-50 | 45 kHz | 4 mV/Pa | 98.5 dB/W | PC-based signal generation and processing (MATLAB) + Sound card ESI Juli@ (192 kHz I/O) + Power amplifier Lepai Tripath TA2020 + Microphone preamplifier B&K 2670 + B&K Nexus + Playback: Gigaport HD USB sound card + open-ear headphones | [62] |
| Obstacle detection for visually impaired (Assistive) | Pulsed ultrasonic TOF with phase-modulated pulse trains (DPSK); distance calculation via TOF + echo validation via phase-code modulation | 2 x piezoelectric air-coupled ultrasonic transducers per sensor (1 Tx + 1 Rx), SRF08, HC-SR04 | 40 | 1-3 kHz | -65/-75 dB | 110-120 dB | Ultrasonic module: HC-SR40 (modified) + microcontroller ATMega328P (Arduino Nano) + digital trigger / echo interface + on-board analog comparator and ADC for echo detection + Bluetooth module (HC-06) for data transmission to smartphone | [7] |
| Smart glasses for blind people | Frequency modulation / demodulation | Omni-directional digital microphones (IMP34DT05TR) | 20 up to 48 | N/A | N/A | N/A; < 70 dB (environment) | Digital audio interface (PDM, I2S) | [57,60] |
| Smart cane | TOF | HC-SR04 ultrasonic transceiver | 40 | N/A | N/A | N/A | Digital I/O (TRIG/ECHO timing interface) | [58,59] |
| Material | Acoustic Characteristics |
Advantages | Limitations | Ref. |
|---|---|---|---|---|
| PZT | High piezoelectric coefficients; acoustic impedance of 30-35 MRayl | Strong electromechanical coupling; efficient emission and reception; mature fabrication technology | Severe impedance mismatch with air; requires matching layers; narrow bandwidth | [34,35] |
|
Composites PZT/polymer) |
Acoustic impedance of 10-15 MRayl; enhanced compliance | Improved impedance matching in air, broader bandwidth; higher sensitivity in air | Lower mechanical robustness; more complex manufacturing | [27] |
| (PVDF) | Low acoustic impedance (3-4 MRayl); high piezoelectric flexibility | Lightweight, flexible, and suitable for abroad air coupling; good SNR when designed properly | Lower electromechanical coupling vs ceramics; higher electrical noise | [36] |
|
Polypropylene Foams |
Ultra-low acoustic impedance (0.05-0.1 MRayl); internal charged voids act as piezoelectric domains | Excellent acoustic matching to air; can act simultaneously as active transduction and matching layer; low mass | Limited power handling; potential aging of charged voids | [23,37] |
| Silicone Rubber Porous/Semiporous Membranes | Tuneable acoustic impedance via air filled microstructures; support half-wavelength cavity resonance | Enables highly efficient acoustic emission into air using resonance; adaptable to many transducer geometries | Narrowband response; sensitive to manufacturing tolerances | [23] |
| Aerogel | Extremely low density, acoustic impedance near air (0.02-0.03 MRayl) | Near-ideal impedance match; high transmission efficiency; emerging interest for broadband ACU | Fragile microstructure; challenging fabrication: moisture sensitivity | [35] |
| Silicone rubber | Reduced effective impedance due to micro voids | Improves transmissivity between transducer and air; simple and inexpensive | Limited bandwidth; material aging; strongly frequency-dependent | [82] |
| Transducer | Front-end | Frequency Range | Noise or Sensitivity focus | Key Advantages | Ref. |
|---|---|---|---|---|---|
| Air-coupled piezoelectric |
Voltage-mode low-noise preamplifier | 400 – 800 kHz | Analytical SNR optimization | Rigorous noise modelling including transducer | [105] |
| AlN PMUT array |
Voltage vs charge amplifier (CMOS) | ~3 MHz (liquid) | VA shows superior SNR; input noise of 0.08 pA/√Hz (VA) vs 0.15 pA/√Hz (CSA) |
CMOS integration, Low power, removal of crowbar current, and reduced parasitic elements | [107] |
| PVDF hydrophone | Integrated voltage preamplifier | 100 kHz – 1.5 MHz | High sensitivity PVDF receiver (1.62 V/MPa) | MRI compatibility and low cost | [112] |
| Logarithmic spiral-shaped PVDF |
VCII-based TIA | 20 – 80 kHz | Sensitivity ≈ −100 dB |
Low power consumption (6 mA), simple single-stage architecture, bypasses GBW constraints | [113] |
| PVDF spiral ACU | VCII-based TIA + filter | 20 – 100 kHz | Sensitivity comparable to commercial sensors (-120 to -92 dB) | Bio-inspired design (mammalian cochlea), 360° omnidirectional pattern, easy fabrication | [114] |
| Miniature PVDF (110 µm) | Unity gain preamplifier (LMH6639 Op-Amp) | 0.51 MHz – 5.4 MHz | High sensitivity (2.36–3.87 V/MPa); noise floor of 0.21 kPa at 1.1 MHz | Extremely low cost (< 4 USD), wide acceptance angle (54° at 1.1 MHz), and subharmonic detection |
[115] |
| Application domain | Post-processing technique | Typical frequency range | Dominant noise source | Signal quality improvement | Ref. |
|---|---|---|---|---|---|
| Respiration monitoring | TOF / envelope tracking | 20–40 kHz | Environmental noise, drift | Robust distance estimation | [41,45,46] |
| Cardiac monitoring | Phase / Doppler analysis | ~40 kHz | Motion artefacts, phase noise | Sub-mm displacement sensitivity | [40,41,42,46] |
| Vital signs (HR + RR) | Hybrid (TOF + phase/Doppler) | ~40 kHz | Mixed: macroscopic body motion, drift, phase noise, multipath | Simultaneous HR/RR extraction; improved stability vs single domain (TOF for large motion, phase for micro-motion) | [48,49] |
| Low-SNR sensing | Chirp + matched filtering | 30–90 kHz | Mixed (motion + electronic) | Improved stability vs single domain | [119,120] |
| Multi-target sensing | Beamforming / array processing | 40–80 kHz | Attenuation, broadband noise | Spatial filtering and robustness | [41,65] |
| Feature extraction | ML-assisted post-processing | Application-dependent | Non-stationary noise | Improved estimation robustness | [121,122,123] |
| Processing strategy | Sensitivity to micro-movements | Environmental robustness | Hardware complexity | Computational complexity |
|---|---|---|---|---|
| Basic filtering | Low-Medium | Medium | Low | Low |
| TOF tracking | Medium | High | Low | Low |
| Chirp/correlation | High | Low | Medium | Medium-High |
| Beamforming/arrays | High | High | High | Very high |
| Hybrid DSP + AI | Very high | Variable | High | Very high |
| Frequency range | Typical applications | Preferred post-processing | Main limitations |
|---|---|---|---|
| 20-30 kHz | Respiration, gross motion | TOF, envelope | Limited spatial resolution |
| ~40 kHz | Vital signs, cardiac monitoring | Phase/Doppler, hybrid | Sensitivity to motion artefacts |
| 60–100 kHz | Fine motion, arrays | Chirp, beamforming | Strong air attenuation |
| Strategy | Sensitivity to micro-movements | Environmental robustness |
Complexity | Ref. |
|---|---|---|---|---|
| Filtering and pre-processing | Low–Medium | Medium | Low | [126,127] |
| TOF | Medium | High | Low | [126,127,129] |
| Phase/Doppler analysis | High | Low | Medium –High | [117,118] |
| Correlation and modulated signals | Medium–High | Medium | High | [129] |
| Multi-channel beamforming | High | High | Very high | [118] |
| Hybrid approaches with AI | Very high | Variable | Very high | [130,131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
