Submitted:
28 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Limitations of Standard Models
- 1)
- Requires ad-hoc efficiency tuning, not fundamental.
- 2)
- Cannot unify black holes, neutron stars, white dwarfs under single principle.
- 3)
- Predicts temperature scaling depends strongly on accretion rate and radius .
- 4)
- Fails to explain observations of non-accreting objects (isolated neutron stars, cool white dwarfs).
- 5)
- No quantum-gravitational foundation.
- 1)
- Stellar BH accretion disks are hotter than SMBH disks
- 2)
- Temperature correlates with compactness not evaporation rate
- 3)
- Accretion is infall-driven, not evaporation-driven, at astrophysical scales
- Current Hubble parameter: km/s/Mpc (matching lower-tension observations, reducing Hubble tension)
- Cosmic microwave background temperature: K [19]
- 1)
- HHM is fundamentally motivated, not phenomenological
- 2)
- Electromagnetic and gravitational physics couple at quantum gravity scales
- 3)
- Thermal properties of compact objects encode QED/gravity unification signatures
3. Theoretical Framework of Hubble-Hawking Model for Compact Object Temperatures
3.1. Hawking Radiation and Temperature
3.2. Geometric Mean Inversion Hypothesis
- 1)
- Geometric mean naturally appears in UV/IR duality frameworks (AdS/CFT holography, string theory compactifications)
- 2)
- Inverted scaling produces higher temperatures for lower masses, consistent with observations
- 3)
- Common in thermodynamic systems with competing scales
4. Origin of Thermal Energy in Collapsing Matter
- Particle collisions and kinetic friction
- Neutron degenerate matter breaking down
- Quark-gluon interactions at nuclear density
- Thermal conduction and viscous effects
5. The Core Physical Assumption: Proportionality of Energy Densities
- Outward thermal pressure from hot interior plasma
- Inward gravitational crush from mass
- Equilibrium condition: neither explosive expansion nor runaway collapse occurs
- ➢
- Iftoo low: gravity overwhelms radiation pressure → continued collapse
- ➢
- Iftoo high: thermal expansion halts gravity → object explodes
- ➢
- At balance: internal stability threshold is reached
6. Derivation of Temperature Scaling
6.1. Observational Implications of Surface Temperature
- 1)
- High-energy satellites (X-ray and gamma-ray) could detect thermal spectra that are independent of accretion-disk processes [25].
- 2)
- Event Horizon Telescope (EHT) imaging may reveal brightness profiles inconsistent with a purely geometric shadow, pointing to a radiating boundary layer [26].
- 3)
- Gravitational wave detectors could identify echoes or secondary signals indicative of reflection or emission from a compact surface [27].
7. Conceptual Advantages Over General Relativity
8. Thermodynamic Consistency of the Thermal Energy Density Approach
- The framework defines a unique equilibrium temperature for the collapsing object.
- This ensures that all parts of the system in equilibrium share the same temperature, satisfying the zeroth law.
- Gravitational potential energy is inevitably converted into heat during collapse.
- Total energy is conserved: the inward work of gravity becomes internal thermal energy.
- Collapse generates entropy through particle collisions, friction, and radiation.
- Disorder increases until balance is reached, and radiation emission from the hot boundary carries entropy outward, reinforcing the second law.
- As mass increases, equilibrium temperature decreases, but it never reaches absolute zero for finite systems.
- This ensures compliance with the third law, which forbids reaching zero temperature in finite steps.
9. Uncertainty in Black Hole Composition
10. Thermal Energy Density as a Constraint on Black Hole Interiors
11. Choice of the Proportionality Coefficient
12. Comparison with Stephen Hawking’s Nobel-Level Work
13. Observable Implications: Star-Like Visual Appearance of Compact Objects
14. Neutron Stars and Dwarf Stars
- 1)
- Accretion physics: radiative efficiency, viscosity, magnetic turbulence, and spin effects in black hole accretion disks.
- 2)
- Composition effects: metallicity and cooling processes in white dwarfs, or nuclear equation-of-state stiffness in neutron stars.
- 3)
- Relativistic corrections: frame dragging, gravitational redshift, and compactness-dependent deviations from idealized scaling.
- 4)
- Observational geometry: disk inclination, obscuration, and line-of-sight effects that alter observed spectra.
15. Conclusions
Data availability statement
Acknowledgments
Conflicts of Interest
References
- Hawking, S. W. Black hole explosions? Nature 1974, 248(5443), 30–31. [Google Scholar] [CrossRef]
- Page, Don N. Hawking Radiation and Black Hole Thermodynamics. New J.Phys. 2005, 7, 203. [Google Scholar] [CrossRef]
- Shimura, T.; Takahara, F. On the Spectral Hardening Factor of the X-Ray Emission from Accretion Disks in Black Hole Candidates. The Astrophysical Journal 1995, 445, 780–788. [Google Scholar] [CrossRef]
- Remillard, R. A.; McClintock, J. E. X-ray properties of black-hole binaries. Annual Review of Astronomy and Astrophysics 2006, 44, 49–92. [Google Scholar] [CrossRef]
- Müller, Andreas. Active black holes: Ultra-hot cosmic beacons. Einstein Online Band 2006, 02, 02–1009. [Google Scholar]
- Gierliński, M.; Done, C. Black hole accretion discs: reality confronts theory. Monthly Notices of the Royal Astronomical Society 2004, 347(3), 885–894. [Google Scholar] [CrossRef]
- Eisenstein, Daniel J.; Liebert, James; Harris, Hugh C.; Kleinman, S. J.; Nitta, Atsuko; Silvestri, Nicole; et al. Catalog of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey, data release 4. The Astrophysical Journal Supplement Series 2006, 167(1), 40–58. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration. First M87 event horizon telescope results. Astrophysical Journal Letters 2019, 875, L1–L6. [Google Scholar] [CrossRef]
- Kubota, Aya; Ebisawa, Ken; Makishima, Kazuo; Nakazawa, Kazuhiro. On the Temperature Profile of Radiatively Efficient Geometrically Thin Disks in Black Hole Binaries with the ASCA GIS. The Astrophysical Journal 2005, 631(2), 1062–1071. [Google Scholar] [CrossRef]
- Abramowicz, M. A.; Fragile, P. C. Foundations of Black Hole Accretion Disk Theory. Reviews of Modern Physics 2013, 90, 016007. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Kim, M.; Ho, L. C. Temperature profiles of accretion disks in luminous active galactic nuclei derived from ultraviolet spectroscopic variability. Astronomy & Astrophysics 680, A268, 2025.
- Shakura, N. I.; Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astronomy and Astrophysics 1973, Vol. 24, 337–355. [Google Scholar]
- Seshavatharam, U.V.S; Lakshminarayana, S. Nuclear mass density based high temperature stable black holes. 59th DAE-BRNS Symposium on Nuclear Physics, 2014; pp. 804–805. [Google Scholar]
- Seshavatharam, U.V.S.; Lakshminarayana, S. Primordial Hot Evolving Black Holes and the Evolved Primordial Cold Black Hole Universe. Frontiers of Astronomy, Astrophysics and Cosmology 2015, 1(1), 16–23. [Google Scholar]
- Lineweaver, Charles H.; Patel, Vihan M. All objects and some questions. Am. J. Phys. 2023, 91, 819–825. [Google Scholar] [CrossRef]
- Seshavatharam, U.V.S; Lakshminarayana, S. A Rotating Model of a Light Speed Expanding Hubble-Hawking Universe. Physical Science Forum 2023, 16 7(1), 43. [Google Scholar]
- Seshavatharam, U.V.S.; Lakshminarayana, S. Light speed rotating and halting Planck-Hubble-Hawking universe. World Scientific News 2024, 193(2), 223–240. [Google Scholar]
- Seshavatharam, U.V.S.; Lakshminarayana, S. Planck-Hubble-Hawking Universe: Light-Speed Rotation, No Shear, No Vorticity, 8 m/s Horizon Expansion. Preprints 2026, 2026010214. [Google Scholar]
- et al.; Aghanim; N; et al. (Planck Collaboration) Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics 2020, 641, A6. [Google Scholar]
- d’Enterria, D; et al. The strong coupling constant: state of the art and the decade ahead. J. Phys. G: Nucl. Part. Phys. 2024, 51 090501. [Google Scholar] [CrossRef]
- Bombaci, I. The Maximum Mass of a Neutron Star. Astronomy and Astrophysics 1996, 305, 871–877. [Google Scholar]
- Thompson, et al. A noninteracting low-mass black hole–giant star binary system. Science 2019, 366(6465), 637–640. [Google Scholar] [CrossRef] [PubMed]
- Andrew M Low. The Chandrasekhar limit: a simplified approach. Phys. Educ. 58 045008, 2023.
- Luciano Rezzolla, Elias R. Most, and Lukas R. Weih. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. ApJL, 852, L25, 2018. [CrossRef]
- Kimura, S.S.; Murase, K.; Mészáros, P. Soft gamma rays from low accreting supermassive black holes and connection to energetic neutrinos. Nat Commun 2021, 12, 5615. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. ApJ 2019, 875, L4. [Google Scholar] [CrossRef]
- Cao, Yu-Song; Liu, YanXia; Zeng, Ding-Fang. Gravitational wave echos from physical black holes. arXiv [gr-qc]. 2025, arXiv:2510.11518. [Google Scholar] [CrossRef]
- Mitra, A. Final fate of spherically symmetric collapsing fluids is a curve spacetime-not a point. Found. Phys. Lett. 2000, 13, 543–576. [Google Scholar] [CrossRef]

| Assumed Black hole mass kg |
Temperature (K) | ln(Temperature) | log(Temperature) |
|---|---|---|---|
| 2.00E+30 | 6.81E+12 | 29.55 | 12.83 |
| 4.00E+30 | 4.82E+12 | 29.20 | 12.68 |
| 8.00E+30 | 3.41E+12 | 28.86 | 12.53 |
| 1.60E+31 | 2.41E+12 | 28.51 | 12.38 |
| 3.20E+31 | 1.70E+12 | 28.16 | 12.23 |
| 6.40E+31 | 1.20E+12 | 27.82 | 12.08 |
| 1.28E+32 | 8.51E+11 | 27.47 | 11.93 |
| 2.56E+32 | 6.02E+11 | 27.12 | 11.78 |
| 5.12E+32 | 4.26E+11 | 26.78 | 11.63 |
| 1.02E+33 | 3.01E+11 | 26.43 | 11.48 |
| 2.05E+33 | 2.13E+11 | 26.08 | 11.33 |
| 4.10E+33 | 1.51E+11 | 25.74 | 11.18 |
| 8.19E+33 | 1.06E+11 | 25.39 | 11.03 |
| 1.64E+34 | 7.53E+10 | 25.04 | 10.88 |
| 3.28E+34 | 5.32E+10 | 24.70 | 10.73 |
| 6.55E+34 | 3.76E+10 | 24.35 | 10.58 |
| 1.31E+35 | 2.66E+10 | 24.00 | 10.42 |
| 2.62E+35 | 1.88E+10 | 23.66 | 10.27 |
| 5.24E+35 | 1.33E+10 | 23.31 | 10.12 |
| 1.05E+36 | 9.41E+09 | 22.96 | 9.97 |
| 2.10E+36 | 6.65E+09 | 22.62 | 9.82 |
| 4.19E+36 | 4.70E+09 | 22.27 | 9.67 |
| 8.39E+36 | 3.33E+09 | 21.92 | 9.52 |
| 1.68E+37 | 2.35E+09 | 21.58 | 9.37 |
| 3.36E+37 | 1.66E+09 | 21.23 | 9.22 |
| 6.71E+37 | 1.18E+09 | 20.89 | 9.07 |
| 1.34E+38 | 8.31E+08 | 20.54 | 8.92 |
| 2.68E+38 | 5.88E+08 | 20.19 | 8.77 |
| 5.37E+38 | 4.16E+08 | 19.85 | 8.62 |
| 1.07E+39 | 2.94E+08 | 19.50 | 8.47 |
| 2.15E+39 | 2.08E+08 | 19.15 | 8.32 |
| 4.29E+39 | 1.47E+08 | 18.81 | 8.17 |
| 8.59E+39 | 1.04E+08 | 18.46 | 8.02 |
| 1.72E+40 | 7.35E+07 | 18.11 | 7.87 |
| 3.44E+40 | 5.20E+07 | 17.77 | 7.72 |
| 6.87E+40 | 3.67E+07 | 17.42 | 7.57 |
| 1.37E+41 | 2.60E+07 | 17.07 | 7.41 |
| 2.75E+41 | 1.84E+07 | 16.73 | 7.26 |
| 5.50E+41 | 1.30E+07 | 16.38 | 7.11 |
| 1.10E+42 | 9.19E+06 | 16.03 | 6.96 |
| 2.20E+42 | 6.50E+06 | 15.69 | 6.81 |
| 4.40E+42 | 4.59E+06 | 15.34 | 6.66 |
| 8.80E+42 | 3.25E+06 | 14.99 | 6.51 |
| 1.76E+43 | 2.30E+06 | 14.65 | 6.36 |
| 3.52E+43 | 1.62E+06 | 14.30 | 6.21 |
| 7.04E+43 | 1.15E+06 | 13.95 | 6.06 |
| 1.41E+44 | 8.12E+05 | 13.61 | 5.91 |
| 2.81E+44 | 5.74E+05 | 13.26 | 5.76 |
| 5.63E+44 | 4.06E+05 | 12.91 | 5.61 |
| 1.13E+45 | 2.87E+05 | 12.57 | 5.46 |
| 2.25E+45 | 2.03E+05 | 12.22 | 5.31 |
| 4.50E+45 | 1.44E+05 | 11.87 | 5.16 |
| 9.01E+45 | 1.01E+05 | 11.53 | 5.01 |
| 1.80E+46 | 7.18E+04 | 11.18 | 4.86 |
| 3.60E+46 | 5.07E+04 | 10.83 | 4.71 |
| 7.21E+46 | 3.59E+04 | 10.49 | 4.55 |
| 1.44E+47 | 2.54E+04 | 10.14 | 4.40 |
| 2.88E+47 | 1.79E+04 | 9.79 | 4.25 |
| 5.76E+47 | 1.27E+04 | 9.45 | 4.10 |
| 1.15E+48 | 8.97E+03 | 9.10 | 3.95 |
| 2.31E+48 | 6.34E+03 | 8.76 | 3.80 |
| 4.61E+48 | 4.49E+03 | 8.41 | 3.65 |
| 9.22E+48 | 3.17E+03 | 8.06 | 3.50 |
| 1.84E+49 | 2.24E+03 | 7.72 | 3.35 |
| 3.69E+49 | 1.59E+03 | 7.37 | 3.20 |
| 7.38E+49 | 1.12E+03 | 7.02 | 3.05 |
| 1.48E+50 | 7.93E+02 | 6.68 | 2.90 |
| 2.95E+50 | 5.61E+02 | 6.33 | 2.75 |
| 5.90E+50 | 3.96E+02 | 5.98 | 2.60 |
| 1.18E+51 | 2.80E+02 | 5.64 | 2.45 |
| 2.36E+51 | 1.98E+02 | 5.29 | 2.30 |
| 4.72E+51 | 1.40E+02 | 4.94 | 2.15 |
| 9.44E+51 | 9.91E+01 | 4.60 | 2.00 |
| 1.89E+52 | 7.01E+01 | 4.25 | 1.85 |
| 3.78E+52 | 4.96E+01 | 3.90 | 1.70 |
| 7.56E+52 | 3.50E+01 | 3.56 | 1.54 |
| 9.30E+52 | 3.16E+01 | 3.45 | 1.50 |
| 1.51E+53 | 2.48E+01 | 3.21 | 1.39 |
| Feature | General Relativity | Thermal Model |
|---|---|---|
| Collapse description | Geodesic completion in finite coordinate time | Runaway halts at thermal equilibrium |
| Singularities | Predicted but problematic | Avoided entirely |
| Hawking radiation | From quantum field theory; slow | From thermal surface; observable |
| Information | Lost (paradox) | Preserved in thermal spectrum |
| Experimental tests | Difficult (requires quantum gravity regime) | Accessible with current instruments |
| Conceptual clarity | Requires differential geometry expertise | Uses familiar thermodynamics |
| Unification | Unclear connection to quantum mechanics | Natural quantum-gravitational framework |
| Assumed Black hole mass kg |
Surface Temperature (K) | Inner disc Temperature (K) |
|---|---|---|
| 2.00E+30 | 6.81E+12 | 2.77E+08 |
| 4.00E+30 | 4.82E+12 | 2.01E+08 |
| 8.00E+30 | 3.41E+12 | 1.46E+08 |
| 1.60E+31 | 2.41E+12 | 1.06E+08 |
| 3.20E+31 | 1.70E+12 | 7.72E+07 |
| 6.40E+31 | 1.20E+12 | 5.61E+07 |
| 1.28E+32 | 8.51E+11 | 4.08E+07 |
| 2.56E+32 | 6.02E+11 | 2.97E+07 |
| 5.12E+32 | 4.26E+11 | 2.16E+07 |
| 1.02E+33 | 3.01E+11 | 1.57E+07 |
| 2.05E+33 | 2.13E+11 | 1.15E+07 |
| 4.10E+33 | 1.51E+11 | 8.35E+06 |
| 8.19E+33 | 1.06E+11 | 6.09E+06 |
| 1.64E+34 | 7.53E+10 | 4.44E+06 |
| 3.28E+34 | 5.32E+10 | 3.24E+06 |
| 6.55E+34 | 3.76E+10 | 2.37E+06 |
| 1.31E+35 | 2.66E+10 | 1.73E+06 |
| 2.62E+35 | 1.88E+10 | 1.26E+06 |
| 5.24E+35 | 1.33E+10 | 9.24E+05 |
| 1.05E+36 | 9.41E+09 | 6.76E+05 |
| 2.10E+36 | 6.65E+09 | 4.95E+05 |
| 4.19E+36 | 4.70E+09 | 3.63E+05 |
| 8.39E+36 | 3.33E+09 | 2.66E+05 |
| 1.68E+37 | 2.35E+09 | 1.95E+05 |
| 3.36E+37 | 1.66E+09 | 1.43E+05 |
| 6.71E+37 | 1.18E+09 | 1.05E+05 |
| 1.34E+38 | 8.31E+08 | 7.74E+04 |
| 2.68E+38 | 5.88E+08 | 5.70E+04 |
| 5.37E+38 | 4.16E+08 | 4.20E+04 |
| 1.07E+39 | 2.94E+08 | 3.09E+04 |
| 2.15E+39 | 2.08E+08 | 2.28E+04 |
| 4.29E+39 | 1.47E+08 | 1.68E+04 |
| 8.59E+39 | 1.04E+08 | 1.24E+04 |
| 1.72E+40 | 7.35E+07 | 9.21E+03 |
| 3.44E+40 | 5.20E+07 | 6.82E+03 |
| 6.87E+40 | 3.67E+07 | 5.06E+03 |
| 1.37E+41 | 2.60E+07 | 3.75E+03 |
| 2.75E+41 | 1.84E+07 | 2.79E+03 |
| 5.50E+41 | 1.30E+07 | 2.08E+03 |
| 1.10E+42 | 9.19E+06 | 1.55E+03 |
| 2.20E+42 | 6.50E+06 | 1.15E+03 |
| 4.40E+42 | 4.59E+06 | 8.62E+02 |
| 8.80E+42 | 3.25E+06 | 6.45E+02 |
| 1.76E+43 | 2.30E+06 | 4.84E+02 |
| 3.52E+43 | 1.62E+06 | 3.63E+02 |
| 7.04E+43 | 1.15E+06 | 2.73E+02 |
| 1.41E+44 | 8.12E+05 | 2.06E+02 |
| 2.81E+44 | 5.74E+05 | 1.56E+02 |
| 5.63E+44 | 4.06E+05 | 1.18E+02 |
| 1.13E+45 | 2.87E+05 | 8.94E+01 |
| 2.25E+45 | 2.03E+05 | 6.81E+01 |
| 4.50E+45 | 1.44E+05 | 5.19E+01 |
| 9.01E+45 | 1.01E+05 | 3.98E+01 |
| 1.80E+46 | 7.18E+04 | 3.05E+01 |
| 3.60E+46 | 5.07E+04 | 2.35E+01 |
| 7.21E+46 | 3.59E+04 | 1.82E+01 |
| 1.44E+47 | 2.54E+04 | 1.41E+01 |
| 2.88E+47 | 1.79E+04 | 1.10E+01 |
| 5.76E+47 | 1.27E+04 | 8.66E+00 |
| 1.15E+48 | 8.97E+03 | 6.83E+00 |
| 2.31E+48 | 6.34E+03 | 5.43E+00 |
| 4.61E+48 | 4.49E+03 | 4.34E+00 |
| 9.22E+48 | 3.17E+03 | 3.50E+00 |
| 1.84E+49 | 2.24E+03 | 2.85E+00 |
| 3.69E+49 | 1.59E+03 | 2.34E+00 |
| 7.38E+49 | 1.12E+03 | 1.95E+00 |
| 1.48E+50 | 7.93E+02 | 1.65E+00 |
| 2.95E+50 | 5.61E+02 | 1.42E+00 |
| 5.90E+50 | 3.96E+02 | 1.24E+00 |
| 1.18E+51 | 2.80E+02 | 1.12E+00 |
| 2.36E+51 | 1.98E+02 | 1.05E+00 |
| 4.72E+51 | 1.40E+02 | 1.02E+00 |
| 9.44E+51 | 9.91E+01 | 1.06E+00 |
| 1.89E+52 | 7.01E+01 | 1.20E+00 |
| 3.78E+52 | 4.96E+01 | 1.58E+00 |
| 7.56E+52 | 3.50E+01 | 2.77E+00 |
| 9.30E+52 | 3.16E+01 | 3.64E+00 |
| Object Type | Intrinsic Colour Temperature | Apparent Angular Radius | Expected Magnitude | Key Observational Signature |
|---|---|---|---|---|
| Stellar Black Hole (10 M⊙) | 10⁴–10⁵ K |
~10⁻¹⁰ arcsec (resolved at 10 pc) | V ~18–20 (quiescent) | Optical continuum exceeding ADAF models |
| Sagittarius A* (4×10⁶ M⊙) | 3000–5000 K | ~10⁻⁸ arcsec | K ~15.5 | NIR persistent glow beyond flares |
| M87* (6.5×10⁹ M⊙) | 2000–4000 K | ~10⁻⁷ arcsec | V ~13 | Mid-IR extended emission |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
