Submitted:
28 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization
3. Results and Discussion
4. Conclusions
Data Availability Statement
Conflicts of Interest
Appendix B
References
- Stejskal, J.; Havlíček, D.; Císařová, I.; Matulková, I. Vibrational Spectroscopic and X-Ray Single Crystal Diffraction Investigation of Tetra-n-Alkylammonium Hydrogen Selenates. J. Chem. Crystallogr. 2017, 47, 59–68. [CrossRef]
- Belushkin, A. V.; Carlile C. J.; Shuvalov, L. A. A quasielastic neutron scattering study of protonic transport in hydrogen-bonded alkali metal hydrogen sulphates and selenates. Ferroelectrics 1995, 167, 21–31. [CrossRef]
- Ikeda, S.; Yamada, Y. Phase transition in hydrogen bonded ferroelectric compounds—Quantum fluctuations versus thermal fluctuations. Phys. B Condens. Matter 1995, 213–214, 652–657. [CrossRef]
- Pavlenko, N. I. Protonic conductivity at the superionic phase transitions in the M3H(XO4)2 crystal group. J. Phys.: Condens. Matter 1999, 11, 5099–5110. [CrossRef]
- Pavlenko, N.; Pietraszko, A.; Pawlowski, A.; Polomska, M.; Stasyuk I. V.; Hilczer, B. Hydrogen transport in superionic system Rb3H(SeO4)2: a revised cooperative migration mechanism. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 1–10. [CrossRef]
- Matsui, H.; Shimatani, K.; Ikemoto, Y.; Sasaki T.; Matsuo, Y. Phonon-assisted proton tunneling in the hydrogen-bonded dimeric selenates of Cs3H(SeO4)2. J. Chem. Phys. 2020, 152, 154502. [CrossRef]
- Matsui, H.; Fukuda, K.; Takano, S.; Ikemoto, Y.; Sasaki T.; Matsuo, Y. Mechanisms of the antiferro-electric ordering in superprotonic conductors Cs3H(SeO4)2 and Cs3D(SeO4)2. J. Chem. Phys. 2022, 156, 204504. [CrossRef]
- Rajbanshi, A.; Wan, S.; Custelcean, R. Dihydrogen Phosphate Clusters: Trapping H2PO4 − Tetramers and Hexamers in Urea-Functionalized Molecular Crystals. Cryst Growth Des 2013, 13, 2233–2237. doi:10.1021/cg400336q.
- Zhao, W.; Flood, A.H.; White, N.G. Recognition and Applications of Anion–Anion Dimers Based on Anti-Electrostatic Hydrogen Bonds (AEHBs). Chem Soc Rev 2020, 49, 7893–7906. doi:10.1039/D0CS00486C.
- Pizzi, A.; Dhaka, A.; Beccaria, R.; Resnati, G. Anion⋅⋅⋅anion self-assembly under the control of σ- and π-hole bonds. Chem. Soc. Rev. 2024, 53, 6654. [CrossRef]
- Beccaria, R.; Dhaka, A.; Calabrese, M.; Pizzi, A.; Frontera, A.; Resnati, G. Chalcogen and Hydrogen Bond Team up in Driving Anion⋅⋅⋅Anion Self-Assembly. Chem. Eur. J. 2024, 30, e202303641. [CrossRef]
- Drozd M.; Baran, J. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal. Spectrochim. Acta Part A 2005, 61, 2953–2965. [CrossRef]
- Lorenc, J.; Bryndal, I.; Marchewka, M.; Kucharska, E.; Lis. T.; Hanuza, J. Crystal and molecular structure of 2-amino-5-chloropyridinium hydrogen selenate—its IR and Raman spectra, DFT calculations and physicochemical properties. J. Raman Spectrosc. 2008, 39, 863–872. [CrossRef]
- Akriche S.; Rzaigui, M. 2-Amino-3-nitropyridinium hydrogen selenate. Acta Crystallogr., Sect. E. 2009, 65, o1648. [CrossRef]
- Maalej, W.; Ben Rached, A.; Mhiri, T.; Daoud, A.; Zouari, N.; Elaoud, Z. Vibrational study, phase transitions and electrical properties of 4-benzylpyridinium monohydrogenselenate. J. Phys. Chem. Solids 2016, 96–97, 92–99. [CrossRef]
- Janczak, J.; Perpétuo, G. J. Hydrogen-Bonded Networks in Crystals of 1-(Diaminomethylene)Thiouron-1-Ium Perchlorate, Hydrogen Sulfate, Dihydrogen Phosphate and Dihydrogen Arsenate. Acta Crystallogr., Sect. C 2008, 64, o330–o334. doi:10.1107/S0108270108013504.
- Chtioui, A.; Benhamada, L.; Jouini, A. Crystal Structure, Thermal Analysis and IR Spectroscopic Investigation of (C6H9N2)H2XO4 (X=As, P). Mater. Res. Bull. 2005, 40, 2243–2255. doi:10.1016/j.materresbull.2005.06.006.
- Oueslati, A.; Rayes, A.; Ben Nasr, C.; Lefebvre, F. Synthesis and Characterization of 2-Amino-3-Methylpyridinium Dihy-drogenomonoarsenate. Mater. Res. Bull. 2005, 40, 1680–1689. doi:10.1016/j.materresbull.2005.05.029.
- Wilkinson, H.S.; Harrison, W.T.A. Creatininium Dihydrogenarsenate. Acta Crystallogr., Sect. E 2005, 61, 1228-1230. doi:10.1107/S1600536805016144.
- Wilkinson, H.S.; Harrison, W.T.A. Guanidinium Dihydrogenarsenate. Acta Crystallogr., Sect. E 2005, 61, 2023–2025. doi:10.1107/S1600536805028825.
- Kanagathara, N.; MaryAnjalin, F.; Ragavendran, V.; Dhanasekaran, D.; Usha, R.; Rao, R.G.S.; Marchewka, M.K. Experi-mental and Theoretical (DFT) Investigation of Crystallographic, Spectroscopic and Hirshfeld Surface Analysis of Anilin-ium Arsenate. J. Mol. Struct. 2021, 1223, 128965. doi:10.1016/j.molstruc.2020.128965.
- Anbalagan, G.; Marchewka, M.K.; Pawlus, K.; Kanagathara, N. Crystal Structure and Vibrational Spectra of Melaminium Arsenate. J. Mol. Struct. 2015, 1079, 407–413. doi:10.1016/j.molstruc.2014.09.006.
- Roshini, S.R.A.; Kanagathara, N.; Marchewka, M.K.; Janczak, J.; Jayalakshmi, D. Growth, Structural, Optical, Morpholog-ical, Thermal, Laser Damage Threshold and Hardness Properties of Organic-Inorganic Crystal: L-Argininium (Bis)Dihydrogenarsenate. J. Mol. Struct. 2026, 1352, 144499. doi:10.1016/j.molstruc.2025.144499.
- Beccaria, R.; Pizzi, A.; Chakalov, E.; Resnati, G.; Tolstoy, P. Proton Delocalization in Short Hydrogen Bonds Assembling HSeO4− Anions into Supramolecular Adducts. Phys. Chem. Chem. Phys. 2025, 27, 13601–13617. doi:10.1039/D5CP01211B.
- Shikina, N. D.; Zotov, A. B.; Tagirov, B. R. Influence of Pressure in the 0.1–100 MPa Interval on the First Dissociation Constant of Arsenous Acid in Water Solutions at 298.15 K. Russ. J. Phys. Chem. A 2010, 84, 1076–1078. [CrossRef]
- CrysAlisPro 1.171.43.136a. Rigaku Oxford Diffraction 2024.
- Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [CrossRef]
- Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [CrossRef]
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [CrossRef]
- MacRae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [CrossRef]
- Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-Mechanical Condensed Matter Simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, 1–36. [CrossRef]
- Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [CrossRef]
- Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [CrossRef]
- Vilela Oliveira, D.; Laun, J.; Peintinger, M. F.; Bredow, T. BSSE-Correction Scheme for Consistent Gaussian Basis Sets of Double- and Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. J. Comput. Chem. 2019, 40, 2364–2376. [CrossRef]
- CRYSTAL - Basis Sets Library. https://www.crystal.unito.it/basis_sets.html.
- Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [CrossRef]
- Civalleri, B.; Zicovich-Wilson, C. M.; Valenzano, L.; Ugliengo, P. B3LYP Augmented with an Empirical Dispersion Term (B3LYP-D*) as Applied to Molecular Crystals. CrystEngComm 2008, 10, 405–410. [CrossRef]
- Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D’Arco, P.; Llunell, M.; Causà, M.; Noël, Y.; Maschio, L.; Erba, A.; Rerat, M.; Casassa, S. CRYSTAL17 User’s Manual, University of Torino, Torino, 2017; 2018.
- Ewald, P. P. Die Berechnung Optischer Und Elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. [CrossRef]
- Dovesi, R.; Pisani, C.; Roetti, C. Treatment of Coulomb Interactions in Hartree-Fock Calculations of Periodic Systems. Phys. Rev. B Condens. Matter Mater. Phys. 1983, 28, 5781–5792. [CrossRef]
- Towler, M. D.; Zupan, A.; Causà, M. Density Functional Theory in Periodic Systems Using Local Gaussian Basis Sets. Comput. Phys. Commun. 1996, 98, 181–205. [CrossRef]
- Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [CrossRef]
- Maschio, L. Direct Inversion of the Iterative Subspace (DIIS) Convergence Accelerator for Crystalline Solids Employing Gaussian Basis Sets. Theor. Chem. Acc. 2018, 137, 1–5. [CrossRef]
- Doll, K.; Saunders, V. R.; Harrison, N. M. Analytical Hartree–Fock Gradients for Periodic Systems. Int. J. Quantum Chem. 2001, 82, 1–13. [CrossRef]
- Schlegel, H. B. Geometry Optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 790–809. [CrossRef]
- Bader, R. F. W. Atoms in Molecules - A Quantum Theory, Vol. 22 of International Series of Monographs in Chemistry, Oxford, UK; Oxford University Press, 1990.
- Bertini, L.; Cargnoni, F.; Gatti, C. Chemical Insight into Electron Density and Wave Functions: Software Developments and Applications to Crystals, Molecular Complexes and Materials Science. Theor. Chem. Acc. 2007, 117, 847–884. [CrossRef]
- Gatti, C.; Casassa, S. TOPOND14 User’s Manual (CNR-ISTM Milano, Milano, 2014); 2017.
- Casassa, S.; Erba, A.; Baima, J.; Orlando, R. Electron Density Analysis of Large (Molecular and Periodic) Systems: A Parallel Implementation. J. Comput. Chem. 2015, 36, 1940–1946. [CrossRef]
- Banerjee, A.; Adams, N.; Simons, J. Search for Stationary Points on Surfaces. J. Phys. Chem. 1985, 89, 52–57. [CrossRef]
- Keith, T. A. PhD Thesis, McMaster University, Hamilton, Ontario, Canada, 1993.
- Popelier, P. L. A. A Robust Algorithm to Locate Automatically All Types of Critical Points in the Charge Density and Its Laplacian. Chem. Phys. Lett. 1994, 228, 160–164. [CrossRef]
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr. Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03.
- Zhao, Y.; Truhlar, D. G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [CrossRef]
- Rappoport, D.; Furche, F. Property-Optimized Gaussian Basis Sets for Molecular Response Calculations. J. Chem. Phys. 2010, 133, 134105. [CrossRef]
- Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [CrossRef]
- Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [CrossRef]
- Murray, J. S.; Politzer, P. The Electrostatic Potential: An Overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 153–163. [CrossRef]
- Becke, A. D.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [CrossRef]
- Zhang, J.; Lu, T. Efficient Evaluation of Electrostatic Potential with Computerized Optimized Code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328. [CrossRef]
- Materials Studio 2017 (17.1.0.48). BIOVIA, Dassault Systèmes. San Diego, CA, USA.
- Dennington II, R. D.; Keith, T. A.; Millam, J. M. GaussView 6.0.16. Semichem Inc., Shawnee Mission, KS 2016.
- Origin 2018. OriginLab. Northampton, MA, USA.
- Bouaziz, E; Hassen, C. B.; Chniba-Boudjada, N.; Daouda, A.; Mhiri T.; Boujelbene M. Crystal structure, Hirshfeld surface analysis, vibrational, thermal behavior and UV spectroscopy of (2,6-diaminopyridinium) dihydrogen arsenate. J. Mol. Struct. 2017, 1145, 121e131. [CrossRef]
- White, N. G. Antielectrostatically Hydrogen Bonded Anion Dimers: Counter-Intuitive, Common and Consistent. CrystEngComm 2019, 21, 4855–4858. [CrossRef]
- Bader, R. F. W.; Essén, H. The Characterization of Atomic Interactions. J. Chem. Phys. 1983, 80, 1943–1960. [CrossRef]
- Cremer, D.; Kraka, E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy. Croat. Chem. Acta 1984, 57, 1259–1281.
- Koch, U.; Popelier, P. L. A. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. 1995, 99, 9747–9754. [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. [CrossRef]
- Jenkins, S.; Morrison, I. The Chemical Character of the Intermolecular Bonds of Seven Phases of Ice as Revealed by Ab Initio Calculation of Electron Densities. Chem. Phys. Lett. 2000, 317, 97–102. [CrossRef]
- Gatti, C.; May, E.; Destro, R.; Cargnoni, F. Fundamental Properties and Nature of CH··O Interactions in Crystals on the Basis of Experimental and Theoretical Charge Densities. The Case of 3,4-Bis(Dimethylamino)-3-Cyclobutene-1,2-Dione (DMACB) Crystal. J. Phys. Chem. A 2002, 106, 2707–2720. [CrossRef]
- Gatti, C. Chemical Bonding in Crystals: New Directions. Z. Krist. 2005, 220, 399–457. [CrossRef]
- Grabowski, S. J. What Is the Covalency of Hydrogen Bonding? Chem. Rev. 2011, 111, 2597–2625. [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From Weak to Strong Interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X-H…F-Y Systems. J. Chem. Phys. 2002, 117, 5529–5542. [CrossRef]
- Vener, M. V.; Manaev, A. V.; Egorova, A. N.; Tsirelson, V. G. QTAIM Study of Strong H-Bonds with the O−H···A Fragment (A = O, N) in Three-Dimensional Periodical Crystals. J. Phys. Chem. A 2007, 111, 1155–1162. [CrossRef]
- Mata, I.; Alkorta, I.; Espinosa, E.; Molins, E. Relationships between Interaction Energy, Intermolecular Distance and Electron Density Properties in Hydrogen Bonded Complexes under External Electric Fields. Chem. Phys. Lett. 2011, 507, 185–189. [CrossRef]
- Vener, M. V.; Egorova, A. N.; Churakov, A. V.; Tsirelson, V. G. Intermolecular Hydrogen Bond Energies in Crystals Evaluated Using Electron Density Properties: DFT Computations with Periodic Boundary Conditions. J. Comput. Chem. 2012, 33, 2303–2309. [CrossRef]
- Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. Comparisons of Multilayer H2O Adsorption onto the (110) Surfaces of α-TiO2 and SnO2 as Calculated with Density Functional Theory. J. Phys. Chem. B 2008, 112, 11616–11624. [CrossRef]
- Evarestov, R. A.; Bandura, A. V.; Losev, M. V.; Piskunov, S.; Zhukovskii, Y. F. Titania Nanotubes Modeled from 3- and 6-Layered (1 0 1) Anatase Sheets: Line Group Symmetry and Comparative Ab Initio LCAO Calculations. Physica E Low Dimens. Syst. Nanostruct. 2010, 43, 266–278. [CrossRef]
- Laskowski, R.; Blaha, P. Understanding of 33S NMR Shielding in Inorganic Sulfides and Sulfates. J. Phys. Chem. C 2015, 119, 731–740. [CrossRef]
- Treviño, P.; Garcia-Castro, A. C.; López-Moreno, S.; Bautista-Hernández, A.; Bobocioiu, E.; Reynard, B.; Caracas, R.; Romero, A. H. Anharmonic Contribution to the Stabilization of Mg(OH)2 from First Principles. Phys. Chem. Chem. Phys. 2018, 20, 17799–17808. [CrossRef]
- Evarestov, R. A.; Kuzmin, A. Topological Analysis of Chemical Bonding in the Layered FePSe3 upon Pressure-Induced Phase Transitions. J. Comput. Chem. 2020, 41, 2610–2623. [CrossRef]
- Dronskowski, R.; Peter, E. B. Crystal Orbital Hamilton Populations (COHP). Energy-Resolved Visualization of Chemical Bonding in Solids Based on Density-Functional Calculations. J. Phys. Chem. 1993, 97, 8617–8624. [CrossRef]
- Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461–5466. [CrossRef]
- Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic Projection from Plane-Wave and PAW Wavefunctions and Application to Chemical-Bonding Analysis in Solids. J. Comput. Chem. 2013, 34, 2557–2567. [CrossRef]
- Ruggiero, M. T.; Erba, A.; Korter, T. M. Origins of Contrasting Copper Coordination Geometries in Crystalline Copper Sulfate Pentahydrate. Phys. Chem. Chem. Phys. 2015, 17, 31023–31029. [CrossRef]
- Deringer, V. L.; Englert, U.; Dronskowski, R. Covalency of Hydrogen Bonds in Solids Revisited. Chem. Commun. 2014, 50, 11547–11549. [CrossRef]
- Deringer, V. L.; George, J.; Dronskowski, R.; Englert, U. Plane-Wave Density Functional Theory Meets Molecular Crystals: Thermal Ellipsoids and Intermolecular Interactions. Acc. Chem. Res. 2017, 50, 1231–1239. [CrossRef]







| Salt | Space group | O⋅⋅⋅O distances |
|---|---|---|
| 1a | P 21/m | 2.622 Å |
| 2a | P ̅1 | 2.632 Å 2.600 Å |
| 3a | P 21/c | 2.575 Å 2.602 Å |
| 4a | P 21/n | 2.603 Å 2.608 Å |
| 5a | P 21/c | 2.587 Å 2.605 Å |
| 6a | P ̅1 | 2.593 Å 2.554 Å |
| 7a | P ̅1 | 2.585 Å 2.609 Å |
| 8a | P 21/n | 2.604 Å 2.634 Å |
| 1a | 2a | 3a | 4a | 5a | 6a | 7a | 8a | |
|---|---|---|---|---|---|---|---|---|
| ρbcp | 0.0562 | 0.0548 0.0594 |
0.0582 0.0638 |
0.0601 0.0607 |
0.0598 0.0612 |
0.0617 0.0719 |
0.0561 0.0590 |
0.0596 0.0630 |
| ▽2ρbcp | 0.1311 | 0.1307 0.1344 |
0.1358 0.1376 |
0.1347 0.1355 |
0.1337 0.1388 |
0.1367 0.1334 |
0.1299 0.1330 |
0.1340 0.1357 |
| Gbcp | 0.0469 | 0.0460 0.0496 |
0.0489 0.0528 |
0.0500 0.0506 |
0.0495 0.0515 |
0.0513 0.0572 |
0.0466 0.0489 |
0.0496 0.0520 |
| Gbcp/ρbcp | 0.8345 | 0.8394 0.8350 |
0.8402 0.8276 |
0.8319 0.8336 |
0.8278 0.8415 |
0.8314 0.7955 |
0.8307 0.8288 |
0.8322 0.8254 |
| Vbcp | -0.0611 | -0.0594 -0.0655 |
-0.0638 -0.0711 |
-0.0664 -0.0673 |
-0.0656 -0.0683 |
-0.0684 -0.0812 |
-0.0607 -0.0646 |
-0.0656 -0.0700 |
| |Vbcp|/ Gbcp | 1.3016 | 1.2901 1.3219 |
1.3057 1.3481 |
1.3270 1.3304 |
1.3250 1.3263 |
1.3334 1.4176 |
1.3028 1.3204 |
1.3241 1.3473 |
| Hbcp | -0.0142 | -0.0134 -0.0160 |
-0.0149 -0.0184 |
-0.0164 -0.0167 |
-0.0161 -0.0168 |
-0.0171 -0.0239 |
-0.0141 -0.0157 |
-0.0161 -0.0181 |
| Hbcp /ρbcp | -0.2520 | -0.2437 -0.2686 |
-0.2569 -0.2880 |
-0.2725 -0.2752 |
-0.2688 -0.2747 |
-0.2770 -0.3324 |
-0.2514 -0.2659 |
-0.2695 -0.2867 |
| EOHO | 52.87 | 51.84 55.83 |
55.07 59.43 |
56.37 56.99 |
55.76 58.03 |
57.75 64.48 |
52.48 55.13 |
55.83 58.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
