Submitted:
29 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Antenna Design
2.1. Geometry and Materials
2.2. Weight Reduction
2.3. Feed Point
2.4. Gain
2.5. Radiation Patterns
3. Antenna Testing
3.1. Radiated Electric Field Measurement
4. Time-Domain Characteristics
4.1. Waveform Responses
4.2. Pulse Width Stretch Ratio (SR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| UWB | Ultra-Wideband |
| EMC | Electromagnetic Compatibility |
| EMI | Electromagnetic Interference |
| TWR | Through-Wall Radar |
| TSA | Tapered Slot Antenna |
| GPR | Ground-Penetrating Radar |
| RC | Reverberation Chamber |
| IEMI | Intentional Electromagnetic Interference |
| DUT | Device Under Test |
| AVA | Antipodal Vivaldi Antenna |
| SR | Pulse Width Stretch Ratio |
| PLA | Polylactic Acid |
| HFSS | High Frequency Structure Simulator |
| VNA | Vector Network Analyzer |
| HB | Hyperband |
| AF | Antenna Factor |
| VFG | Voltage Forward Gain |
References
- Yadav, R.; Malviya, L. UWB antenna and MIMO antennas with bandwidth, band-notched, and isolation properties for high-speed data rate wireless communication: A review. International Journal of RF and Microwave Computer-Aided Engineering 2020, 30, e22033, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/mmce.22033]. [CrossRef]
- Ahmed Ibrahim, Jan Machac, R.S. UWB MIMO Antenna for High Speed Wireless Applications. Applied Computational Electromagnetics Society Journal (ACES) 2019, 34, 1294–1299.
- Zakeri, H.; Azizpour, R.; Khoddami, P.; Moradi, G.; Alibakhshikenari, M.; Hwang See, C.; Denidni, T.A.; Falcone, F.; Koziel, S.; Limiti, E. Low-Cost Multiband Four-Port Phased Array Antenna for Sub-6 GHz 5G Applications With Enhanced Gain Methodology in Radio-Over-Fiber Systems Using Modulation Instability. IEEE Access 2024, 12, 117787–117799. [CrossRef]
- Wong, K.L.; Hong, S.E.; Li, W.Y. Low-Profile Four-Port MIMO Antenna Module Based 16-Port Closely-Spaced 2 × 2 Module Array for 6G Upper Mid-Band Mobile Devices. IEEE Access 2023, 11, 110796–110808. [CrossRef]
- Elmansouri, M.A.; Filipovic, D.S. Pulse Distortion and Mitigation Thereof in Spiral Antenna-Based UWB Communication Systems. IEEE Transactions on Antennas and Propagation 2011, 59, 3863–3871. [CrossRef]
- Cicchetti, R.; Miozzi, E.; Testa, O. Wideband and UWB Antennas for Wireless Applications: A Comprehensive Review. International Journal of Antennas and Propagation 2017, 2017, 2390808, [https://onlinelibrary.wiley.com/doi/pdf/10.1155/2017/2390808]. [CrossRef]
- Elsheakh, D.M.; Abdallah, E.A. Compact shape of vivaldi antenna for water detection using ground pentrating radar. Microwave and Optical Technology Letters 2014, 56, 1801–1809, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/mop.28451]. [CrossRef]
- Sato, M.; Hamada, Y.; Feng, X.; Kong, F.N.; Zeng, Z.; Fang, G. GPR using an array antenna for landmine detection. Near Surface Geophysics 2004, 2, 7–13, [https://onlinelibrary.wiley.com/doi/pdf/10.3997/1873-0604.2003011]. [CrossRef]
- Kumar, O.P.; Kumar, P.; Ali, T.; Kumar, P.; Vincent, S. Ultrawideband Antennas: Growth and Evolution. Micromachines 2022, 13. [CrossRef]
- Rafique, U.; Pisa, S.; Cicchetti, R.; Testa, O.; Cavagnaro, M. Ultra-Wideband Antennas for Biomedical Imaging Applications: A Survey. Sensors 2022, 22. [CrossRef]
- Latha, T.; Ram, G.; Kumar, G.A.; Chakravarthy, M. Review on Ultra-Wideband Phased Array Antennas. IEEE Access 2021, 9, 129742–129755. [CrossRef]
- Jamshidi-Zarmehri, H.; Akbari, A.; Labadlia, M.; Kedze, K.E.; Shaker, J.; Xiao, G.; Amaya, R.E. A Review on Through-Wall Communications: Wall Characterization, Applications, Technologies, and Prospects. IEEE Access 2023, 11, 127837–127854. [CrossRef]
- Ghimire, J.; Choi, D.Y. Ultra-Wide Band Double-Slot Podal and Antipodal Vivaldi Antennas Feed by Compact Out-Of-Phase Power Divider Slot for Fluid Properties Determination. Sensors 2022, 22. [CrossRef]
- D, R.S.; Azeemuddin, S. A comprehensive review of high voltage wideband and ultra-wide band antennas for IEMI applications. Engineering Research Express 2021, 3, 012001. [CrossRef]
- Gibson, P. The Vivaldi Aerial. In Proceedings of the 1979 9th European Microwave Conference, 1979, pp. 101–105. [CrossRef]
- Bhattacharjee, A.; Bhawal, A.; Karmakar, A.; Saha, A.; Bhattacharya, D. Vivaldi antennas: a historical review and current state of art. International Journal of Microwave and Wireless Technologies 2021, 13, 833–850. [CrossRef]
- Gutierrez, S.; Pantoja, J.J.; Ruiz, E.F.; González, N.; Vega, F.; Baer, C.; Sachs, J.; Kasmi, C. Advances on the detection of Landmines and IEDs in Colombia using UWB GPR and Machine Learning Techniques. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), 2021, pp. 1–4. [CrossRef]
- Al Mesmari, A.; Pantoja, J.J.; Alvarez, J.; Banelli, A.; Bega, F.; Kasmi, C. An Unmanned Aerial Vehicle Platform for the detection of Landmines and IEDs using GPR. In Proceedings of the GlobalEM 2022, 2022, pp. 101–102.
- García-Fernández, M.; López, Y.; Andrés, F.L.H. Airborne Multi-Channel Ground Penetrating Radar for Improvised Explosive Devices and Landmine Detection. IEEE Access 2020, 8, 165927–165943. [CrossRef]
- Stadler, S.; Igel, J. Developing Realistic FDTD GPR Antenna Surrogates by Means of Particle Swarm Optimization. IEEE Transactions on Antennas and Propagation 2022, 70, 4259–4272. [CrossRef]
- Stadler, S.; Schennen, S.; Hiller, T.; Igel, J. Realistic simulation of GPR for landmine and IED detection including antenna models, soil dispersion and heterogeneity. Near Surface Geophysics 2024, 22, 188–205, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/nsg.12282]. [CrossRef]
- Pantoja, J.J.; Gutierrez, S.; Pineda, E.; Martinez, D.; Baer, C.; Vega, F. Modeling and Measurement of Complex Permittivity of Soils in UHF. IEEE Geoscience and Remote Sensing Letters 2020, 17, 1109–1113. [CrossRef]
- Marvin, A.C.; Esposito, G.; Dawson, J.F.; Flintoft, I.D.; Dawson, L.; Everard, J.A.K.; Melia, G.C.R. A wide-band hybrid antenna for use in reverberation chambers. In Proceedings of the 2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, pp. 222–226. [CrossRef]
- Pantoja, J.J.; Bucheli, V.; Ross, D. Electromagnetic side-channel attack risk assessment on a practical quantum-key-distribution receiver based on multi-class classification. EPJ Quantum Technology 2024, 11. [CrossRef]
- Pantoja, J.J.; Tello, A.; Anagnostou, D.; Kirrane, J.; Stonehouse, M.; Koehler-Sidki, A.; Natrella, M.; Donaldson, R. Radiofrequency emanations of a single-photon detector. IET Conference Proceedings 2023, 2023, 55–59, [https://digital-library.theiet.org/doi/pdf/10.1049/icp.2023.3271]. [CrossRef]
- Mandaris, D.; Leferink, F. Simulation and measurement of log-periodic antenna and double ridged guide horn antenna for optimised field uniformity. In Proceedings of the 2017 International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2017, pp. 1–6. [CrossRef]
- Ivšić, B.; Friščić, F.; Dadić, M.; Muha, D. Design and Analysis of Vivaldi Antenna for Measuring Electromagnetic Compatibility. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 491–495. [CrossRef]
- Dawson, J.F.; Hoad, R.; Petit, B.; Rees, T.; Robinson, M.; Bale, S.; Hough, M.; Dawson, L.; Marvin, A.; Will, I. A Lightweight, Compact, High voltage Hyperband Antenna for IEMI Testing. In Proceedings of the 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium, 2021, pp. 154–154. [CrossRef]
- Dawson, J.F.; Bale, S.J.; Robinson, M.P.; Rees, T.; Petit, B.J.; Hoad, R.; Hough, M. A Pulse Antenna Suite for IEMI Testing. IEEE Electromagnetic Compatibility Magazine 2024, 13, 44–57. [CrossRef]
- Ohm, S.; Kang, E.; Lim, T.H.; Choo, H. Design of a Dual-Polarization All-Metal Vivaldi Array Antenna Using a Metal 3D Printing Method for High-Power Jamming Systems. IEEE Access 2023, 11, 35175–35181. [CrossRef]
- Savostin, V.S.; Gevorkyan, A.V. Ultra-Wideband 10-Element Antipodal Vivaldi Antenna Array with Metallic Insert. In Proceedings of the 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW), 2023, pp. 420–423. [CrossRef]
- Xie, J.; Chen, C.; He, J.; Qiao, H.; Fang, X.; Qu, T.; An, J. A Bidirectional Bent Vivaldi-Connected Array With Short-Circuited Branches for UWB Pulse Radiation. IEEE Transactions on Antennas and Propagation 2024, 72, 9177–9187. [CrossRef]
- Peng, L.; Xie, J.Y.; Li, X.F.; Jiang, X. Front to Back Ratio Bandwidth Enhancement of Resonance Based Reflector Antenna by Using a Ring-Shape Director and Its Time-Domain Analysis. IEEE Access 2017, 5, 15318–15325. [CrossRef]
- Çolak, S.A.; Tokan, N.T. Time-Domain Analysis of Modified Vivaldi Antennas. In Antennas and Wave Propagation; Pinho, P., Ed.; IntechOpen: Rijeka, 2018; chapter 3. [CrossRef]
- Amador, M.; Rouco, A.; Albuquerque, D.; Pinho, P. Overview of Vivaldi Antenna Selection for Through-Wall Radar Applications. Sensors 2024, 24. [CrossRef]
- Lee, D.; Raman, S.; Augustine, R. Design and Investigation on Antipodal Vivaldi Antenna Emitting a Pulse-Like Waveform for Imaging Close-Range Objects. IEEE Access 2024, 12, 135642–135650. [CrossRef]
- Schwarzbeck. Broadband TEM Horn Antenna, 2021. Rev. A.
- Arthur, P.; Kromer, M.; Harter, M. Low Frequency Edge-Slot Vivaldi Antenna for Ground Penetrating Radar Applications. In Proceedings of the 2024 25th International Microwave and Radar Conference (MIKON), 2024, pp. 160–162. [CrossRef]
- Riyanti, K.P.K.; Setijadi, E.; Hendrantoro, G.; Nurhayati, N. Optimizing Vivaldi Antenna Performance: Feeding Strategies for Broadband GPR Bandwidth Expansion. In Proceedings of the 2024 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 2024, pp. 270–273. [CrossRef]
- De, S.; Kundu, S. A Planar E Shaped Antipodal Vivaldi Antenna with Elliptical Slots for GPR Application. In Proceedings of the 2024 Second International Conference on Microwave, Antenna and Communication (MAC), 2024, pp. 1–4. [CrossRef]
- Sharma, A.; Goel, K.; Prajapati, J.; Upadhayay, M.D. S- Band GPR using Vivaldi for Object Detection. In Proceedings of the 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE), 2024, pp. 675–679. [CrossRef]
- Ranjan, P.; Raj, R.; Prakash, T. Suspended Elliptical Slot-Based High Gain Antenna for GPR Application. In Proceedings of the 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 2024, Vol. 2, pp. 1–4. [CrossRef]
- Wu, J.; Ma, J.; Shi, B.; Mo, K.S.; Peng, L. Design of an Ultra-Wideband Low-Profile Directional Bowtie Antenna for Ground-Penetrating Radars. In Proceedings of the 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2024, Vol. 1, pp. 1–3. [CrossRef]
- Matsepe, L.; Steyn, W.; Grootboom, L. UWB Slot Bow-tie Antenna for FMCW GPR Applications. In Proceedings of the 2024 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 2024, pp. 91–94. [CrossRef]
- Ali, M.U.; Abdulrazak, L.F.; Iqbal, J.; Illahi, U.; Kiani, G.I.; Khan, R.A.; Elmannai, H. Design of an optimized low-profile UWB rectangular dielectric resonator antenna with moon-shaped ground for 5G – millimeter wave applications. AEU - International Journal of Electronics and Communications 2025, 200, 155903. [CrossRef]
- Mohamed, H.A.; Aboualalaa, M. A low profile super UWB- MIMO antenna with d-shaped for satellite communications, 5G and beyond applications. Scientific Reports 2025, 15. [CrossRef]
- Awan, W.A.; Abbas, A.; Choi, D.; Sufian, M.A.; Hussain, N.; Kim, N. Precision Enhancement in EMC Measurements: Optimizing Multi-Layer Lens for Horn Antenna Applications. In Proceedings of the 2024 International Symposium on Antennas and Propagation (ISAP), 2024, pp. 1–2. [CrossRef]
- Kubo, T.; Ishida, T.; Harima, K.; Gotoh, K. Radiation Characteristics of TEM Horn and Broadband Sleeve Antennas Used for Near-Field Radiated Immunity Test. In Proceedings of the 2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan / Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa), 2024, pp. 607–608. [CrossRef]
- Sabath, F.; Mokole, E.; Samaddar, S. Definition and Classification of Ultra-Wideband Signals and Devices. The Radio Science Bulletin 2005, pp. 12–26.
- Farr, E.G.; Baum, C.E.; Buchenauer, C.J., Impulse Radiating Antennas, Part II. In Ultra-Wideband, Short-Pulse Electromagnetics 2; Carin, L.; Felsen, L.B., Eds.; Springer US: Boston, MA, 1995; pp. 159–170. [CrossRef]
- Yang, Y.Y.; Chu, Q.X.; Zheng, Z.A. Time Domain Characteristics of Band-Notched Ultrawideband Antenna. IEEE Transactions on Antennas and Propagation 2009, 57, 3426–3430. [CrossRef]



















| Description | Application | Freq. Band (GHz) | Bandwidth (GHz) | Gain (dBi) | Max. Voltage / Power | Ref. |
|---|---|---|---|---|---|---|
| Hybrid Monopole/Vivaldi | EMC | 0.2 - 25 | 24.8 | – | – | [23,29] |
| Hyperband Vivaldi | IEMI | – | 3* | – | 34 kV | [28] |
| UWB 10-element Vivaldi array | – | 5.7 - 12 | 6.3 | 11 - 20 | 0.9 W | [31] |
| Compact Vivaldi array | UWB pulse system | 0.6 - 6 | 5.4 | 5 - 20 | 100 kV | [32] |
| Vivaldi for EMC | EMC | 0.5 - 4 | 3.5 | 0 - 6.5 | – | [27] |
| Vivaldi for radar | TWR | 1.8 - 10 | 8.2 | 0 - 10 | – | [36] |
| Broadband TEM Horn Antenna | EMI | 0.38 - 6 | 5.62 | 2 - 10 | 300 W | [37] |
| Proposed design | GPR, EMC | 0.33 - 4.2 | 3.87 | 0 - 13.88 | 12.4 kV | – |
| Symbol | Representation |
| Starting point of the inner curve | |
| End point of the inner curve | |
| M | Curvature rate of the inner curve |
| Starting point of the outer curve | |
| End point of the outer curve | |
| N | Curvature rate of the outer curve |
| Parameter | Value (mm) | Parameter | Value (mm) |
| 642 | 3 | ||
| 571 | 6 | ||
| 9 | 480 | ||
| 9 | 324 | ||
| 20 | 240 | ||
| 10 | 0 | ||
| 285 | 324 | ||
| 1 | 0 | ||
| 321 | 480 |
| SR for different angles on the principal planes | |||||
| Plane | -30° | -15° | 0° | 15° | 30° |
| E-Plane | 1.3703 | 1.3420 | 1.3350 | 1.3420 | 1.3703 |
| H-Plane | 1.3844 | 1.3420 | 1.3350 | 1.3491 | 1.4056 |
| SR for different angles on the principal planes | |||||
| Plane | -30° | -15° | 0° | 15° | 30° |
| E-Plane | 1.0661 | 1.0441 | 1.0386 | 1.0441 | 1.0661 |
| H-Plane | 1.0771 | 1.0441 | 1.0386 | 1.0496 | 1.0936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
