Preprint
Article

This version is not peer-reviewed.

Optimizing Sintering Temperature for Enhanced Piezoelectric Performance in PMT-PNT-PZT Ceramics

Submitted:

27 January 2026

Posted:

28 January 2026

You are already at the latest version

Abstract
0.006Pb(Mn1/3Ta2/3)O3-0.114Pb(Ni1/3Ta2/3)O3-0.43PbZrO3-0.45PbTiO3 lead-based ceramics (PMT-PNT-PZT) were synthesized via the solid-state reaction at different sintering temperatures to study their effects on phase structure, microstructure, and electrical properties. The maximum mechanical quality factor (Qm) and relative permittivity (εr) were achieved at the sintering temperature of 1200 °C. The piezoelectric constant d33 of 400 pC/N was obtained at 1180 °C, which is attributed to the high grain density and the significant contribution from the remanent polarization and permittivity product (Prεr = 39115 μC/cm2). Compared with commercial PZT4 ceramics, the present composition sintered at 1180 °C exhibits an optimal balance between d33 and Qm, together with the superior figure of merit (FOM = 2.04 × 10⁵ pC/N). Furthermore, it demonstrates excellent temperature stability in electromechanical coupling performance.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated