Submitted:
26 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Axiom of the Minimal Complete Architecture of Agents
2.1. Theoretical Basis
2.2. Establishment of the Five-Function Axiom
2.2.1. Internal-External Interaction Dimension: Input and Output
2.2.2. Internal Processing Dimension: Memory and Generation
2.2.3. Information Processing Regulation Dimension: Control Function
2.2.4. Proof of Minimal Completeness
2.3. Formal Definition
2.3.1. Input Function: Perceiving the Environment
2.3.2. Output Function: Modifying the Environment
2.3.3. Memory Function: Preserving Information
2.3.4. Generation Function: Generating New Information
2.3.5. Control Function: Meta-Control and Function Scheduling
2.4. Five-Dimensional Capability Space
3. Verification of Universality of the Minimal Complete Architecture
3.1. Unified Interpretation of Classical Concepts
3.1.1. Functional Mapping Analysis of Learning
- Agent A outputs the target to be learned, .
- Agent B acquires Agent As output via the Input function, , and stores it as a target pattern, .
- Driven by the Control function (), Agent B generates its own output, , based on current memory.
- Agent B acquires its own output and forms a memory (.
- Agent B uses the Generation function to compare with the target in memory, calculating the error .
- Agent B uses the Control function () to adjust memory parameters () based on the error. This cycle continues until , at which point learning is complete.
3.1.2. Functional Mapping Analysis of Command
- Instruction Generation and Transmission: Based on its own intent, Agent A uses the Output function to send "instruction information" to Agent B, functionally expressed as .
- Instruction Reception and Solidification (): Agent B perceives the instruction through the Input function and solidifies it into memory content, functionally expressed as .
- Scheduling and Execution: Agent Bs Control function reads the instruction conveyed by Agent A and drives the Output function to act upon the environment, functionally expressed as .
- Commanded Action: Originates from external instructions. Its functional combination is . In this mode, Agent As Output function is the trigger source of the action; Agent Bs action is essentially the physical extension of Agent As intent.
- Autonomous Action: Originates from internal intent. Its functional combination is . In this mode, Agent Bs Generation function () is the trigger source of the action; generates the action scheduling plan, which is executed by the Output function under the direction of the Control function. The action is an embodiment of its own intent.
3.1.3. Functional Mapping Analysis of Attention
- Inter-functional Scheduling Layer
- 2.
- Intra-functional Scheduling Layer
- Perception is a broadband comprehensive mapping (). It is dominated by the Input function, faithfully transducing photons and sound waves from the environment into internal signals without screening capability. Perception answers "What exists."
- Attention is a narrowband focused mapping (). It is dominated by the Control function, extracting a minute portion from the massive perceptual stream for deep processing through gain modulation or selective sampling. Attention answers "What is important to input first."
3.2. Proposal and Verification of the Periodic Table of Agent Capabilities
3.2.1. Construction of the Periodic Table of Agent Capabilities
- Level 0 (Null): Indicates the complete absence of the functional dimension, corresponding to . Example: A stone lacks memory function ().
- Level 1 (Finite): Indicates the function exists but is subject to physical or logical constraints, corresponding to . Example: The human brain has finite memory capacity ().
- Level 2 (Infinite): Indicates the function equals the theoretical limit, corresponding to . Example: The infinite Memory tape of a Turing machine ().
3.2.2. Agent Classification and Physical Correspondence
- Alpha Agent Family
- 2.
- Finite Agent Family
- 3.
- Transfinite Agent Family
- 4.
- Omega Agent Family
4. Conclusion and Outlook
Acknowledgments
References
- Turing, A M. Computing Machinery and Intelligence. Mind 1950, LIX(236), 433–460. [Google Scholar] [CrossRef]
- Readings in Distributed Artificial Intelligence; Bond, A H, Gasser, L, Eds.; Morgan Kaufmann, 1988. [Google Scholar]
- Wei, J; Wang, X; Schuurmans, D; et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv 2022, arXiv:2201.11903. [Google Scholar]
- Watson, J D; Crick, F H C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- von Neumann, J. Theory of Self-Reproducing Automata; Burks, A W, Ed.; University of Illinois Press, 1966. [Google Scholar]
- Navas, S; Particle Data Group. Review of Particle Physics. Physical Review D 2024, 110(3), 030001. [Google Scholar] [CrossRef]
- Cover, T M; Thomas, J A. Elements of Information Theory, 2nd ed.; Wiley, 2006. [Google Scholar] [CrossRef]
- Simon, H A. The Sciences of the Artificial, 3rd ed.; MIT Press, 1996. [Google Scholar]
- Friston, K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 2010, 11(2), 127–138. [Google Scholar] [CrossRef]
- Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine; The MIT Press, 2019. [Google Scholar] [CrossRef]
- Brooks, R. A. Intelligence without representation. Artificial Intelligence 1991, 47(1–3), 139–159. [Google Scholar] [CrossRef]
- Russell, S. J.; Norvig, P. Artificial Intelligence: A Modern Approach (3rd Edition); Prentice Hall/Pearson, 2010. [Google Scholar]
- Wang, L.; et al. A survey on large language model based autonomous agents. In Frontiers of Computer Science; 2024. [Google Scholar] [CrossRef]
- Shannon, C. E. A Mathematical Theory of Communication. Bell System Technical Journal 1948. [Google Scholar] [CrossRef]
- Turing, A. M. On Computable Numbers, with an Application to the Entscheidungsproblem. In Proceedings of the London Mathematical Society, 1937. [Google Scholar] [CrossRef]
- von Neumann, J. First Draft of a Report on the EDVAC; 1945. [Google Scholar] [CrossRef]
- Wheeler, J. A. Information, Physics, Quantum: The Search for Links. In Complexity, Entropy, and the Physics of Information; (chapter preprint dated 1989); Zurek, W. H., Ed.; 1990. [Google Scholar]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development 1961, 5(3), 183–191. [Google Scholar] [CrossRef]
- Lloyd, S. Ultimate physical limits to computation. Nature 2000, 406, 1047–1054. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life? Cambridge University Press.
- Kondepudi, D. K.; De Bari, B.; Dixon, J. A. Dissipative Structures, Organisms and Evolution. Entropy (Basel) 2020, 22(11), 1305. [Google Scholar] [CrossRef]
- Newell, A. Physical symbol systems. Cognitive Science 1980, 4(2), 135–183. [Google Scholar] [CrossRef]
- Newell, A.; Simon, H. A. Computer science as empirical inquiry: symbols and search. Communications of the ACM 1976, 19(3), 113–126. [Google Scholar] [CrossRef]
- Varela, F. J.; Thompson, E.; Rosch, E. The Embodied Mind: Cognitive Science and Human Experience; The MIT Press, 1991. [Google Scholar]
- Clark, A.; Chalmers, D. J. The Extended Mind. Analysis 1998, 58(1), 7–19. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press, 2018. [Google Scholar]
- Wei, J.; Tay, Y.; Bommasani, R.; et al. Emergent Abilities of Large Language Models. arXiv 2022, arXiv:2206.07682. [Google Scholar] [CrossRef]
- OpenAI. GPT-4 Technical Report. 2023. [Google Scholar] [CrossRef]
- Åström, K J; Murray, R M. Feedback Systems: An Introduction for Scientists and Engineers (Second Edition) [M]; Publication date; Princeton University Press, 2021; ISBN -13: 9780691193984. [Google Scholar]
- Kirchhoff, M; Parr, T; Palacios, E; Friston, K. The Markov blankets of life: autonomy, active inference and the free energy principle[J]. Journal of the Royal Society Interface 2018, 15(138), 20170792. [Google Scholar] [CrossRef]
- Shannon, C E. A Mathematical Theory of Communication[J]. Bell System Technical Journal 1948. [Google Scholar] [CrossRef]
- Turing, A M. On Computable Numbers, with an Application to the Entscheidungsproblem[J]. Proceedings of the London Mathematical Society 1937, s2-42(1), 230–265. [Google Scholar] [CrossRef]
- von Neumann, J. First Draft of a Report on the EDVAC[R]; 1945. [Google Scholar] [CrossRef]
- Fuster, J. M. Upper processing stages of the perception-action cycle. Trends in Cognitive Sciences 2004, 8(4), 143–145. [Google Scholar] [CrossRef]
- Das, J M; et al. Locked-in Syndrome[M/OL]. In StatPearls; StatPearls Publishing: Treasure Island (FL); NCBI Bookshelf, 2023. [Google Scholar]
- Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press, 2018. [Google Scholar]
- Patterson, D. A.; Hennessy, J. L. Computer Organization and Design RISC-V Edition: The Hardware/Software Interface, 2nd ed.; Morgan Kaufmann, 2020; ISBN 978-0128203316. [Google Scholar]
- Murre, J. M. J.; Dros, J. Replication and Analysis of Ebbinghaus’ Forgetting Curve. PLoS ONE 2015, 10(7), e0120644. [Google Scholar] [CrossRef]
- Hardt, O.; Nader, K.; Nadel, L. Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences 2013, 17(3), 111–120. [Google Scholar] [CrossRef]
- Eiben, A. E.; Smith, J. E. Introduction to Evolutionary Computing, 2nd ed.; Springer, 2015. [Google Scholar] [CrossRef]
- Arora, S.; Barak, B. Computational Complexity: A Modern Approach; Cambridge University Press, 2009. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. NeurIPS 2020, arXiv:2006.11239. [Google Scholar]
- Åström, K. J.; Murray, R. M. Feedback Systems: An Introduction for Scientists and Engineers, 2nd ed.; Princeton University Press, 2021. [Google Scholar]
- Sipser, M. Introduction to the Theory of Computation, 3rd ed.; Cengage Learning, 2012. [Google Scholar]
- Kofler, M. J.; Soto, E. F.; Singh, L. J.; et al. Executive function deficits in attention-deficit/hyperactivity disorder and autism spectrum disorder. Nature Reviews Psychology 2024, 3(10), 701–719. [Google Scholar] [CrossRef] [PubMed]
- Encyclopedia of Machine Learning and Data Mining, 2nd ed.; Sammut, C, Webb, G I, Eds.; Springer, 2017. [Google Scholar]
- Skinner, B F. The Behavior of Organisms: An Experimental Analysis[M]; D. Appleton-Century Company: New York, 1938. [Google Scholar]
- Piaget, J. The Origins of Intelligence in Children[M]; International Universities Press: New York, 1952. [Google Scholar]
- Vapnik, V N. The Nature of Statistical Learning Theory[M]; Springer: New York, 1995. [Google Scholar] [CrossRef]
- Hebb, D O. The Organization of Behavior: A Neuropsychological Theory[M]; John Wiley & Sons: New York, 1949. [Google Scholar]
- Sutton, R S; Barto, A G. Reinforcement Learning: An Introduction (Second Edition)[M]; The MIT Press: Cambridge, MA, 2018. [Google Scholar]
- Broadbent, D E. Perception and Communication[M]; Pergamon Press: London, 1958. [Google Scholar]
- Desimone, R; Duncan, J. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience 1995, 18, 193–222. [Google Scholar] [CrossRef]
- Cherry, E C. Some experiments on the recognition of speech, with one and with two ears[J]. The Journal of the Acoustical Society of America 1953, 25, 975–979. [Google Scholar] [CrossRef]
- Vaswani, A; Shazeer, N; Parmar, N; et al. Attention Is All You Need[C]. In Advances in Neural Information Processing Systems (NeurIPS); 2017. [Google Scholar]
- Knudsen, E I. Fundamental components of attention[J]. Annual Review of Neuroscience 2007, 30, 57–78. [Google Scholar] [CrossRef]
- Gebharter, A.; Feldbacher-Escamilla, C. J. Unification and explanation from a causal perspective. Studies in History and Philosophy of Science 2023, 99, 28–36. [Google Scholar] [CrossRef]
- Scerri, E R; Worrall, J. Prediction and the periodic table[J]. Studies in History and Philosophy of Science Part A 2001, 32(3), 407–452. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. When Was the Periodic Table Invented?[EB/OL]. 25 Dec 2025.
- Sutton, R S; Barto, A G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press, 2018. [Google Scholar]
- Pathria, R. K.; Beale, P. D. Statistical Mechanics, 3rd ed.; Academic Press, 2011. [Google Scholar]
- Kirchhoff, M.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The Markov blankets of life: autonomy, active inference and the free energy principle. Journal of the Royal Society Interface 2018, 15(138), 20170792. [Google Scholar] [CrossRef]
- Laureys, S.; Pellas, F.; Van Eeckhout, P.; et al. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? The Lancet Neurology 2005, 4(9), 537–546. [Google Scholar]
- Riechmann, C.; et al. Recent Structural Advances in Bacterial Chemotaxis. Biomolecules 2023, 13(8). [Google Scholar] [CrossRef]
- Anton, B. P.; Roberts, R. J. Beyond Restriction Modification: Epigenomic Roles of DNA Methylation in Prokaryotes. Annual Review of Microbiology 2021, 75, 129–149. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, F. A. C.; Carvalho, L. R. B.; Grinberg, L. T.; et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology 2009, 513(5), 532–541. [Google Scholar] [CrossRef] [PubMed]
- Cook, S. J.; Jarrell, T. A.; Brittin, C. A.; et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 2019, 571, 63–71. [Google Scholar] [CrossRef]
- Significant Gravitas. AutoGPT (GitHub repository).
- Wang, L.; Ma, C.; Feng, X.; et al. A survey on large language model based autonomous agents. In Frontiers of Computer Science; 2024. [Google Scholar] [CrossRef]
- Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics 2004, 76(4), 1267–1305. [Google Scholar] [CrossRef]
- Wiseman, H M; Milburn, G J. Quantum Measurement and Control; Cambridge University Press, 2010. [Google Scholar] [CrossRef]
- Zurek, W H. Quantum Darwinism. Nature Physics 2009, 5, 181–188. [Google Scholar] [CrossRef]
- Fuchs, C A; Schack, R. Quantum-Bayesian coherence. Reviews of Modern Physics 2013, 85(4), 1693–1715. [Google Scholar] [CrossRef]
- Hensen, B; Bernien, H; Dréau, A E; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- Coles, P J; Berta, M; Tomamichel, M; Wehner, S. Entropic uncertainty relations and their applications. Reviews of Modern Physics 2017, 89(1), 015002. [Google Scholar] [CrossRef]
- Parrondo, J M R; Horowitz, J M; Sagawa, T. Thermodynamics of information. Nature Physics 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Putnam, H. Reason, Truth and History Chapter 1: Brains in a vat; Cambridge University Press, 1981. [Google Scholar] [CrossRef]
- Coles, P. J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Reviews of Modern Physics 2017, 89, 015002. [Google Scholar] [CrossRef]
- Stanford Encyclopedia of Philosophy. Light Cones and Causal Structure.
- Castillo, M. The Omega Point and Beyond: The Singularity Event. In American Journal of Neuroradiology; PMC, 2012. [Google Scholar]
- Parrondo, J. M. R.; Horowitz, J. M.; Sagawa, T. Thermodynamics of information. Nature Physics 2015, 11, 131–139. [Google Scholar] [CrossRef]



| Concept | Core Meaning | Mapping Function |
| Perception | Environmental StateInternal Transient Representation | |
| Multimodality | Parallel transduction of heterogeneous signals | |
| Image Input | Photon signals Pixel matrix representation | |
| Action | Internal state Physical effect on environment | O |
| Retrieval | Control instruction activates memory information and performs retrieval | |
| Forgetting | Active deletion or passive decay | |
| Memory storage | Transient information Persistent state | M |
| Computation | Deterministic transformation generating new information | ) |
| Reasoning | Rule-based logical deduction | ) |
| Abstraction | Extracting common features to construct concepts | ) |
| Understanding | Semantic association between input and memory | ) |
| Prediction | Generating future estimates based on input and memory information | ) |
| Planning | Generating goal-oriented action sequences | ) |
| Decision Making | Generating candidate options and selecting the optimal solution | |
| Learning | Updating memory via closed-loop feedback | +O) |
| Attention | Dynamically adjusting information processing priorities | ) |
| Feedback | Closed loop of Output Environment Input | |
| Command | Transfer of control authority across agents |
|
| Alignment | Projection of heterogeneous representations into a shared semantic space | ) |
| Goal Setting | Generating expected terminal states |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
