Submitted:
29 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Clinical and Anthropometric Characteristics According to VAI
2.2. Adipokines and Neurotrophins
2.3. Glucose Homeostasis and Insulin Resistance; Lipid Profile and Atherogenic Indices
2.4. Hormonal Parameters
2.5. Correlation Analyses
2.6. Multivariate Regression Analysis
2.7. Correlation Network and Heatmap Visualization
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Anthropometric and Clinical Assessment
4.3. Biochemical and Hormonal Measurements
4.3.1. Glucose Metabolism:
4.3.2. Lipid Profile:
4.3.3. Neurotrophins and Adipokines:
4.3.4. Hormonal Parameters:
4.4. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PCOS | Polycystic Ovary Syndrome |
| IR | Insulin Resistance |
| BMI | Body Mass Index |
| HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
| WHtR | Waist-to-Height Ratio |
| AIP | Atherogenic Index of Plasma |
| HDL-C | High-Density Lipoprotein Cholesterol |
| LDL-C | Low-Density Lipoprotein Cholesterol |
| TG | Triglycerides |
| L/A | Leptin-to-Adiponectin Ratio |
| A/R | Adiponectin-to-Resistin Ratio |
| VAI | Visceral Adiposity Index |
| BDNF | Brain-derived Neurotrophic Factor |
| NGFβ | Nerve Growth Factor-β |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| LH FSH E2 |
Luteinizing hormone Follicle-Stimulating Hormone Estradiol |
| TT | Total Testosterone |
| SHBG | Sex Hormone Binding Globulin |
| DHEA-S FAI |
Dehydroepiandrosterone Sulfate Free Androgen Index |
References
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2016, 31(12), 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Woods, K.S.; Reyna, R.; Key, T.J.; Knochenhauer, E.S.; Yildiz, B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 2004, 89(6), 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Dunaif, A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr. Rev. 1997, 18(6), 774–800. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Misso, M.L.; Wild, R.A.; Norman, R.J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2010, 16(4), 347–363. [Google Scholar] [CrossRef]
- Randeva, H.S.; Tan, B.K.; Weickert, M.O.; Lois, K.; Nestler, J.E.; Sattar, N.; Lehnert, H. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr. Rev. 2012, 33(5), 812–841. [Google Scholar] [CrossRef]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000, 21(6), 697–738. [Google Scholar] [CrossRef]
- Després, J.P. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012, 126(10), 1301–1313. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33(4), 920–922. [Google Scholar] [CrossRef]
- Oh, J.Y.; Sung, Y.A.; Lee, H.J. The visceral adiposity index as a predictor of insulin resistance in young women with polycystic ovary syndrome. Obesity (Silver Spring) 2013, 21(8), 1690–1694. [Google Scholar] [CrossRef]
- Nakagawa, T.; Tsuchida, A.; Itakura, Y.; Nonomura, T.; Ono, M.; Hirota, F.; Inoue, T.; Nakayama, C.; Taiji, M.; Noguchi, H. Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes 2000, 49(3), 436–444. [Google Scholar] [CrossRef]
- Fargali, S.; Sadahiro, M.; Jiang, C.; Frick, A.L.; Indall, T.; Cogliani, V.; Welagen, J.; Lin, W.-J.; Salton, S.R. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis. J. Mol. Neurosci. 2012, 48(3), 654–659. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Vinciguerra, M.; Tonchev, A.B.; Fiore, M.; Deleva, N.; Frohlich, J.; Chaldakov, G.N. A growing journey from neurotrophins to metabotrophins in cardiometabolic diseases. Adipobiology 2021, 11, 5–10. [Google Scholar] [CrossRef]
- Krabbe, K.S.; Nielsen, A.R.; Krogh-Madsen, R.; Plomgaard, P.; Rasmussen, P.; Erikstrup, C.; Fischer, C.P.; Lindegaard, B.; Petersen, A.M.W.; Taudorf, S.; et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 2007, 50(2), 431–438. [Google Scholar] [CrossRef]
- Robeva, R.; Elenkova, A.; Kirilov, G.; Zacharieva, S. Plasma-free metanephrines, nerve growth factor, and renalase significance in patients with PCOS. Endocrine 2023, 81(3), 602–612. [Google Scholar] [CrossRef]
- Alfatlawy, N.K.; AL–Taee, H.A.; Rahim, A.I. A Comparative Study of Nerve Growth Factor Level in the Follicular Fluid of Polycystic and Non-Polycystic Ovary Syndrome Women Undergoing ICSI: A Cross-sectional Study. Indian J Forensic Med Toxicol 2020, 14, 2794–2799. [Google Scholar] [CrossRef]
- Streiter, S.; Fisch, B.; Sabbah, B.; Ao, A.; Abir, R. The importance of neuronal growth factors in the ovary. Mol. Hum. Reprod. 2016, 22(1), 3–17. [Google Scholar] [CrossRef]
- Wilson, J.L.; Chen, W.; Dissen, G.A.; Ojeda, S.R.; Cowley, M.A.; Garcia-Rudaz, C.; Enriori, P.J. Excess of nerve growth factor in the ovary causes a polycystic ovary-like syndrome in mice, which closely resembles both reproductive and metabolic aspects of the human syndrome. Endocrinology 2014, 155(11), 4494–4506. [Google Scholar] [CrossRef]
- Orszulak, D.; Niziński, K.; Matonóg, A.; Zięba-Domalik, M.; Stojko, R.; Drosdzol-Cop, A. Adipokines as biochemical marker of polycystic ovary syndrome in adolescents – review. Front. Endocrinol. 2025, 16, 1475465. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7(1), 57–62. [Google Scholar] [CrossRef]
- Senghor, K.A.; Meera, S.; Vinodhni, V.M.; Anuradha, M. Adiponectin-resistin ratio: Beneficial index of insulin sensitivity in women with PCOS. J. Pharm. Negative Results 2022, 13(S1), 239. [Google Scholar] [CrossRef]
- Cooney, L.G.; Dokras, A. Cardiometabolic risk in polycystic ovary syndrome: Current guidelines. Endocrinol. Metab. Clin. North Am. 2021, 50(1), 83–95. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of “early health risk”: Simpler and more predictive than using a “matrix” based on BMI and waist circumference. BMJ Open 2016, 6(3), e010159. [Google Scholar] [CrossRef] [PubMed]
- Pililis, S.; Lampsas, S.; Kountouri, A.; Pliouta, L.; Korakas, E.; Livadas, S.; Thymis, J.; Peppa, M.; Kalantaridou, S.; Oikonomou, E.; et al. The cardiometabolic risk in women with polycystic ovarian syndrome (PCOS): From pathophysiology to diagnosis and treatment. Medicina 2024, 60(10), 1656. [Google Scholar] [CrossRef]
- Després, J.-P. Visceral Obesity with Excess Ectopic Fat: A Prevalent and High-Risk Condition Requiring Concerted Clinical and Public Health Actions. Cardiometab Syndr J. Published online. 2021, 1(1), 1–17. [Google Scholar] [CrossRef]
- Jiang, K.; Luan, H.; Pu, X.; Wang, M.; Yin, J.; Gong, R. Association Between Visceral Adiposity Index and Insulin Resistance: A Cross-Sectional Study Based on US Adults. Front. Endocrinol. (Lausanne) 2022, 13, 921067. [Google Scholar] [CrossRef]
- Agrawal, H.; Aggarwal, K.; Jain, A. Visceral Adiposity Index: Simple tool for assessing cardiometabolic risk in women with polycystic ovary syndrome. Indian J. Endocrinol. Metab. 2019, 23(2), 232–237. [Google Scholar] [CrossRef]
- Akkus, C.; Oner, O.; Kilic, A.O.; Duran, C. Visceral Adiposity Index (VAI) Levels and Metabolic Risk Across Phenotypes of Polycystic Ovary Syndrome (PCOS). Medicina (Kaunas) 2025, 61(9), 1673. [Google Scholar] [CrossRef]
- Lin, K.; Sun, X.; Wang, X.; Wang, H.; Chen, X. Circulating adipokine levels in nonobese women with polycystic ovary syndrome and in nonobese control women: A systematic review and meta-analysis. Front. Endocrinol. 2021, 11, 537809. [Google Scholar] [CrossRef]
- Gupta, V.; Mishra, S.; Mishra, S.; Gupta, V. L:A ratio, insulin resistance and metabolic risk in women with polycystic ovarian syndrome. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11 (Suppl. 2), S697–S701. [Google Scholar] [CrossRef]
- Mohana, C.A.; Hasanat, M.A.; Rashid, E.U.; Jahan, I.A.; Morshed, M.S.; Banu, H.; Jahan, S. Leptin and leptin/adiponectin ratio may be promising markers for polycystic ovary syndrome and cardiovascular risks. Bangladesh Med. Res. Counc. Bull. 2021, 47, 266–272. [Google Scholar] [CrossRef]
- Chaldakov, G.N.; Fiore, M.; Hristova, M.G.; Aloe, L. Metabotrophic potential of neurotrophins: Implication in obesity and related diseases? Med. Sci. Monit. 2003, 9, HY19–HY21. [Google Scholar]
- Rios, M. BDNF and the central control of feeding: Accidental bystander or essential player? Trends Neurosci. 2013, 36, 83–90. [Google Scholar] [CrossRef]
- Ichimura-Shimizu, M.; Kurr, K. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024, 14(4), 444. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, I.; Karczewska-Kupczewska, M.; Adamska, A.; Nikolajuk, A.; Lebkowska, A.; Otziomek, E.; Wolczynski, S.; Straczkowski, M. Plasma brain-derived neurotrophic factor is decreased in women with polycystic ovary syndrome and related to the markers of endothelial dysfunction. Endocr. Abstracts 2015, 37, GP06.08. [Google Scholar] [CrossRef]
- Sandrini, L.; Di Minno, A.; Amadio, P.; Ieraci, A.; Tremoli, E.; Barbieri, S.S. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: Systematic review of literature and meta-analysis. Int. J. Mol. Sci. 2018, 19, 2281. [Google Scholar] [CrossRef]
- Karczewska-Kupczewska, M.; Kowalska, I.; Nikolajuk, A.; Adamska, A.; Zielińska, M.; Kamińska, N.; Otziomek, E.; Górska, M.; Straczkowski, M. Circulating brain-derived neurotrophic factor concentration is downregulated by intralipid/heparin infusion or high-fat meal in young healthy male subjects. Diabetes Care 2012, 35, 358–362. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Z.; Wang, C.; Wang, S. Elevated peripheral brain-derived neurotrophic factor level associated with decreasing insulin secretion may forecast memory dysfunction in patients with long-term type 2 diabetes. Front. Physiol. 2022, 12, 686838. [Google Scholar] [CrossRef]
- Dissen, G.A.; Mayerhofer, A.; Ojeda, S.R. Participation of nerve growth factor in the regulation of ovarian function. Zygote 1996, 4(4), 309–312. [Google Scholar] [CrossRef]
- Dissen, G.A.; Garcia-Rudaz, C.; Paredes, A.; Mayer, C.; Mayerhofer, A.; Ojeda, S.R. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. Endocrinology 2009, 150(6), 2906–2914. [Google Scholar] [CrossRef]
- Dissen, G.A.; Garcia-Rudaz, C.; Ojeda, S.R. Role of neurotrophic factors in early ovarian development. Semin. Reprod. Med. 2009, 27(1), 24–31. [Google Scholar] [CrossRef]
- Chang, H.-M.; Wu, H.-C.; Sun, Z.-G.; Lian, F.; Leung, P.C.K. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: Physiological and pathophysiological implications. Hum. Reprod. Update 2019, 25(2), 224–242. [Google Scholar] [CrossRef]
- Suwa, M.; Kishimoto, H.; Nofuji, Y.; Nakano, H.; Sasaki, H.; Radak, Z.; Kumagai, S. Serum brain-derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism 2006, 55(7), 852–857. [Google Scholar] [CrossRef] [PubMed]
- Boyuk, B.; Degirmencioglu, S.; Atalay, H.; Guzel, S.; Acar, A.; Celebi, A.; Ekizoglu, I.; Simsek, C. Relationship between levels of brain-derived neurotrophic factor and metabolic parameters in patients with type 2 diabetes mellitus. J. Diabetes Res. 2014, 2014, 978143. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Papavassiliou, A.G.; Kandarakis, S.A.; Chrousos, G.P. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol. Metab. 2007, 18(7), 280–285. [Google Scholar] [CrossRef]
- Kieć-Klimczak, M.; Malczewska-Malec, M.; Huszno, B. Leptin to adiponectin ratio, as an index of insulin resistance and atherosclerosis development. Przegl. Lek. (In Polish). 2008, 65(12), 844–849. [Google Scholar] [PubMed]
- Lizneva, D.; Suturina, L.; Walker, W.; Brak, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef]





| Parameters | Low-VAI PCOS (n=50) |
High-VAI PCOS (n=50) |
|---|---|---|
| Age (years) | 23.87 ± 4.05 | 24.36 ± 5.24 NS |
| Height (cm) | 166.48 ± 8.33 | 166.64 ± 5.85 NS |
| Weight (kg) | 61.75 ± 12.19 | 76.84 ± 16.12 *** |
| BMI (kg/m2) | 22.21 ± 3.81 | 27.64 ± 5.57 *** |
| Waist (cm) | 71.17 ± 7.83 | 88.85 ± 14.27 *** |
| Hip (cm) | 97.30 ± 9.51 | 105.15 ± 11.07 ** |
| WHR | 0.73 ± 0.05 | 0.84 ± 0.08 *** |
| WHtR | 0.43 ± 0.04 | 0.53 ± 0.09 *** |
| SBP (mmHg) | 109.57 ± 12.52 | 116.09 ± 11.05 * |
| DBP (mmHg) | 71.96 ± 9.14 | 73.04 ± 9.16 NS |
| Parameters | Low-VAI PCOS (n=50) |
High-VAI PCOS (n=50) |
|---|---|---|
| Leptin (ng/mL) | 27.43 ± 13.27 | 34.06 ± 19.92 NS |
| Adiponectin (mcg/mL) | 17.52 ± 8.70 | 9.95 ± 4.71 *** |
| Resistin (ng/mL) | 5.47 ± 2.42 | 6.85 ± 4.62 NS |
| BDNF (ng/mL) | 23.03 ± 3.05 | 26.11 ± 4.14 * |
| NGFβ (pg/mL) | 51.40 ± 29.20 | 39.15 ± 4.38 * |
| L/A | 1.94 ± 1.06 | 4.30 ± 2.81 ** |
| A/R | 26.80 ± 14.66 | 14.61 ± 8.21 *** |
| Parameters | Low-VAI PCOS (n=50) |
High-VAI PCOS (n=50) |
|---|---|---|
| FBG (mmol/L) | 4.71 ± 0.47 | 4.90 ± 0.66 NS |
| FIRI (μIU/mL) | 5.97 ± 2.26 | 9.48 ± 4.44 ** |
| HOMA-IR | 1.27 ± 0.59 | 2.13 ± 1.17 ** |
| TC (mmol/L) | 4.48 ± 1.14 | 4.47 ± 0.75 NS |
| LDL-C (mmol/L) | 2.57 ± 1.11 | 2.77 ± 0.69 NS |
| HDL-C (mmol/L) | 1.67 ± 0.49 | 1.15 ± 0.25 *** |
| TG (mmol/L) | 0.54 ± 0.16 | 1.18 ± 0.44 *** |
| Non-HDL-C | 2.82 ± 1.14 | 3.31 ± 0.73 * |
| AIP | -0.19 ± 0.12 | 0.03 ± 0.15 *** |
| Parameters | Low-VAI PCOS (n=50) |
High-VAI PCOS (n=50) |
|---|---|---|
| Log LH (IU/L) | 0.80 ± 0.26 | 0.79 ± 0.36 NS |
| FSH (mIU/mL) | 5.90 ± 1.26 | 5.46 ± 2.12 NS |
| Log LH/FSH | 0.04 ± 0.26 | 0.09 ± 0.34 NS |
| E2 (pg/mL) | 314.67 ± 176.14 | 228.68 ± 183.03 NS |
| Total testosterone (ng/mL) | 0.66 ± 0.17 | 0.70 ± 0.20 NS |
| Androstenedione (ng/mL) | 4.16 ± 2.34 | 3.75 ± 1.44 NS |
| DHEA-S (μg/dL) | 275.77 ± 122.91 | 289.72 ± 103.67 NS |
| SHBG (nmol/L) | 46.78 ± 10.25 | 37.20 ± 18.64 NS |
| FAI | 5.01 ± 2.47 | 9.43 ± 5.46 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.