Submitted:
27 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Materials and Methods
2.1. Problem Definition

2.2. The Significance of This Metric Lies in Its Unique Formation Process

2.3. Model Optimization
3. Results
Datasets
| Datasets | The | Number of GCN layer | ||
| 1 | 2 3 4 5 6 7 8 | |||
| Cora | 81.27 | 87.344 87.365 87.505 62.44 45.32 40.22 39.32 | ||
| Citeseer | 70.25 | 75.188 75.803 75.991 56.32 52.04 47.32 45.43 |
4. Conclusions and Discussion
Acknowledgments
References
- Lu, W.; Zhan, Y.; Guan, Z.; Liu, L.; Yu, B.; Zhao, W.; Yang, Y.; Tao, D. Skipnode: On alleviating over-smoothing for deep graph convolutional networks. arXiv 2021, arXiv:2112.11628. [Google Scholar]
- Huang, W.; Rong, Y.; Xu, T.; Sun, F.; Huang, J. Tackling oversmoothing for general graph convolutional networks. arXiv 2020, arXiv:2008.09864. [Google Scholar]
- Liu, X.; Sun, D.; Wei, W. Alleviating the over-smoothing of graph neural computing by a data augmentation strategy with entropy preservation. Pattern Recognition 2022, 132, 108951. [Google Scholar] [CrossRef]
- Li, Q.; Han, Z.; Wu, X.-M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence, 2018; volume 32. [Google Scholar]
- Zhou, K.; Huang, X.; Li, Y.; Zha, D.; Chen, R.; Hu, X. Towards deeper graph neural networks with differentiable group normalization. Advances in neural information processing systems 2020, 33, 4917–4928. [Google Scholar]
- Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.; Jegelka, S. Representation learning on graphs with jumping knowledge networks. in:International conference on machine learning, PMLR, 2018; pp. 5453–5462. [Google Scholar]
- Zhang, W.; Yang, M.; Sheng, Z.; Li, Y.; Ouyang, W.; Tao, Y.; Yang, Z.; Cui, B. Node dependent local smoothing for scalable graph learning. Advances in Neural Information Processing Systems 2021, 34, 20321–20332. [Google Scholar]
- Choma, N.; Monti, F.; Gerhardt, L.; Palczewski, T.; Ronaghi, Z.; Prabhat, P.; Bhimji, W.; Bronstein, M. M.; Klein, S. R.; Bruna, J. Graph neuralnetworks for icecube signal classification. in: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018; IEEE; pp. 386–391. [Google Scholar]
- Dong, M.; Kluger, Y. Towards understanding and reducing graph structural noise for gnns. International Conference on Machine Learning, PMLR, 2023; pp. 8202–8226. [Google Scholar]
- An, T. T.; Lee, B. M. Robust automatic modulation classification in low signal to noise ratio. IEEE Access 2023, 11, 7860–7872. [Google Scholar] [CrossRef]
- Eswaramoorthi, R.; Leeban Moses, M.; Sahul Hameed, J. B.; Ghanti, B. Deep graph neural network optimized with fertile field algorithm based detection model for uplink multiuser massive multiple-input and multiple-output system. Transactions on Emerging Telecommunications Technologies 2022, 33, e4614. [Google Scholar] [CrossRef]
- Dai, M.; Guo, W.; Feng, X. Over-smoothing algorithm and its application to gcn semi-supervised classification. Data Science: 6th International Conference of Pioneering Computer Scientists, Engineers and Educators,ICPCSEE 2020, Taiyuan, China, September 18-21, 2020; Springer, 2020; Proceedings,Part II 6, pp. 197–215. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015, 28. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE transactions on neural networks 2008, 20, 61–80. [Google Scholar] [CrossRef]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013, arXiv:1312.6203. [Google Scholar]
- Henaff, M.; Bruna, J.; LeCun, Y. Deep convolutional networks on graph structured data. arXiv 2015, arXiv:1506.05163. [Google Scholar] [CrossRef]
- Levie, R.; Monti, F.; Bresson, X.; Bronstein, M. M. Cayleynets: Graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing 2018, 67, 97–109. [Google Scholar] [CrossRef]
- Atwood, J.; Towsley, D. Diffusion-convolutional neural networks. In Advances in neural information processing systems; 2016; p. 29. [Google Scholar]
- Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. in: International conference on machine learning, PMLR, 2016; pp. 2014–2023. [Google Scholar]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A survey on network embedding. IEEEtransactions on knowledge and data engineering 2018, 31, 833–852. [Google Scholar] [CrossRef]
- Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. Network representation learning: A survey. IEEE transactions on Big Data 2018, 6, 3–28. [Google Scholar] [CrossRef]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems 2018, 151, 78–94. [Google Scholar] [CrossRef]
- Pan, S.; Wu, J.; Zhu, X.; Zhang, C.; Wang, Y. Tri-party deep networkrepresentation. 25th International Joint Conference on Artificial Intelligence (IJCAI-16), 2016; AAAI Press/International Joint Conferences on Artificial Intelligence. [Google Scholar]
- Yang, H.; Pan, S.; Zhang, P.; Chen, L.; Lian, D.; Zhang, C. Binarized attributed network embedding. in: 2018 IEEE International Conference on Data Mining (ICDM), 2018; IEEE; pp. 1476–1481. [Google Scholar]
- Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.; Mehlhorn, K.; Borgwardt, K. M. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 2011, 12. [Google Scholar]
- Navarin, N.; Sperduti, A. Approximated neighbours minhash graph node kernel. in: ESANN, 2017; pp. 281–286. [Google Scholar]
- Kriege, N. M.; Johansson, F. D.; Morris, C. A survey on graph kernels. Applied Network Science 2020, 5, 1–42. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Zhu, F.; Huang, J. Adaptive graph convolutional neural networks. In Proceedings of the AAAI conference on artificial intelligence, 2018; volume 32. [Google Scholar]
- Zhuang, C.; Ma, Q. Dual graph convolutional networks for graph-based semi-supervised classification. In Proceedings of the 2018 world wide web conference, 2018; pp. 499–508. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Advances in neural information processing systems 2017, 30. [Google Scholar]
- Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M. M. Geometric deep learning on graphs and manifolds using mixturemodel cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017; pp. 5115–5124. [Google Scholar]
- Gao, H.; Wang, Z.; Ji, S. Large-scale learnable graph convolutional networks. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018; pp. 1416–1424. [Google Scholar]
- Tran, D. V.; Navarin, N.; Sperduti, A. On filter size in graph convolutionalnetworks. 2018 ieee symposium series on computational intelligence(ssci), 2018; IEEE; pp. 1534–1541. [Google Scholar]
- Bacciu, D.; Errica, F.; Micheli, A. Contextual graph markov model: Adeep and generative approach to graph processing. In Internationalconference on machine learning, PMLR; 2018; pp. 294–303. [Google Scholar]
- Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; Yeung, D.-Y. Gaan: Gated attention networks for learning on large and spatiotemporal graphs. arXivpreprint 2018, arXiv:1803.07294. [Google Scholar]
- Chen, J.; Zhu, J.; Song, L. Stochastic training of graph convolutional networks with variance reduction. arXiv 2017, arXiv:1710.10568. [Google Scholar]
- Huang, W.; Zhang, T.; Rong, Y.; Huang, J. Adaptive sampling towardsfast graph representation learning. Advances in neural information processing systems 2018, 31. [Google Scholar]
- Bianchi, F.; Kurten, T.; Riva, M.; Mohr, C.; Rissanen, M. P.; Roldin, P.; Berndt, T.; Crounse, J. D.; Wennberg, P. O.; Mentel, T. F. Highlyoxygenated organic molecules (hom) from gas-phase autoxidation involving peroxy radicals: A key contributor to atmospheric aerosol. Chemicalreviews 2019, 119, 3472–3509. [Google Scholar]
- Xia, L.; Huang, C.; Xu, Y.; Zhao, J.; Yin, D.; Huang, J. Hypergraph contrastive collaborative filtering. In Proceedings of the 45th InternationalACM SIGIR conference on research and development in informationretrieval, 2022; pp. 70–79. [Google Scholar]
- Rong, Y.; Huang, W.; Xu, T.; Huang, J. Dropedge: Towards deepgraph convolutional networks on node classification. arXiv 2019, arXiv:1907.10903. [Google Scholar]
- Liu, C.; Paparrizos, J.; Elmore, A. J. Adaedge: A dynamic compressionselection framework for resource constrained devices. in: 2024 IEEE 40thInternational Conference on Data Engineering (ICDE), 2024; IEEE; pp. 1506–1519. [Google Scholar]
- Kipf, T. N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI magazine 2008, 29, 93–93. [Google Scholar] [CrossRef]
| Model | Cora | Citeseer Pubmed Avg Acc F1值 | ||
| DGI | 82.3 | 71.8 76.8 76.96 74.96 | ||
| MLP | 74.14 | 69.58 81.14 76.7 73.7 | ||
| GMI | 82.7 | 73.0 80.1 78.6 73.6 | ||
| GAT | 83.0 | 72.5 79.0 78.1 76.1 | ||
| GCN | 81.8 | 70.8 79.3 77.3 73.3 | ||
| JK | 82.4 | 72.5 80.3 78.4 75.4 | ||
| Residual Connection | 85.9 | 75.8 83.8 81.8 79.8 | ||
| Adaptive Truncation | 83.8 | 72.8 81.3 79.3 75.3 | ||
| OURS | 87.2 | 75.8 88.8 83.76 80.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
