Submitted:
28 January 2026
Posted:
29 January 2026
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Growing Black Holes in a Decaying Vacuum
3. Conclusions
References
- Özer, M.; Taha, M. A possible solution to the main cosmological problems. Physics Letters B 1986, 171, 363–365. [Google Scholar] [CrossRef]
- Carvalho, J.; Lima, J.; Waga, I. Cosmological consequences of a time-dependent Λ term. Physical Review D 1992, 46, 2404. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.; Maia, J. Deflationary cosmology with decaying vacuum energy density. Physical Review D 1994, 49, 5597. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.; Trodden, M. Decaying vacuum energy and deflationary cosmology in open and closed universes. Physical Review D 1996, 53, 4280. [Google Scholar] [CrossRef]
- Freese, K.; Adams, F.C.; Frieman, J.A.; Mottola, E. Cosmology with decaying vacuum energy. Nuclear Physics B 1987, 287, 797–814. [Google Scholar] [CrossRef]
- Jeon, J.; Liu, B.; Taylor, A.J.; Kokorev, V.; Chisholm, J.; Kocevski, D.D.; Finkelstein, S.L.; Bromm, V. The Emerging Black Hole Mass Function in the High-Redshift Universe. arXiv preprint 2025, arXiv:2503.14703. [Google Scholar] [CrossRef]
- Kroupa, P.; Subr, L.; Jerabkova, T.; Wang, L. Very high redshift quasars and the rapid emergence of supermassive black holes. Monthly Notices of the Royal Astronomical Society 2020, 498, 5652–5683. [Google Scholar] [CrossRef]
- Bromley, J.M.; Somerville, R.; Fabian, A. High-redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models. Monthly Notices of the Royal Astronomical Society 2004, 350, 456–472. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Wang, P. Dark energy: Vacuum fluctuations, the effective phantom phase, and holography. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2005, 71, 103504. [Google Scholar]
- Wang, P.; Meng, X.H. Can vacuum decay in our universe? Classical and Quantum Gravity 2004, 22, 283. [Google Scholar] [CrossRef]
- Costa, F.; Alcaniz, J.; Maia, J. Coupled quintessence and vacuum decay. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2008, 77, 083516. [Google Scholar] [CrossRef]
- Cai, R.G.; Wang, A. Cosmology with interaction between phantom dark energy and dark matter and thecoincidence problem. Journal of Cosmology and Astroparticle Physics 2005, 2005, 002. [Google Scholar] [CrossRef]
- Overduin, J.; Cooperstock, F. Evolution of the scale factor with a variable cosmological term. Physical Review D 1998, 58, 043506. [Google Scholar] [CrossRef]
- Shapiro, I.L.; Sola, J. On the possible running of the cosmological “constant”. Physics Letters B 2009, 682, 105–113. [Google Scholar] [CrossRef]
- Shapiro, I.L.; Sola, J. Cosmological constant problems and the renormalization group. Journal of Physics A: Mathematical and Theoretical 2007, 40, 6583. [Google Scholar] [CrossRef]
- Alcaniz, J.S.; Lima, J.A.S.d. Interpreting cosmological vacuum decay. Physical Review D—Particles, Fields, Gravitation, and Cosmology 2005, 72, 063516. [Google Scholar] [CrossRef]
- Alcaniz, J.S. Dark energy and some alternatives: a brief overview. Brazilian Journal of Physics 2006, 36, 1109–1117. [Google Scholar] [CrossRef]
- Farrah, D.; Croker, K.S.; Zevin, M.; Tarlé, G.; Faraoni, V.; Petty, S.; Afonso, J.; Fernandez, N.; Nishimura, K.A.; Pearson, C.; et al. Observational evidence for cosmological coupling of black holes and its implications for an astrophysical source of dark energy. The Astrophysical Journal Letters 2023, 944, L31. [Google Scholar] [CrossRef]
- Croker, K.S.; Zevin, M.; Farrah, D.; Nishimura, K.A.; Tarle, G. Cosmologically coupled compact objects: A single-parameter model for LIGO–Virgo mass and redshift distributions. The Astrophysical Journal Letters 2021, 921, L22. [Google Scholar] [CrossRef]
- Karim, M.A.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.; Prieto, C.A.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, E.; et al. DESI DR2 results. II. Measurements of baryon acoustic oscillations and cosmological constraints. Physical Review D 2025, 112, 083515. [Google Scholar] [CrossRef]
- Cadoni, M.; Sanna, A.; Pitzalis, M.; Banerjee, B.; Murgia, R.; Hazra, N.; Branchesi, M. Cosmological coupling of nonsingular black holes. Journal of Cosmology and Astroparticle Physics 2023, 2023, 007. [Google Scholar] [CrossRef]
- Cadoni, M.; Murgia, R.; Pitzalis, M.; Sanna, A.P. Quasi-local masses and cosmological coupling of black holes and mimickers. Journal of Cosmology and Astroparticle Physics 2024, 2024, 026. [Google Scholar] [CrossRef]
- Cadoni, M.; Pitzalis, M.; Rodrigues, D.C.; Sanna, A.P. Cosmological coupling of local gravitational systems. Journal of Cosmology and Astroparticle Physics 2024, 2024, 045. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.