Submitted:
29 January 2026
Posted:
31 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
Sample Selection
Isolation of ESBL/AmpC β-Lactamase and Carbapenemase Producing E. coli
Isolation of Fluoroquinolone Resistant E. coli
Isolation of Commensal E. coli
Positive and Negative Controls
Bacterial Species Confirmation
Antimicrobial Susceptibility Testing
Whole Genome Sequencing Analysis
Data Analysis
3. Results
Bacterial Culture
![]() |
Antimicrobial Susceptibility Testing
Whole Genome Sequencing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of interest
References
- Russo, T. A.; Johnson, J. R. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 2003, 5, 449–56. [Google Scholar] [CrossRef]
- Pakbin, B.; Brück, W. M.; Rossen, J. W. A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Tainter, C. R. Escherichia coli Infection. Available on line europepmc.org/books/n/statpearls/article-21320/?extid=31082016&src=med. 2025. (Accessed on: 15 January 2026).
- Naidoo, N.; Zishiri, O. T. Presence, Pathogenicity, Antibiotic Resistance, and Virulence Factors of Escherichia coli: A Review. Bacteria 2025, 4, 16. [Google Scholar] [CrossRef]
- Shpigel, N. Y.; Elazar, S.; Rosenshine, I. Mammary pathogenic Escherichia coli. Current Opinion in Microbiology 2008, 11, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Alhadlaq, M. A.; Aljurayyad, O. I.; Almansour, A.; Al-Akeel, S. I.; Alzahrani, K. O.; Alsalman, S. A.; Yahya, R.; Al-Hindi, R. R.; Hakami, M. A.; Alshahrani, S. D.; Alhumeed, N. A.; Al Moneea, A. M.; Al-Seghayer, M. S.; AlHarbi, A. L.; Al-Reshoodi, F. M.; Alajel, S. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982–2024) and food safety criteria. Gut Pathogens 2024, 16, 57. [Google Scholar] [CrossRef]
- Chatterjee, S. Chapter 9 - Genetic origins of microbial virulence. In Host Adaptation, Virulence, and Evolution; Parray, J. A., Singh, N., Li, W.-J., Eds.; Academic Press, 2025; pp. pp 153–177. ISBN 9780443315541. [Google Scholar]
- Leitão, J. H. Microbial Virulence Factors. Int J Mol Sci 2020, 21(15). [Google Scholar] [CrossRef] [PubMed]
- Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S.; Pathania, R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology (Reading) 2023, 169(5). [Google Scholar] [CrossRef]
- Kumawat, M.; Nabi, B.; Daswani, M.; Viquar, I.; Pal, N.; Sharma, P.; Tiwari, S.; Sarma, D. K.; Shubham, S.; Kumar, M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microbial Pathogenesis 2023, 181, 106182. [Google Scholar] [CrossRef]
- Laborda, P.; Molin, S.; Johansen, H. K.; Martínez, J. L.; Hernando-Amado, S. Role of bacterial multidrug efflux pumps during infection. World Journal of Microbiology and Biotechnology 2024, 40, 226. [Google Scholar] [CrossRef]
- Shen, S.; He, Z.; Zhao, S.; Zhu, Z.; Wang, X.; Tian, Y.; Han, Y.; Hu, M.; Lu, C.; Li, A. Environmental high-risk efflux pumps mediate concurrent enhancement of resistance and virulence in reclaimed water from urban wastewater treatment plants. Journal of Hazardous Materials 2025, 493, 138236. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Jordá, J.; Marin, C.; Lorenzo-Rebenaque, L.; Montoro-Dasi, L.; Vega, S. Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Antibiotics (Basel) 2023, 12(11). [Google Scholar] [CrossRef] [PubMed]
- Zanichelli, V.; Sharland, M.; Cappello, B.; Moja, L.; Getahun, H.; Pessoa-Silva, C.; Sati, H.; Weezenbeek, C.; Balkhy, H.; Simão, M.; Gandra, S.; Huttner, B. The WHO AWaRe (Access, Watch, Reserve) antibiotic book and prevention of antimicrobial resistance. Bulletin of the World Health Organization 2023, 101, 290–296. [Google Scholar] [CrossRef]
- World Health Organisation. Critically Important Antimicrobials for Human Medicine: 6th Revision2018,Ranking of medically important antimicrobials for risk management of antimicrobial resistance due to non-human use.. ISBN 978-92-4-151552-8, 1-45.
- Husna, A.; Rahman, M. M.; Badruzzaman, A. T. M.; Sikder, M. H.; Islam, M. R.; Rahman, M. T.; Alam, J.; Ashour, H. M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11(11). [Google Scholar] [CrossRef] [PubMed]
- Prendergast, D. M.; Slowey, R.; Burgess, C. M.; Murphy, D.; Johnston, D.; Morris, D.; O' Doherty, Á.; Moriarty, J.; Gutierrez, M. Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. Front Microbiol 2023, 14, 1118264. [Google Scholar] [CrossRef]
- Byrne, N.; O’Neill, L.; Dίaz, J. A. C.; Manzanilla, E. G.; Vale, A. P.; Leonard, F. C. Antimicrobial resistance in Escherichia coli isolated from on-farm and conventional hatching broiler farms in Ireland. Irish Veterinary Journal 2022, 75(1), 7. [Google Scholar] [CrossRef]
- Ewers, C.; de Jong, A.; Prenger-Berninghoff, E.; El Garch, F.; Leidner, U.; Tiwari, S. K.; Semmler, T. Genomic Diversity and Virulence Potential of ESBL- and AmpC-β-Lactamase-Producing Escherichia coli Strains From Healthy Food Animals Across Europe. Front Microbiol 2021, 12, 626774. [Google Scholar] [CrossRef]
- Ahmed, S. K.; Hussein, S.; Qurbani, K.; Ibrahim, R. H.; Fareeq, A.; Mahmood, K. A.; Mohamed, M. G. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, S.; Kaur, R. Impact of antibiotic usage in food-producing animals on food safety and possible antibiotic alternatives. The Microbe 2024, 4, 100097. [Google Scholar] [CrossRef]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health 2021, 3(1), 32–38. [Google Scholar] [CrossRef]
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Med Sci (Basel) 2021, 9(1). [Google Scholar] [CrossRef]
- Almansour, A. M.; Alhadlaq, M. A.; Alzahrani, K. O.; Mukhtar, L. E.; Alharbi, A. L.; Alajel, S. M. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023, 11(9), 2127. [Google Scholar] [CrossRef]
- Mediouni, M.; Diallo, A. B.; Makarenkov, V. Quantifying antimicrobial resistance in food-producing animals in North America. Frontiers in Microbiology 2025, 16, 2025. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M. L. E.; Caniça, M.; Tejedor-Junco, M. T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals (Basel) 2020, 10(12). [Google Scholar] [CrossRef]
- Munita, J. M.; Arias, C. A. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016, 4(2). [Google Scholar] [CrossRef] [PubMed]
- Devi, N. S.; Mythili, R.; Cherian, T.; Dineshkumar, R.; Sivaraman, G. K.; Jayakumar, R.; Prathaban, M.; Duraimurugan, M.; Chandrasekar, V.; Peijnenburg, W. J. G. M. Overview of antimicrobial resistance and mechanisms: The relative status of the past and current. The Microbe 2024, 3, 100083. [Google Scholar] [CrossRef]
- Nammi, J.; Pasala, R.; Andhe, N.; Vasam, R.; Poruri, A. D.; Sherikar, R. R. Antibiotic Misuse: An In-Depth Examination of Its Global Consequences and Public Health Challenges. Cureus 2025, 17(6), e85941. [Google Scholar] [CrossRef] [PubMed]
- Murray, L. M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W. H.; Murray, A. K. Co-selection for antibiotic resistance by environmental contaminants. npj Antimicrobials and Resistance 2024, 2(1), 9. [Google Scholar] [CrossRef] [PubMed]
- Gillieatt, B. F.; Coleman, N. V. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024, 48(4). [Google Scholar]
- Lucchetti, D.; Delfino, D.; Di Giustino, P.; Droghei, B.; Mancuso, M.; Mauti, T.; Triolone, D.; Vaccari, S.; Neri, B.; Russo, K. Development of a QuEChERS-based method for the determination of quaternary ammonium compounds in different food matrices by LC-MS/MS. Journal of Food Composition and Analysis 2024, 136, 106760. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Avila-Novoa, M. G.; Iñiguez-Moreno, E.; Guerrero-Medina, P. J.; Gutiérrez-Lomelí, M. Antimicrobial activity of disinfectants commonly used in the food industry in Mexico. Journal of Global Antimicrobial Resistance 2017, 10, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Zurfluh, K.; Hachler, H.; Nuesch-Inderbinen, M.; Stephan, R. Characteristics of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 2013, 79(9), 3021–6. [Google Scholar] [CrossRef]
- Lu, Z.; Mahony, A. K.; Arnold, W. A.; Marshall, C. W.; McNamara, P. J. Quaternary ammonia compounds in disinfectant products: evaluating the potential for promoting antibiotic resistance and disrupting wastewater treatment plant performance. Environmental Science Advances 2024, 3(2), 208–226. [Google Scholar] [CrossRef]
- EURL-SRM, Analysis of Quaternary Ammonium Compounds (QACs) in Fruits and Vegetables using QuEChERS and LC-MS/MS. 2023. Available online: https://eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSRM_meth_QAC_ShortMethod.pdf (accessed on 13 January 2026).
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology 2021, 61(12), 1049–1070. [Google Scholar] [CrossRef] [PubMed]
- Central Statistics Office. Livestock Survey December 2024. 2025. Available online: https://www.cso.ie/en/releasesandpublications/ep/p-lsd/livestocksurveydecember2024/ (accessed on 09 January 2026).
- Morales-Ubaldo, A. L.; Rivero-Perez, N.; Valladares-Carranza, B.; Velázquez-Ordoñez, V.; Delgadillo-Ruiz, L.; Zaragoza-Bastida, A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Veterinary and Animal Science 2023, 21, 100306. [Google Scholar] [CrossRef]
- Goulart, D. B.; Mellata, M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022, 13, 928346. [Google Scholar]
- Zaatout, N. An overview on mastitis-associated Escherichia coli: Pathogenicity, host immunity and the use of alternative therapies. Microbiological Research 2022, 256, 126960. [Google Scholar] [CrossRef]
- Nobrega, D. B.; Naqvi, S. A.; Dufour, S.; Deardon, R.; Kastelic, J. P.; De Buck, J.; Barkema, H. W. Critically important antimicrobials are generally not needed to treat nonsevere clinical mastitis in lactating dairy cows: Results from a network meta-analysis. Journal of Dairy Science 2020, 103(11), 10585–10603. [Google Scholar] [CrossRef]
- EFSA. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Official Journal of the European Union 20022 2019, L4/43, 43–167. [Google Scholar]
- More, S. J.; McCoy, F.; McAloon, C. I. The new Veterinary Medicines Regulation: rising to the challenge. Ir Vet J 2022, 75(1), 2. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.; Manzanilla, E. G.; More, S. J.; O’Neill, L.; Bradford, L.; Carty, C. I.; Collins, Á. B.; McAloon, C. G. Current antimicrobial use in farm animals in the Republic of Ireland. Irish Veterinary Journal 2020, 73(1), 11. [Google Scholar] [CrossRef]
- National Dairy Council. Is all milk pasteurised? 2022. Available online: https://ndc.ie/accordion/is-all-milk-pasteurised/ (accessed on 13 January 2026).
- Paramasivam, R.; Gopal, D. R.; Dhandapani, R.; Subbarayalu, R.; Elangovan, M. P.; Prabhu, B.; Veerappan, V.; Nandheeswaran, A.; Paramasivam, S.; Muthupandian, S. Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infection and Drug Resistance 2023, 16, 155–178. [Google Scholar] [CrossRef]
- Tóth, A. G.; Csabai, I.; Krikó, E.; Tőzsér, D.; Maróti, G.; Patai Á, V.; Makrai, L.; Szita, G.; Solymosi, N. Antimicrobial resistance genes in raw milk for human consumption. Sci Rep 2020, 10(1), 7464. [Google Scholar] [CrossRef]
- Majumder, S.; Jung, D.; Ronholm, J.; George, S. Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiology 2021, 21(1), 222. [Google Scholar]
- Nüesch-Inderbinen, M.; Käppeli, N.; Morach, M.; Eicher, C.; Corti, S.; Stephan, R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet Rec Open 2019, 6(1), e000369. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.; Gul, S.; Bhatti, M. F.; Siddiqui, M. F.; Adnan, F. High Occurrence of Multidrug-Resistant Escherichia coli Strains in Bovine Fecal Samples from Healthy Cows Serves as Rich Reservoir for AMR Transmission. Antibiotics (Basel) 2022, 12(1). [Google Scholar] [CrossRef]
- Garzon, A.; Portillo, R.; Habing, G.; Silva-del-Rio, N.; Karle, B. M.; Pereira, R. V. Antimicrobial resistance of Escherichia coli from dairy farms participating in an antimicrobial stewardship educational program for farm employees. Journal of Dairy Science 2024, 107(3), 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R. S.; Cavaco, L. M.; Guerra, B.; Bortolaia, V.; Agersø, Y.; Svendsen, C. A.; Nielsen, H. N.; Kjeldgaard, J. S.; Pedersen, S. K.; Fertner, M.; Hasman, H. Evaluation and validation of laboratory procedures for the surveillance of ESBL-, AmpC-, and carbapenemase-producing Escherichia coli from fresh meat and caecal samples. Front Microbiol 2023, 14, 1229542. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, D. M.; O'Doherty, Á.; Burgess, C. M.; Howe, N.; McMahon, F.; Murphy, D.; Leonard, F.; Morris, D.; Harrington, C.; Carty, A.; Moriarty, J.; Gutierrez, M. Critically important antimicrobial resistant Enterobacteriaceae in Irish farm effluent and their removal in integrated constructed wetlands. Science of The Total Environment 2022, 806, 151269. [Google Scholar] [CrossRef] [PubMed]
- Microbiology of the Food Chain: Enumeration of ß-Glucuronidase-Positive Escherichia coli at 44˚C. 2001. Available online: https://cdn.standards.iteh.ai/samples/29824/cbb8efcaa00647c3807681d77c0fb144/ISO-16649-2-2001.pdf (accessed on 13 January 2025).
- O'Brien, M.; Hunt, K.; McSweeney, S.; Jordan, K. Occurrence of foodborne pathogens in Irish farmhouse cheese. Food Microbiology 2009, 26(8), 910–914. [Google Scholar] [CrossRef]
- Ramovic, E.; Madigan, G.; McDonnell, S.; Griffin, D.; Bracken, E.; NiGhallchoir, E.; Quinless, E.; Galligan, A.; Egan, J.; Prendergast, D. M. A pilot study using environmental screening to determine the prevalence of Mycobacterium avium subspecies paratuberculosis (MAP) and antimicrobial resistance (AMR) in Irish cattle herds. Ir Vet J 2020, 73, 3. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU. OJEU 2020, 387, 8–21.
- EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/epidemiological importance. 2013. Available online: https://rosco-diagnostica.com/wp-content/uploads/EUCAST_guidelines_detection_of_resistance_mechanisms_121222.pdf (accessed on 13 January 2026).
- EFSA (European Food Safety Authority), A. G., Beloeil P-A, GarciaFierro R, Guerra B, Rizzi V and Stoicescu A-V, , Manual for reporting 2023 antimicrobialresistance data under Directive 2003/99/EC and Commission Implementing Decision (EU)2020/1729. 2024, EFSA supporting publication 2024:EN-8585. 41 pp. doi:10.2903/sp.efsa.2024.EN-8585ISSN: 2397-8325. (Accessed on 13 January 2026).
- Sergeant, E. Epitools Epidemiological Calculators. 2018. Available online: https://epitools.ausvet.com.au/chisq (accessed on 13 January 2026).
- Feldgarden, M.; Brover, V.; Haft, D. H.; Prasad, A. B.; Slotta, D. J.; Tolstoy, I.; Tyson, G. H.; Zhao, S.; Hsu, C. H.; McDermott, P. F.; Tadesse, D. A.; Morales, C.; Simmons, M.; Tillman, G.; Wasilenko, J.; Folster, J. P.; Klimke, W. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob Agents Chemother 2019, 63(11). [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J. G.; Haendiges, J.; Haft, D. H.; Hoffmann, M.; Pettengill, J. B.; Prasad, A. B.; Tillman, G. E.; Tyson, G. H.; Klimke, W. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021, 11(1), 12728. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Fedorov, B.; Haft, D. H.; Prasad, A. B.; Klimke, W. Curation of the AMRFinderPlus databases: applications, functionality and impact. Microb Genom 2022, 8(6). [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Research 2016, 44(D1), D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Beghain, J.; Bridier-Nahmias, A.; Le Nagard, H.; Denamur, E.; Clermont, O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 2018, 4(7). [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. L. BLAST+: architecture and applications. BMC Bioinformatics 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrobial Agents and Chemotherapy 2014, 58(7), 3895–3903. [Google Scholar] [CrossRef]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. Correction: PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLOS ONE 2013, 8(12). [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU. OJEU 2020, 387, 8–21.
- Nyambe, S.; Brehony, C.; Hselin, R.; Byrne, B.; Morris, *!!! REPLACE !!!*; Dearbhaile, *!!! REPLACE !!!*; Gutierrez, M. Occurrence and molecular characterisation of verocytotoxigenic Escherichia coli in raw milk and milk filters in Ireland. In Proceedings of the 11th International Symposium on Shiga Toxin (Verocytotoxin producing Escherichia coli infections, Banff centre for arts and creativity Banff, Alberta, Canada, 7th – 10th May, 2023. [Google Scholar]
- FSAI. Raw milk and raw milk filter microbiological surveillance programme. 2015. Available online: https://www.fsai.ie/publications/raw-milk-and-raw-milk-filter-microbiological-survey (accessed on 13 January 2026).
- Murphy, M.; Buckley, J. F.; Whyte, P.; O'Mahony, M.; Anderson, W.; Wall, P. G.; Fanning, S. Surveillance of dairy production holdings supplying raw milk to the farmhouse cheese sector for Escherichia coli O157, O26 and O111. Zoonoses Public Health 2007, 54(9-10), 358–65. [Google Scholar] [CrossRef]
- Stephan, R.; Schumacher, S.; Corti, S.; Krause, G.; Danuser, J.; Beutin, L. Prevalence and Characteristics of Shiga Toxin-Producing Escherichia coli in Swiss Raw Milk Cheeses Collected at Producer Level. Journal of Dairy Science 2008, 91(7), 2561–2565. [Google Scholar] [CrossRef]
- Hazards, E. P. o. B., Scientific Opinion on the public health risks related to the consumption of raw drinking milk. EFSA Journal 2015, 13(1), 3940. [CrossRef]
- Drugea, R. I.; Siteavu, M. I.; Pitoiu, E.; Delcaru, C.; Sârbu, E. M.; Postolache, C.; Bărăităreanu, S. Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow’s Milk. Microorganisms 2025, 209. [Google Scholar] [CrossRef]
- Imre, K.; Ban-Cucerzan, A.; Herman, V.; Sallam, K. I.; Cristina, R. T.; Abd-Elghany, S. M.; Morar, D.; Popa, S. A.; Imre, M.; Morar, A. Occurrence, Pathogenic Potential and Antimicrobial Resistance of Escherichia coli Isolated from Raw Milk Cheese Commercialized in Banat Region, Romania. Antibiotics (Basel) 2022, 11(6). [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Bonazza, F.; Brasca, M. Occurrence and diversity of Shiga toxin-producing Escherichia coli (STEC) in Italian Alpine raw milk cheeses and their development in the earlier stages of different cheese-making processes. LWT 2024, 213, 117029. [Google Scholar] [CrossRef]
- Condor, S.; Duma, M.; Crăciun, S.; Mihaiu, M.; Cîmpean, R.; Crisan-Reget, O. L.; Dan, S. D.; Condor, L.; Ionica, C.-N.; Tabaran, A. Quantification of Total Staphylococci and Escherichia coli in Milk and Dairy Products from Small Ruminants and Characterization of the Antimicrobial Resistance Profiles of Isolated Pathogenic Strains. Microorganisms 2025, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Heinsbroek, E.; Blakey, E.; Simpson, A.; Verlander, N. Q.; Greig, D. R.; Jorgensen, F.; Nelson, A.; Douglas, A.; Balasegaram, S.; Jenkins, C.; Elson, R. An outbreak of Shiga toxin-producing Escherichia coli serotype O103:H2 associated with unpasteurized soft cheese, England and Wales, 2022. Epidemiology and Infection 2024, 152, e172. [Google Scholar] [CrossRef]
- Shoaib, M.; He, Z.; Geng, X.; Tang, M.; Hao, R.; Wang, S.; Shang, R.; Wang, X.; Zhang, H.; Pu, W. The emergence of multi-drug resistant and virulence gene carrying Escherichia coli strains in the dairy environment: a rising threat to the environment, animal, and public health. Front Microbiol 2023, 14, 1197579. [Google Scholar] [CrossRef] [PubMed]
- Quinn, O. I.; Jenkins, C.; Greig, D. R.; Neale, S.; Jorgensen, F.; Yanshi; Inns, T.; Allison, L.; Browning, L.; Douglas, A.; Balasegram, S. An outbreak of Shiga Toxin-producing Escherichia coli Serotype O145:H28 Associated with Domestic Travel and Consumption of Unpasteurized Cheese, UK, 2023. Journal of Food Protection 2025, 88(4), 100470. [Google Scholar] [CrossRef]
- Laslo, É.; György, É. Evaluation of the microbiological quality of some dairy products. Acta Universitatis Sapientiae, Alimentaria 2018, 11(1), 27–44. [Google Scholar] [CrossRef]
- Younis, W.; Hassan, S.; Mohamed, H. M. A. Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance. Vet World 2021, 14(9), 2410–2418. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 852/2004 of the european parliament and of the council of 29 April 2004 on the hygiene of foodstuffs. Official Journal of the European Communities 2004, L139, 1–54.
- Commission Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Official Journal of the European Communities 2004, L 139/55, 55–205.
- Huang, L.; Wu, C.; Gao, H.; Xu, C.; Dai, M.; Huang, L.; Hao, H.; Wang, X.; Cheng, G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics (Basel) 2022, 11(4). [Google Scholar] [CrossRef]
- Pugh, H. L.; Connor, C.; Siasat, P.; McNally, A.; Blair, J. M. A. E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump. Microbiology 2023, 169(4). [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, V.; Stone, T. A.; Deber, C. M.; Karplus, M. Structure of the EmrE multidrug transporter and its use for inhibitor peptide design. Proceedings of the National Academy of Sciences 2018, 115(34), E7932–E7941. [Google Scholar] [CrossRef]
- Schuldiner, S.; Granot, D.; Mordoch, S. S.; Ninio, S.; Rotem, D.; Soskin, M.; Tate, C. G.; Yerushalmi, H. Small is Mighty: EmrE, a Multidrug Transporter as an Experimental Paradigm. Physiology 2001, 16(3), 130–134. [Google Scholar] [CrossRef] [PubMed]
- Law, C. J.; Maloney, P. C.; Wang, D. N. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 2008, 62, 289–305. [Google Scholar] [CrossRef]
- Law, C. J.; Alegre, K. O. Clamping down on drugs: the Escherichia coli multidrug efflux protein MdtM. Res Microbiol 2018, 169(7-8), 461–467. [Google Scholar] [CrossRef] [PubMed]
- Nagarathinam, K.; Nakada-Nakura, Y.; Parthier, C.; Terada, T.; Juge, N.; Jaenecke, F.; Liu, K.; Hotta, Y.; Miyaji, T.; Omote, H.; Iwata, S.; Nomura, N.; Stubbs, M. T.; Tanabe, M. Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nature Communications 2018, 9(1), 4005. [Google Scholar] [CrossRef] [PubMed]
- Banigan, J. R.; Gayen, A.; Cho, M. K.; Traaseth, N. J. A structured loop modulates coupling between the substrate-binding and dimerization domains in the multidrug resistance transporter EmrE. J Biol Chem 2015, 290(2), 805–14. [Google Scholar] [CrossRef]
- Walczak Ł, J.; Kwiatkowska, M.; Twarowski, B.; Kubacka, M.; Paluch, J.; Herbet, M. Disinfectant-induced bacterial resistance and antibiotic cross-resistance-mechanisms and clinical relevance. Clin Exp Med 2025, 26(1), 26. [Google Scholar]
- Sousa, M.; Machado, I.; Simões, L. C.; Simões, M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. Environmental Science and Ecotechnology 2025, 25, 100557. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Fu, J.; Zhao, K.; Yang, S.; Li, C.; Penttinen, P.; Ao, X.; Liu, A.; Hu, K.; Li, J.; Yang, Y.; Liu, S.; Bai, L.; Zou, L. Class 1 integron carrying qacEΔ1 gene confers resistance to disinfectant and antibiotics in Salmonella. International Journal of Food Microbiology 2023, 404, 110319. [Google Scholar] [CrossRef]
- Teelucksingh, T.; Thompson Laura, K.; Cox, G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. Journal of Bacteriology 2020, 202(22). [Google Scholar] [CrossRef]
- Pugh, H. L.; Connor, C.; Siasat, P.; McNally, A.; Blair, J. M. A. E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump. Microbiology (Reading) 2023, 169(4). [Google Scholar] [CrossRef]
- Nordholt, N.; Kanaris, O.; Schmidt, S. B. I.; Schreiber, F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat Commun 2021, 12(1), 6792. [Google Scholar] [CrossRef]
- Paulsen, I. T.; Littlejohn, T. G.; Rådström, P.; Sundström, L.; Sköld, O.; Swedberg, G.; Skurray, R. A. The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrobial Agents and Chemotherapy 1993, 37(4), 761–768. [Google Scholar] [CrossRef]
- Jaglic, Z.; Cervinkova, D. Genetic basis of resistance to quaternary ammonium compounds - the qac genes and their role: a review. Veterinární medicína 2012, 57(6), 275–281. [Google Scholar] [CrossRef]
- Romão, C.; Miranda, C. A.; Silva, J.; Mandetta Clementino, M.; de Filippis, I.; Asensi, M. Presence of qacEΔ1 Gene and Susceptibility to a Hospital Biocide in Clinical Isolates of Pseudomonas aeruginosa Resistant to Antibiotics. Current Microbiology 2011, 63(1), 16–21. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Helal, Z. QacE and QacEΔ1 Genes and Their Correlation to Antibiotics and Biocides Resistance Pseudomonas aeruginosa. Am. J. Biomed Sci 2015, 7, 52–62. [Google Scholar]
- Ransom, E. M.; Potter, R. F.; Dantas, G.; Burnham, C.-A. D. Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes! Clinical Chemistry 2020, 66(10), 1278–1289. [Google Scholar] [CrossRef] [PubMed]
- Merchel Piovesan Pereira, B.; Wang, X.; Tagkopoulos, I. Biocide-Induced Emergence of Antibiotic Resistance in Escherichia coli. Front Microbiol 2021, 12, 640923. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int J Med Microbiol 2013, 303, 298–304. [Google Scholar] [CrossRef] [PubMed]
- San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol 2018, 26, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A. J.; Peirano, G.; Pitout, J. D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015, 28, 565–91. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M. S. M.; Fischer, J.; Wagenaar, J. A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D. J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 2018, 73, 1121–1137. [Google Scholar] [CrossRef]
- Adamczuk, M.; Zaleski, P.; Dziewit, L.; Wolinowska, R.; Nieckarz, M.; Wawrzyniak, P.; Kieryl, P.; Plucienniczak, A.; Bartosik, D. Diversity and Global Distribution of IncL/M Plasmids Enabling Horizontal Dissemination of β-Lactam Resistance Genes among the Enterobacteriaceae. Biomed Res Int 2015, 2015, 414681. [Google Scholar] [CrossRef]
- Poirel, L.; Dortet, L.; Bernabeu, S.; Nordmann, P. Genetic Features of blaNDM-1-Positive Enterobacteriaceae. Antimicrobial Agents and Chemotherapy 2011, 55, 5403–5407. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: the phantom menace. Journal of Antimicrobial Chemotherapy 2012, 67, 1597–1606. [Google Scholar] [CrossRef]
- Lotfi, M.; Jalal, D.; Sayed, A. A. plsMD: A plasmid reconstruction tool from short-read assemblies. bioRxiv 2025, 03.17.643493. [Google Scholar] [CrossRef]
- Arredondo-Alonso, S.; Willems, R. J.; van Schaik, W.; Schürch, A. C. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 2017, 3, e000128. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Alonso, S.; Top, J.; McNally, A.; Puranen, S.; Pesonen, M.; Pensar, J.; Marttinen, P.; Braat, J. C.; Rogers, M. R. C.; van Schaik, W.; Kaski, S.; Willems, R. J. L.; Corander, J.; Schürch, A. C. Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium. mBio 2020, 11(1). [Google Scholar] [CrossRef] [PubMed]
- Redgrave, L. S.; Sutton, S. B.; Webber, M. A.; Piddock, L. J. V. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology 2014, 22, 438–445. [Google Scholar] [CrossRef]
- Azzariti, S.; Bond, R.; Loeffler, A.; Zendri, F.; Timofte, D.; Chang, Y. M.; Pelligand, L. Investigation of In Vitro Susceptibility and Resistance Mechanisms in Skin Pathogens: Perspectives for Fluoroquinolone Therapy in Canine Pyoderma. Antibiotics (Basel) 2022, 11(9). [Google Scholar] [CrossRef]
- Tewawong, N.; Kowaboot, S.; Lektrakul, W.; Supcharoengoon, U.; Watanagul, N.; Pitaksajjakul, P. Mechanisms of fluoroquinolone resistance among Escherichia coli isolates from urinary tract infections in Thailand. PLOS ONE 2025, 20(5), e0325175. [Google Scholar] [CrossRef]
- Enshaie, E.; Nigam, S.; Patel, S.; Rai, V. Livestock Antibiotics Use and Antimicrobial Resistance. Antibiotics 2025, 14, 621. [Google Scholar] [CrossRef]
- Zhao, Y.; Niu, Y.; Zhao, M.; Huang, W.; Qin, Y. Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. Front Microbiol 2025, 16, 1595051. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; McCubbin, K. D.; Speksnijder, D.; Dufour, S.; Middleton, J. R.; Ruegg, P. L.; Lam, T.; Kelton, D. F.; McDougall, S.; Godden, S. M.; Lago, A.; Rajala-Schultz, P. J.; Orsel, K.; De Vliegher, S.; Krömker, V.; Nobrega, D. B.; Kastelic, J. P.; Barkema, H. W. Invited review: Selective treatment of clinical mastitis in dairy cattle. J Dairy Sci 2023, 106, 3761–3778. [Google Scholar] [CrossRef] [PubMed]
- Huygens, J.; Daeseleire, E.; Mahillon, J.; Van Elst, D.; Decrop, J.; Meirlaen, J.; Dewulf, J.; Heyndrickx, M.; Rasschaert, G. Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics (Basel) 2021, 10(4). [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Tan, J.; Khan, M. F.; Chugh, G.; Schmidt, O.; Ma, L.; Bu, D. Emerging Microbial and Enzymatic Approaches for Sustainable Antibiotic Biodegradation in Livestock Manure to Mitigate Water Pollution Risks. Water 2025, 16, 2960. [Google Scholar] [CrossRef]
- Qiu, T.; Huo, L.; Guo, Y.; Gao, M.; Wang, G.; Hu, D.; Li, C.; Wang, Z.; Liu, G.; Wang, X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. Environmental Microbiome 2022, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Trinchera, M.; De Gaetano, S.; Sole, E.; Midiri, A.; Silvestro, S.; Mancuso, G.; Catalano, T.; Biondo, C. Antimicrobials in Livestock Farming and Resistance: Public Health Implications. Antibiotics 2025, 14, 606. [Google Scholar] [CrossRef]
- Wellington, E. M. H.; Boxall, A. B. A.; Cross, P.; Feil, E. J.; Gaze, W. H.; Hawkey, P. M.; Johnson-Rollings, A. S.; Jones, D. L.; Lee, N. M.; Otten, W.; Thomas, C. M.; Williams, A. P. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Huang, Y.; Xu, X.; Liu, Z.; Li, S.; Zhu, L.; Hu, B.; Zhang, T. Global soil antibiotic resistance genes are associated with increasing risk and connectivity to human resistome. Nature Communications 2025, 16, 7141. [Google Scholar] [CrossRef]
- Li, X.; Bickel, S.; Wicaksono, W. A.; Lin, X.; Berg, G.; Zhu, Y. Unraveling antibiotic resistance dynamics at the soil–plant interface under climate change for One Health. One Health Advances 2025, 3, 16. [Google Scholar] [CrossRef]
- Partridge, S. R.; Kwong, S. M.; Firth, N.; Jensen, S. O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Joseph, A.; Cointe, A.; Mariani Kurkdjian, P.; Rafat, C.; Hertig, A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020, 12, 67. [Google Scholar]
- Merrick, R.; Song, J.; Fina, L.; Sawyer, C.; Jenkins, C.; King, G.; Turner, D.; Thomas, D.; Williams, C. Long-term health outcomes of Shiga toxin-producing Escherichia coli O157 (STEC O157) infection and STEC-associated haemolytic uraemic syndrome (STEC-HUS), Wales, 1990–2020. Pediatric Nephrology 2025, 40, 2295–2310. [Google Scholar] [CrossRef]
- Garcia, T. A.; Ventura, C. L.; Smith, M. A.; Merrell, D. S.; O'Brien, A. D. Cytotoxic necrotizing factor 1 and hemolysin from uropathogenic Escherichia coli elicit different host responses in the murine bladder. Infect Immun 2013, 81, 99–109. [Google Scholar] [CrossRef]
- Zaki, M.; Bastawy, S.; Montasser, K. Molecular Study of E. coli Virulence Genes in Nosocomial Sepsis. Biosciences, Biotechnology Research Asia 2019, 16, 269–277. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Hannan, T. J.; Guest, R. L.; Kostakioti, M.; Hadjifrangiskou, M.; Binkley, J.; Dodson, K.; Raivio, T. L.; Hultgren, S. J. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci U S A 2015, 112, E871-80. [Google Scholar] [CrossRef]
- Tozzi, M.; Fiore, A.; Travaglione, S.; Marcon, F.; Rainaldi, G.; Germinario, E. A. P.; Laterza, I.; Donati, S.; Macchia, D.; Spada, M.; Leoni, O.; Quattrini, M. C.; Pietraforte, D.; Tomasoni, S.; Torrigiani, F.; Verin, R.; Matarrese, P.; Gambardella, L.; Spadaro, F.; Carollo, M.; Pietrantoni, A.; Carlini, F.; Panebianco, C.; Pazienza, V.; Colella, F.; Lucchetti, D.; Sgambato, A.; Sistigu, A.; Moschella, F.; Guidotti, M.; Vincentini, O.; Maroccia, Z.; Biffoni, M.; De Angelis, R.; Bracci, L.; Fabbri, A. E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration. J Exp Clin Cancer Res 2025, 44, 29. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.; Xu, H.; Xu, Y.; Jielu, L.; Zhang, D.; Gao, S.; Liu, X. Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli: Salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC microbiology 2012, 12, 143. [Google Scholar] [CrossRef]
- Bergsten, G.; Wullt, B.; Svanborg, C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. International Journal of Medical Microbiology 2005, 295, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Wullt, B.; Bergsten, G.; Samuelsson, M.; Svanborg, C. The role of P fimbriae for Escherichia coli establishment and mucosal inflammation in the human urinary tract. International Journal of Antimicrobial Agents 2002, 19, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Foroogh, N.; Rezvan, M.; Ahmad, K.; Mahmood, S. Structural and functional characterization of the FimH adhesin of uropathogenic Escherichia coli and its novel applications. Microbial Pathogenesis 2021, 161, 105288. [Google Scholar] [CrossRef] [PubMed]
- Aljohni, M. S.; Harun-Ur-Rashid, M.; Selim, S. Emerging threats: Antimicrobial resistance in extended-spectrum beta-lactamase and carbapenem-resistant Escherichia coli. Microbial Pathogenesis 2025, 200, 107275. [Google Scholar] [CrossRef]


| Source | Phenotypic AMR profile | Commensal E. coli | ESBL/AmpC producers | Fluoroquinolone resistant |
| RM- NRCP | Amp, Chl, Cip, Nal, Smx, Tet, Tmp | 1 | ||
| Amp, Chl, Cip, Nal. Smx, Tmp | 1 | |||
| Amp, Ctx, Fox, Caz, Smx, Tmp | 1 | |||
| Amp, Chl, Smx, Tet, Tmp | 1 | |||
| Amp Cip Nal Tet | 1 | |||
| Amp Smx Tet Tmp | 1 | |||
| Amp Smx Tmp | 3 | |||
| Fully Susceptible | 17 | |||
| RM- FBO | Amp Ctx Caz Chl Fep Gen Smx Tet Tmp | 1 | ||
| Amp, Smx, Tet | 1 | |||
| Fully susceptible | 13 | |||
| RDP | Cip, Nal, Smx, Tmp | 1 | ||
| Amp, Tet | 1 | |||
| Fully Susceptible | 4 | |||
| Total no. isolates | 47 | 41 | 2 | 4 |
| Isolate ID | Source | Presumptive E. coli | AMR results | Aminoglycosides | Amphe-nicols | β-lactams | Quinolones | Sulfonamides | Tetracyclines | Diaminopy-rimidines | NCBI AMRFinderPlus | PlasmidFinder 2.1 | PathogenFinder 1.1 | Clermon Typing | ||
| GEN / KAN / STR | SF | TET | TMP | Efflux pump | Quaternary Ammo-nium | Plasmid identified | Patho-genicity | Patho-genic families | Phylo-group | |||||||
| 01 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | emrE, mdtM | - | IncFIB(pB171), IncFII(pHN7A8) | 0.94 | 535 | A |
| 02 | RM- NRCP | FQ | Amp, Cip, Nal, Tet | - | - | blaTEM-1 | gyrA_D87N, gyrA_S83L, parC_S80I | - | tet(B) | - | acrF | - | IncFIB(AP001918), IncFII | 0.86 | 54 | B1 |
| 03 | RM- NRCP | Commensal | Amp, Smx, Tmp | aph(3')-Ia, aph(3'')-Ib, aph(6)-Id | - | blaTEM-1 | - | sul2 | - | dfrA5 | acrF | - | IncFIB(AP001918), IncFII | 0.86 | 57 | B1 |
| 04 | RM- NRCP | AmpC | Amp, Ctx, Fox, Caz, Smx, Tmp | aph(3'')-Ib, aph(6)-Id | - | blaTEM-1, ampC_C-42T | - | sul2 | - | dfrA5 | acrF | - | IncFIB(AP001918), IncFII | 0.86 | 54 | C |
| 05 | RM- NRCP | Commensal | Amp, Smx, Tet, Tmp | aph(3'')-Ib, aph(6)-Id | - | blaTEM-1 | - | sul2 | tet(A) | dfrA5 | acrF, emrE, emrE, mdtM | - | IncFII, IncI1-I(Alpha) | 0.86 | 54 | B1 |
| 06 | RM- NRCP | Commensal | Amp, Smx, Tmp | aph(3'')-Ib, aph(6)-Id | - | blaTEM-1 | - | sul2 | - | dfrA5 | acrF, mdtM | - | IncFIB(AP001918), IncFII | 0.86 | 55 | B1 |
| 07 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIA | 0.94 | 693 | B1 |
| 08 | RMD (Butter) | Commensal | Fully susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIB(pB171), IncFII(pCoo) | 0.90 | 152 | B1 |
| 09 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, mdtM | - | IncX1 | 0.84 | 133 | A |
| 10 | RM- NRCP | Commensal | Fully susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIA, IncFIB(AP001918), IncFIC(FII) | 0.93 | 673 | A |
| 11 | RM- NRCP | Commensal | Fully susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIB(AP001918), IncFIC(FII) | 0.93 | 630 | A |
| 12 | RM- NRCP | FQ | Amp, Chl, Cip, Nal. Smx, Tmp | aph(3')-Ia, aadA1 | floR | blaTEM-39, blaOXA-1 | gyrA_D87N, gyrA_S83L, parC_S80I, parE_S458A | sul1, sul2 | tet(A) | dfrA36 | emrE, mdtM | qacED1 | ColpVC, IncFIA, IncFIB(AP001918), IncFII | 0.86 | 53 | C |
| 13 | RM- NRCP | Commensal | Amp, Smx, Tmp | aph(3'')-Ib, aph(6)-Id | - | blaTEM-1 | - | sul2 | - | dfrA5 | acrF, emrE, mdtM | - | IncFIB(AP001918), IncFII | 0.86 | 55 | A |
| 14 | RM- FBO | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, mdtM | - | IncY | 0.94 | 530 | A |
| 15 | RMD (Cream) | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIB(pB171), IncFII(pCoo) | 0.95 | 693 | B1 |
| 16 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, mdtM | - | IncFIB(AP001918), IncFII(pCoo) | 0.93 | 513 | E |
| 17 | RM- NRCP | Commensal | Amp, Tet | - | - | blaTEM-30 | - | - | tet(A) | - | acrF, emrE, mdtM | - | IncFIB(AP001918), IncFII | 0.86 | 54 | C |
| 18 | RM- NRCP | Commensal | Amp, Chl, Smx, Tet, Tmp | aph(3')-Ia, aph(3'')-Ib, aph(6)-Id | floR | blaOXA-1 | - | sul1, sul2 | tet(B) | dfrA36 | acrF, emrE, mdtM | qacED1 | IncFIB(AP001918) | 0.86 | 56 | C |
| 19 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIB(pB171), IncFII(pCoo) | 0.94 | 692 | B1 |
| 20 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIA, IncFIB(AP001918), IncFII(29), IncI2(Delta) | 0.94 | 720 | B1 |
| 21 | RM- FBO | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, emrE, mdtM | - | IncFIB(AP001918) | 0.94 | 671 | B1 |
| 22 | RM- FBO | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, mdtM | - | IncFIB(AP001918), IncFIC(FII), IncI1-I(Alpha) | 0.93 | 754 | B1 |
| 23 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | emrE, emrE, mdtM | - | IncFIA, IncFIB(AP001918), IncFII(29), IncX4 | 0.94 | 701 | B1 |
| 24 | RMD (Cream) | FQ | Cip, Nal, Smx, Tmp | - | - | - | gyrA_S83L | sul2 | - | dfrA36 | acrF | - | None | 0.96 | 305 | A |
| 25 | RM- FBO | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, mdtM | - | IncFIB(AP001918), IncFII(pSE11) | 0.94 | 732 | B1 |
| 26 | RMD (Cheese) | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF | - | IncFIA, IncFIB(AP001918), IncFIC(FII) | 0.94 | 642 | A |
| 27 | RM- FBO | Commensal | Fully susceptible | - | - | - | - | - | - | - | acrF | - | IncFIB(AP001918), IncFIC(FII), IncI1-I(Alpha) | 0.93 | 755 | B1 |
| 28 | RM- FBO | ESBL | Amp, Ctx, Caz, Chl, Fep, Gen, Smx, Tet, Tmp | ant(2'')-Ia, ant(2'')-Ia, aph(3')-Ia, aadA1, aph(3'')-Ib, aph(6)-Id | floR | blaCTX-M-3 | - | sul1, sul2 | tet(A) | dfrA1, dfrA36 | acrF, mdtM | qacED1 | IncFIB(AP001918), IncFII | 0.96 | 289 | B1 |
| 29 | RM- FBO | Commensal | Amp, Smx, Tet | aph(3'')-Ib, aph(6)-Id | - | blaTEM-1 | - | - | tet(A) | - | acrF, emrE, emrE, mdtM | None | IncFIB(AP001918), IncFIC(FII), IncI1-I(Alpha) | 0.94 | 736 | B1 |
| 30 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF, emrE | None | IncFIA, IncFII | 0.95 | 720 | B1 |
| 31 | RM- NRCP | Commensal | Fully Susceptible | - | - | - | - | - | - | - | acrF | None | None | 0.95 | 526 | A |
| 32 | RM- NRCP | FQ | Amp, Chl, Cip, Nal, Smx, Tet, Tmp | aadA5, aph(3'')-Ib, aph(6)-Id | catA1, floR | blaTEM-1 | gyrA_D87N, gyrA_S83L, parC_A56T, parC_S80I | sul1 | tet(B) | dfrA17 | acrF | qacED1 | IncFIB(AP001918), IncFIC(FII) | 0.86 | 54 | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

