Submitted:
27 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
Literature Review
2. Methodological Approach
2.1. Narrative Review Design and Conceptual Synthesis
- Experimental or theoretical work describing molecular regulators of energy sensing and growth signaling (e.g., AMPK, mTORC1, SIRT1, PGC-1α).
- Human or animal studies examining the effects of substrate availability, glycogen manipulation, or nutrient timing on training adaptation.
- Research addressing nutritional or training periodization, including “train-low”, “sleep-low”, fasted vs. fed training, and concurrent training paradigms.
- Conceptual or systems-level papers providing theoretical frameworks for metabolic regulation, feedback control, or adaptive dynamics.
- Control inputs – training load, intensity, and nutrient availability.
- Regulatory controllers – molecular signaling networks centered on AMPK, mTORC1, and SIRT1.
- Adaptive outputs – mitochondrial remodeling, protein synthesis, performance capacity, and recovery efficiency.
2.2. Conceptual Model Development
- Evidence Mapping: identification and organization of mechanistic studies describing interactions among exercise, nutrition, and molecular signaling (AMPK, mTOR, SIRT1).
- Systems Integration: synthesis of these mechanisms into a conceptual control model connecting energetic inputs, signaling controllers, and adaptive outputs.
- Analytical Deduction: derivation of system-level hypotheses describing expected behaviors under variable energetic and nutritional conditions.
- Model Validation: internal verification of logical consistency through diagrammatic reasoning and external consistency through correspondence with empirical literature.
2.3. Evidence Mapping
2.4. Systems Integration
2.5. Analytical Deduction
2.6. Quantitative Formalization and Operationalization of the TFC Dynamics
Operationalization of the Indices
2.7. Model Validation and Visualization
3. Integrative Results of the Conceptual Framework
3.1. Energetic Variability and Adaptive Efficiency (H1)
Validation Logic
3.2. Threshold Regulation of Signaling Dominance (H2)
Validation Logic
3.3. Oscillatory Coupling and Periodized Adaptation (H3)
Validation Logic
3.4. Closed-Loop Regulation and Feedback Optimization (H4)
Validation Logic
3.5. Validation Model Summary
- Contextual gating (H1–H2) → mechanistic confirmation via phosphorylation assays and metabolic profiling.
- Oscillatory adaptation (H3) → mesocycle interventions demonstrating dual-pathway enhancement.
- Feedback optimization (H4) → longitudinal monitoring of adaptive efficiency and stability.
3.6. Testable Predictions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
References
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef]
- Hawley, J.A.; Burke, L.M.; Phillips, S.M.; Spriet, L.L. Nutritional modulation of training-induced skeletal muscle adaptations. J. Appl. Physiol. 2011, 110, 834–845. [Google Scholar] [CrossRef]
- Egan, B.; Zierath, J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef]
- Hawley, J.A.; Hargreaves, M.; Joyner, M.J.; Zierath, J.R. Integrative biology of exercise. Cell;PubMed 2014, 159, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Atherton, P.J.; Smith, K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 2012, 590, 1049–1057. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Kobayashi, K.; Kaneko, M.; Osana, S.; Tsai, C.-T.; Ito, S.; Hata, K. RGM Family Involved in the Regulation of Hepcidin Expression in Anemia of Chronic Disease. Immuno 2024, 4, 266–285. [Google Scholar] [CrossRef]
- Inoki, K.; Zhu, T.; Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577–590. [Google Scholar] [CrossRef]
- Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA 2007, 104, 12017–12022. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb. Perspect. Med. 2018, 8, a029744. [Google Scholar] [CrossRef]
- Kelley, D.E.; Mandarino, L.J. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000, 49, 677–683. [Google Scholar] [CrossRef]
- Mănescu, A.M.; Hangu, S.Ș.; Mănescu, D.C. Nutritional Supplements for Muscle Hypertrophy: Mechanisms and Morphology—Focused Evidence. Nutrients 2025, 17, 3603. [Google Scholar] [CrossRef]
- Galgani, J.E.; Moro, C.; Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1009–E1017. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Sparks, L.M. Metabolic Flexibility in Health and Disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef]
- McBride, A.; Ghilagaber, S.; Nikolaev, A.; Hardie, D.G. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009, 9, 23–34. [Google Scholar] [CrossRef]
- Hansen, A.K.; Fischer, C.P.; Plomgaard, P.; Andersen, J.L.; Saltin, B.; Pedersen, B.K. Skeletal muscle adaptation: training twice every second day vs. training once daily. J. Appl. Physiol. 2005, 98, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.K.; Paton, C.D.; Garnham, A.P.; Burke, L.M.; Carey, A.L.; Hawley, J.A. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J. Appl. Physiol. 2008, 105, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Psilander, N.; Frank, P.; Flockhart, M.; Sahlin, K. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Eur. J. Appl. Physiol. 2013, 113, 951–963. [Google Scholar] [CrossRef]
- Knuiman, P.; Hopman, M.T.E.; Mensink, M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr. Metab. (Lond). 2015, 12, 59. [Google Scholar] [CrossRef]
- Smiles, W.J.; Ovens, A.J.; Kemp, B.E.; Galic, S.; Petersen, J.; Oakhill, J.S. New developments in AMPK and mTORC1 cross-talk. Essays Biochem. 2024, 68, 321–336. [Google Scholar] [CrossRef]
- White, J.P. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front. Cell Dev. Biol. 2021, 9, 656604. [Google Scholar] [CrossRef] [PubMed]
- D’Hulst, G.; Masschelein, E.; De Bock, K. Resistance exercise enhances long-term mTORC1 sensitivity to leucine. Mol. Metab. 2022, 66, 101615. [Google Scholar] [CrossRef]
- Ely, I.A.; Phillips, B.E.; Smith, K.; Wilkinson, D.J.; Piasecki, M.; Breen, L.; Larsen, M.S.; Atherton, P.J. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin. Nutr. 2023, 42, 1849–1865. [Google Scholar] [CrossRef]
- Ferrando, A.A.; Wolfe, R.R.; Hirsch, K.R.; Church, D.D.; Kviatkovsky, S.A.; Roberts, M.D.; Stout, J.R.; Gonzalez, D.E.; Sowinski, R.J.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Effects of essential amino acid supplementation on exercise and performance. J. Int. Soc. Sports Nutr. 2023, 20, 2263409. [Google Scholar] [CrossRef]
- Morton, J.P.; Hearris, M.; Fell, M.J.; Owens, D.J.; Halson, S.; Trommelen, J. UCI Sports Nutrition Project: Nutritional Periodization: Strategies to Enhance Training Adaptation and Recovery. Int. J. Sport Nutr. Exerc. Metab. 2025, 1–26. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Morton, J.P.; Burke, L.M. A Framework for Periodized Nutrition for Athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 141–151. [Google Scholar] [CrossRef]
- Mănescu, D.C. Alimentaţia în Fitness şi Bodybuilding; Editura ASE: Bucharest, Romania, 2010. [Google Scholar]
- Gejl, K.D.; Nybo, L. Performance effects of periodized carbohydrate restriction in endurance trained athletes—a systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2021, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Podlogar, T.; Wallis, G.A. New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med. 2022, 52 (Suppl 1), 5–23. [Google Scholar] [CrossRef] [PubMed]
- Schumann, M.; Feuerbacher, J.F.; Sünkeler, M.; Freitag, N.; Rønnestad, B.R.; Doma, K.; Lundberg, T.R. Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An Updated Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 601–612. [Google Scholar] [CrossRef]
- Huiberts, R.O.; Wüst, R.C.I.; van der Zwaard, S. Concurrent Strength and Endurance Training: A Systematic Review and Meta-Analysis on the Impact of Sex and Training Status. Sports Med. 2024, 54, 485–503. [Google Scholar] [CrossRef]
- Jones, T.W.; Eddens, L.; Kupusarevic, J.; Simoes, D.C.M.; Furber, M.J.W.; van Someren, K.A.; Howatson, G. Aerobic exercise intensity does not affect the anabolic signaling following resistance exercise in endurance athletes. Sci. Rep. 2021, 11, 10785. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Caruana, N.J.; Saner, N.J.; Kuang, J.; Stokes, T.; McLeod, J.C.; Oikawa, S.Y.; Bishop, D.J.; Bartlett, J.D.; Phillips, S.M. Resistance-only and concurrent exercise induce similar myofibrillar protein synthesis rates and associated molecular responses in moderately active men before and after training. FASEB J. 2024, 38, e23392. [Google Scholar] [CrossRef] [PubMed]
- Denadai, B.S.; Greco, C.C. Muscle fatigue and interference phenomenon during concurrent aerobic and strength training: An alternative hypothetical model. Med. Hypotheses 2025, 198, 111614. [Google Scholar] [CrossRef]
- Wolff, C.A.; Esser, K.A. Exercise Timing and Circadian Rhythms. Curr. Opin. Physiol. 2019, 10, 64–69. [Google Scholar] [CrossRef]
- Mansingh, S.; Handschin, C. Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Front. Physiol. 2022, 13, 902031. [Google Scholar] [CrossRef]
- Aoyama, S.; Shibata, S. Time-of-Day-Dependent Physiological Responses to Meal and Exercise. Front. Nutr. 2020, 7, 18. [Google Scholar] [CrossRef]
- Negri, M.; Pivonello, C.; Amatrudo, F.; Cimmino, F.; Trinchese, G.; Vetrani, C.; Iaccarino, G.; Pivonello, R.; Mollica, M.P.; Colao, A. Effects of Chrono-Exercise and Chrono-Nutrition on Muscle Health: Understanding the Molecular Mechanisms Activated by Timed Exercise and Consumption of Proteins and Carbohydrates. Nutr. Rev. 2025, 83, 1571–1593. [Google Scholar] [CrossRef]
- Mishima, T.; Takenaka, Y.; Hashimoto-Hachiya, A.; Tanigawa, Y.; Suzuki, N.; Oishi, K.; Ogasawara, R. Time-of-day effect of high-intensity muscle contraction on mTOR signaling and protein synthesis in mice. Sci. Rep. 2025, 15, 23702. [Google Scholar] [CrossRef]
- Henriquez-Olguin, C.; Meneses-Valdes, R.; Jensen, T.E. Compartmentalized muscle redox signals controlling exercise metabolism—Current state, future challenges. Redox Biology 2020, 35, 101473. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Baker, J.S.; Davison, G.W.; Yan, X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024, 27, 109643. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Radak, Z.; Ji, L.L.; Jackson, M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. Journal of Sport and Health Science 2024, 13, 780–792. [Google Scholar] [CrossRef]
- Ji, L.L.; Yeo, D. Maintenance of NAD⁺ Homeostasis in Skeletal Muscle during Aging and Exercise. Cells 2022, 11, 710. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.A.; Moore, J.H.; Mesquita, P.H.C.; Smith, M.A.; Vann, C.G.; Osburn, S.C.; et al. Resistance training increases muscle NAD⁺ and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY) 2020, 12, 9447–9460. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Q.; Su, C.-H. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024, 16, 4081. [Google Scholar] [CrossRef]
- Mănescu, D.C. Nutritional tips for muscular mass hypertrophy. Marathon 2016, 8, 79–83. [Google Scholar]
- Margolis, L.M.; Allen, J.T.; Hatch-McChesney, A.; Pasiakos, S.M. Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Medicine & Science in Sports & Exercise 2021, 53, 384–393. [Google Scholar] [CrossRef]
- Trommelen, J.; van Lieshout, G.A.A.; Nyakayiru, J.; Holwerda, A.M.; Smeets, J.S.J.; Hendriks, F.K.; et al. The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell Reports Medicine 2023, 4, 101324. [Google Scholar] [CrossRef]
- Podlogar, T.; Shad, B.J.; Seabright, A.P.; Odell, O.J.; Lord, S.O.; Civil, R.; et al. Postexercise muscle glycogen synthesis with glucose, galactose, and combined galactose-glucose ingestion. American Journal of Physiology—Endocrinology and Metabolism 2023, 325, E672–E681. [Google Scholar] [CrossRef]
- Ross, R.; Goodpaster, B.H.; Koch, L.G.; Sarzynski, M.A.; Kohrt, W.M.; Johannsen, N.M.; Skinner, J.S.; Castro, A.; Irving, B.A.; Noland, R.C.; Sparks, L.M.; Spielmann, G.; Day, A.G.; Pitsch, W.; Hopkins, W.G.; Bouchard, C. Precision exercise medicine: understanding exercise response variability. Br. J. Sports Med. 2019, 53, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Noone, J.; Mucinski, J.M.; DeLany, J.P.; Sparks, L.M.; Goodpaster, B.H. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab. 2024, 36, 702–724. [Google Scholar] [CrossRef]
- Bonafiglia, J.T.; Preobrazenski, N.; Gurd, B.J. A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Front. Physiol. 2021, 12, 665044. [Google Scholar] [CrossRef] [PubMed]
- Hrubeniuk, T.J.; Bonafiglia, J.T.; Bouchard, D.R.; Gurd, B.J.; Sénéchal, M. Directions for Exercise Treatment Response Heterogeneity and Individual Response Research. Int. J. Sports Med. 2022, 43, 11–22. [Google Scholar] [CrossRef]
- Chrzanowski-Smith, O.J.; Piatrikova, E.; Betts, J.A.; Williams, S.; Gonzalez, J.T. Variability in exercise physiology: Can capturing intra-individual variation help better understand true inter-individual responses? Eur. J. Sport Sci. 2020, 20, 452–460. [Google Scholar] [CrossRef]
- Muñoz Fabra, E.; Díez, J.-L.; Bondia, J.; Laguna Sanz, A.J. A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods. Sensors 2021, 21, 479. [Google Scholar] [CrossRef]
- Düking, P.; Zinner, C.; Trabelsi, K.; Reed, J.L.; Holmberg, H.-C.; Kunz, P.; Sperlich, B. Monitoring and adapting endurance training on the basis of heart rate variability monitored by wearable technologies: A systematic review with meta-analysis. J. Sci. Med. Sport 2021, 24, 1180–1192. [Google Scholar] [CrossRef]
- Mănescu, D.C.; Mănescu, A.M. Artificial Intelligence in the Selection of Top-Performing Athletes for Team Sports: A Proof-of-Concept Predictive Modeling Study. Appl. Sci. 2025, 15, 9918. [Google Scholar] [CrossRef]
- Xuan, X.; Chen, C.; Molinero-Fernandez, A.; Ekelund, E.; Cardinale, D.; Swarén, M.; Wedholm, L.; Cuartero, M.; Crespo, G.A. Fully Integrated Wearable Device for Continuous Sweat Lactate Monitoring in Sports. ACS Sens. 2023, 8, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Dolson, C.M.; Harlow, E.R.; Phelan, D.M.; Gabbett, T.J.; Gaal, B.; McMellen, C.; Geletka, B.J.; Calcei, J.G.; Voos, J.E.; Seshadri, D.R. Wearable Sensor Technology to Predict Core Body Temperature: A Systematic Review. Sensors 2022, 22, 7639. [Google Scholar] [CrossRef] [PubMed]
- Solem, K.; Clauss, M.; Jensen, J. Glycogen supercompensation in skeletal muscle after cycling or running followed by a high carbohydrate intake the following days: a systematic review and meta-analysis. Front. Physiol. 2025, 16, 1620943. [Google Scholar] [CrossRef]
- Prieto-Bellver, G.; Diaz-Lara, J.; Bishop, D.J.; Fernández-Sáez, J.; Abián-Vicén, J.; San-Millan, I.; Santos-Concejero, J. A Five-Week Periodized Carbohydrate Diet Does Not Improve Maximal Lactate Steady-State Exercise Capacity and Substrate Oxidation in Well-Trained Cyclists compared to a High-Carbohydrate Diet. Nutrients 2024, 16, 318. [Google Scholar] [CrossRef]
- Nøst, H.L.; Aune, M.A.; van den Tillaar, R. The Effect of Polarized Training Intensity Distribution on Maximal Oxygen Uptake and Work Economy Among Endurance Athletes: A Systematic Review. Sports 2024, 12, 326. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Li, H.; Bai, M.; Liu, H.; Chen, Z.; Deng, J.; Deng, S.; Meng, C.; Vollaard, N.B.J.; Little, J.P.; Li, Y. Is low-volume high-intensity interval training a time-efficient strategy to improve cardiometabolic health and body composition? A meta-analysis. Appl. Physiol. Nutr. Metab. 2024, 49, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; Yancopoulos, G.D. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef]
- Hearris, M.A.; Owens, D.J.; Strauss, J.A.; Shepherd, S.O.; Sharples, A.P.; Morton, J.P.; Louis, J.B. Graded reductions in pre-exercise glycogen concentration do not augment exercise-induced nuclear AMPK and PGC-1α protein content in human muscle. Exp. Physiol. 2020, 105, 1882–1894. [Google Scholar] [CrossRef]
- Russo, I.; Della Gatta, P.A.; Garnham, A.; Porter, J.; Burke, L.M.; Costa, R.J.S. The Effects of an Acute “Train-Low” Nutritional Protocol on Markers of Recovery Optimization in Endurance-Trained Male Athletes. Int. J. Sports Physiol. Perform. 2021, 16, 1764–1776. [Google Scholar] [CrossRef]
- Martin, R.A.; Viggars, M.R.; Esser, K.A. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat. Rev. Endocrinol. 2023, 19, 272–284. [Google Scholar] [CrossRef]
- Naderi, A.; Gobbi, N.; Ali, A.; Berjisian, E.; Hamidvand, A.; Forbes, S.C.; Koozehchian, M.S.; Karayigit, R.; Saunders, B. Carbohydrates and Endurance Exercise: A Narrative Review of a Food First Approach. Nutrients 2023, 15, 1367. [Google Scholar] [CrossRef]
- Baetica, A.A.; Westbrook, A.M.; El-Samad, H. Control theoretical concepts for synthetic and systems biology. Curr. Opin. Syst. Biol. 2019, 14, 50–57. [Google Scholar] [CrossRef]
- Suen, T.; Navlakha, S. A feedback control principle common to several biological and engineered systems. J. R. Soc. Interface 2022, 19, 20210711. [Google Scholar] [CrossRef] [PubMed]
- Stoica, G.-D.; Stoian, M. Durability, Circularity and Sustainability in the Food Market—A Bibliometric Analysis. Proc. Int. Conf. Bus. Excell. 2022, 16(1), 456–465. [Google Scholar] [CrossRef]
- Brady, S.S.; et al. Development of Conceptual Models to Guide Public Health Research, Practice, and Policy: Synthesizing Traditional and Contemporary Paradigms. Health Promot. Pract. 2020, 21, 510–524. [Google Scholar] [CrossRef]
- Smiles, W.J.; Yamada, M.; Camera, D.M. New developments in AMPK and mTORC1 cross-talk. Essays Biochem. 2024, 68, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Mănescu, DC. Computational Analysis of Neuromuscular Adaptations to Strength and Plyometric Training: An Integrated Modeling Study. Sports 2025, 13(9), 298. [Google Scholar] [CrossRef]
- Bennett, M.A.; et al. The effect of three weeks of “sleep low-train low” energy availability strategy on the physiological adaptations to a home-based high-intensity interval training program: A randomized control trial. PLoS ONE 2021, 16, e0260959. [Google Scholar] [CrossRef]
- Mănescu, A.M.; Mănescu, D.C. Self-Supervised Gait Event Detection from Smartphone IMUs for Human Performance and Sports Medicine. Appl. Sci. 2025, 15, 11974. [Google Scholar] [CrossRef]
- Bowler, S.M.; Dixon, B.; Monk, T.; Highton, J.; Rowlands, D.S. Use of Continuous Glucose Monitors in Sport: Possible Applications and Considerations. Int. J. Sport Nutr. Exerc. Metab. 2023, 33, 121–132. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Hautala, A.J.; Kinnunen, H.; Tulppo, M.P. Endurance Training Guided Individually by Daily Heart Rate Variability Measurements. Eur. J. Appl. Physiol. 2007, 101, 743–751. [Google Scholar] [CrossRef]
- Mentzoni, B.N.; et al. Accuracy and agreement of 4 handheld blood lactate analyzers. Eur. J. Appl. Physiol. 2024, 124, 3781–3788. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Grames, E.M.; Schwartz, D.; Elphick, C.S. A Systematic Method for Hypothesis Synthesis and Conceptual Model Development. Methods Ecol. Evol. 2022, 13, 2078–2087. [Google Scholar] [CrossRef]
- Campbell, F.; Tricco, A.C.; Munn, Z.; Pollock, D.; Saran, A.; Sutton, A.; et al. Mapping reviews, scoping reviews, and evidence and gap maps (EGMs): the same but different— the “Big Picture” review family . Systematic Reviews 2023, 12, 45. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evidence Synthesis 2020, 18, 2119–2126. [Google Scholar] [CrossRef]
- Wolffe, T.A.M.; Whaley, P.; Halsall, C.; Rooney, A.A.; Walker, V.R. Systematic evidence maps as a novel tool to support evidence-based decision-making in chemicals policy and risk management. Environment International 2019, 130, 104871. [Google Scholar] [CrossRef]
- Grames, E.M.; Stillman, A.N.; Tingley, M.W.; Elphick, C.S. A systematic method for hypothesis synthesis and conceptual model development. Methods in Ecology and Evolution 2022, 13, 2078–2087. [Google Scholar] [CrossRef]
- Balagué, N.; Pol, R.; Torrents, C.; Ric, A.; Hristovski, R. Network Physiology of Exercise: Vision and Perspectives. Frontiers in Physiology 2020, 11, 611550. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Frontiers in Physiology 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Baetica, A.A.; Westbrook, A.M.; El-Samad, H. Control theoretical concepts for synthetic and systems biology. Current Opinion in Systems Biology 2019, 14, 50–57. [Google Scholar] [CrossRef]
- El-Samad, H. Biological feedback control—Respect the loops. Cell Systems 2021, 12, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Sennesh, E.; Quigley, K.S. Interoception as modeling, allostasis as control. Biological Psychology 2022, 167, 108242. [Google Scholar] [CrossRef]
- Doyle, M.M.; Keane, M.; McGarrigle, A.; Malone, F.D. A SAS macro for modelling periodic data using cosinor analysis. Computer Methods and Programs in Biomedicine 2021, 209, 106292. [Google Scholar] [CrossRef]
- Flockhart, M.; Nilsson, L.C.J.; Larsen, F.J. Continuous glucose monitoring in endurance athletes: Potential, challenges and research opportunities. Sports Medicine 2023, 53, 2019–2034. [Google Scholar] [CrossRef]
- Lundstrom, C.J.; Foreman, N.; Baggish, A.L. Practices and applications of heart rate variability monitoring in endurance athletes. International Journal of Sports Medicine 2023, 44, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Raa, I.; Sunde, G.A.; Bolann, B.; Kvåle, R.; Eliassen, H.S.; Wentzel-Larsen, T.; Heltne, J.-K. Validation of a point-of-care capillary lactate measuring device. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2020, 28, 83. [Google Scholar] [CrossRef] [PubMed]
- Littlejohns, L.B.; Hill, C.; Neudorf, C. Diverse approaches to creating and using causal loop diagrams in public health research: Recommendations from a scoping review. Public Health Reviews 2021, 42, 1604352. [Google Scholar] [CrossRef]
- Dhirasasna, N.; Sahin, O.; Miller, R.; Hinkel, J. A multi-methodology approach to creating a causal loop diagram. Systems 2019, 7, 42. [Google Scholar] [CrossRef]
- Cassidy, R.; Borghi, J.; Semwanga, A.R.; Binyaruka, P.; Singh, N.S.; Blanchet, K. How to do (or not to do)using causal loop diagrams for health system research. Health Policy and Planning 2022, 37, 1328–1336. [Google Scholar] [CrossRef]
- Inoue, A.; dos Santos Bunn, P.; Crivoi do Carmo, E.; Lattari, E.; da Silva, E.B. Internal training load perceived by athletes and planned by coaches: A systematic review and meta-analysis. Sports Medicine – Open 2022, 8, 20. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Liu, H.; Bao, D.; Cui, Y.; Ho, I.M.K.; Li, Q. Criterion-related validity of session rating of perceived exertion scales in athletes: A meta-analysis. BMC Sports Science, Medicine and Rehabilitation 2023, 15, 112. [Google Scholar] [CrossRef]
- Uleman, J.F.; Luijten, M.; Abdo, W.F.; Vyrastekova, J.; Gerhardus, A.; Runge, J.; Rod, N.H.; Verhagen, M. Triangulation for causal loop diagrams: Constructing biopsychosocial models using group model building, literature review, and causal discovery. npj Complexity 2024, 1, 19. [Google Scholar] [CrossRef]
- Smith, J.A.B.; Murach, K.A.; Dyar, K.A.; Zierath, J.R. Exercise metabolism and adaptation in skeletal muscle. Nat. Rev. Mol. Cell Biol. 2023, 24, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.; Sharples, A.P. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol. Rev. 2023, 103, 2057–2170. [Google Scholar] [CrossRef]
- Furrer, R.; Hawley, J.A.; Handschin, C. The molecular athlete: Exercise physiology from mechanisms to medals. Physiol. Rev. 2023, 103, 1693–1787. [Google Scholar] [CrossRef]
- Barrett, L.F.; Simmons, W.K. An active inference theory of allostasis and interoception in depression. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160011. [Google Scholar] [CrossRef]
- Impey, S.G.; Hearris, M.A.; Hammond, K.M.; Bartlett, J.D.; Louis, J.; Close, G.L.; Morton, J.P. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Med. 2018, 48, 1031–1048. [Google Scholar] [CrossRef]
- Marquet, L.-A.; Brisswalter, J.; Louis, J.; Tiollier, E.; Burke, L.M.; Hawley, J.A.; Hausswirth, C. Enhanced endurance performance by periodization of carbohydrate intake: “Sleep low” strategy. Med. Sci. Sports Exerc. 2016, 48, 663–672. [Google Scholar] [CrossRef]
- Furrer, R.; et al. Molecular control of endurance training adaptation in male mouse skeletal muscle. Nat. Metab. 2023, 5, 2020–2035. [Google Scholar] [CrossRef] [PubMed]
- Furrer, R.; Handschin, C. Molecular aspects of the exercise response and training adaptation in skeletal muscle. Free Radic. Biol. Med. 2024, 223, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.D.; et al. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. Cell Genom. 2024, 4, 100421. [Google Scholar] [CrossRef]
- Mănescu, D. C. Training Load Oscillation and Epigenetic Plasticity: Molecular Pathways Connecting Energy Metabolism and Athletic Personality. Preprints 2025, 2025111181. [Google Scholar] [CrossRef]
- Jacques, M.; et al. Molecular landscape of sex- and modality-specific exercise adaptation in human skeletal muscle through large-scale multi-omics integration. Cell Rep. 2025, 44, 115750. [Google Scholar] [CrossRef]
- Spaulding, H.R.; Yan, Z. AMPK and the adaptation to exercise. Annu. Rev. Physiol. 2022, 84, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Bobba-Alves, N.; Juster, R.-P.; Picard, M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 2022, 146, 105951. [Google Scholar] [CrossRef] [PubMed]
- Mehrhof, S.Z.; Fleming, H.; Nord, C.L. An interoceptive model of energy allostasis linking metabolic and mental health. Sci. Adv. 2025, 11, eady4356. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.; Marquet, L.-A.; Tiollier, E.; Bermon, S.; Hausswirth, C.; Brisswalter, J. The impact of sleeping with reduced glycogen stores on immunity and sleep in triathletes. Eur. J. Appl. Physiol. 2016, 116, 1941–1954. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef]
- Carrasco-Poyatos, M.; González-Quílez, A.; Altini, M.; Granero-Gallegos, A. Heart rate variability-guided training in professional runners: Effects on performance and vagal modulation. Physiol. Behav. 2022, 244, 113654. [Google Scholar] [CrossRef]
- Mănescu, D.C. Big Data Analytics Framework for Decision-Making in Sports Performance Optimization. Data 2025, 10, 116. [Google Scholar] [CrossRef]
- Medellín Ruiz, J.P.; Rubio-Arias, J.Á.; Clemente-Suarez, V.J.; Ramos-Campo, D.J. Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: A systematic review and meta-analysis. Appl. Sci. 2020, 10, 8532. [Google Scholar] [CrossRef]





| Index | Primary Biomarker(s) | Device / Method | Operational Formula or Metric | Interpretation | Threshold (indicative) |
|
Energetic Variability Index (EVI) |
Mean CGM glucose (Δ mmol·L⁻¹·h⁻¹); HRV (SDNN or lnRMSSD) | Continuous Glucose Monitor (CGM); HRV chest strap or wearable | EVIproxy = SDz(CGM) + SDz (HRV) |
Captures session-to-session variability in energetic context | > +0.8 SD → optimal adaptive variability; < 0 → metabolic rigidity |
|
Energetic Stress Index (ESI) |
Blood lactate [La]; HRV suppression; CGM glucose drift | Portable lactate analyzer; HRV sensor; CGM | ESIproxy = z([La]) - z(HRV) - z(ΔGlucose) |
Integrates catabolic stress (AMPK) vs. anabolic recovery (mTORC1) | +1 → catabolic (AMPK phase); −1 → anabolic (mTORC1 phase) |
|
Adaptive Oscillation Index (AOI) |
Sequence of ESI values across 7 days | Computed from daily proxy data | AOIproxy = Δφ / π (Δφ from a cosinor fit to the 7-day ESI proxy time-series) | Measures rhythmic coupling between AMPK and mTORC1 activation | > 0.7 → coherent oscillation; < 0.3 → desynchronization |
|
Closed-Loop Performance Index (CLPI) |
Session quality (RPE × [La]); fueling adjustment (ΔFuel / ΔPerf) | RPE log; lactate analyzer; CGM or nutrition app | CLPIproxy = (1 – CVsession) × (ΔFuel / ΔPerf) |
Quantifies efficiency of adaptive feedback regulation | > +0.5 SD → stable self-regulation; < 0 → feedback inefficiency |
| Composite Energetic Score (optional) | Weighted mean of standardized indices (z(EVI)+z(ESI)+ z(AOI)+z(CLPI))/4 |
Derived variable | Aggregates system-level adaptive efficiency | High positive → optimal coupling; negative → instability | ±1 SD = normal range; > +1 SD = high adaptive coherence |
| Dimension | Descriptor | Operational range / marker | Expected molecular bias | Adaptive outcome | Key verification methods |
| Energetic context | Muscle glycogen availability | LOW < 350 mmol·kg⁻¹ dw / HIGH > 500 mmol·kg⁻¹ dw | LOW → ↑p-AMPK^Thr172, ↑p-ACC^Ser79, ↑PGC-1α; HIGH → ↑p-p70S6K^Thr389, ↑4E-BP1^Thr37/46 | Divergent activation of oxidative vs. anabolic signaling pathways | Muscle biopsies 0/1/3 h post-exercise; phospho/total ratios |
| Substrate state | Carbohydrate–protein co-availability | LOW: fasted or depleted; HIGH: CHO 0.5 g·kg⁻¹ + EAA 0.3 g·kg⁻¹ | Nutrient-rich condition re-activates mTORC1; low substrate sustains AMPK tone | Bias toward recovery (fed) or mitochondrial signaling (depleted) | Controlled pre-exercise feeding; isotopic tracer FSR measurement |
| Redox balance | NAD⁺/NADH ratio | 1.8–2.8 range | ↑NAD⁺ activates SIRT1–PGC-1α; ↓NAD⁺ favors mTORC1 translation | Fine-tuning of metabolic flexibility | Enzymatic assays (NAD⁺/NADH); Western blot for Ac-PGC-1α |
| Metabolic readout | p-AMPK/p-p70S6K ratio | HIGH vs. LOW comparison | Reciprocal activation pattern (AMPK↑ mTORC1↓ or vice versa) | Defines variability of energetic signaling | Densitometric quantification; normalization to total protein |
| Computational proxy | Energetic Variability Index (EVI) = SD of (AMPK/mTORC1 ratio) across sessions | EVI > +0.8 SD → enhanced adaptive responsiveness | Quantifies sensitivity to context variation | Predicts adaptation efficiency | Time-series modeling; intra-individual variance analysis |
| Validation priority | Experimental scope | Acute molecular and short-term training contexts | Tier 1 – acute signaling; Tier 2 – repeated exposure; Tier 3 – cross-modal adaptation | Demonstrates how contextual variation enhances adaptive gain | Crossover HIIT trials; biopsy and performance endpoints |
| Potential confounders | Behavioral and physiological factors | Nutrition timing, fiber type composition, habitual energy intake, recovery status | Alter adaptive bias or dampen variability effect | Controlled feeding, fiber-type matching, standardized recovery window | Repeated-measures design; pre-post balance check |
| Dimension | Descriptor | Operational range / marker | Expected molecular bias | Adaptive outcome | Key verification methods |
| Energy threshold | Muscle glycogen concentration | ~300 mmol·kg⁻¹ dw boundary | Below threshold → ↑p-AMPK^Thr172, ↓p-p70S6K^Thr389, ↓p-mTOR^Ser2448 | Transition from anabolic toward oxidative phenotype | Phosphorylation assays; load-matched strength sessions |
|
Energy charge |
AMP/ATP ratio | >0.03 (LOW) / <0.02 (HIGH) | ↑AMP triggers AMPK autophosphorylation and TSC2-mediated mTORC1 inhibition | ↑Fat oxidation, ↓Protein synthesis | LC–MS nucleotide profiling; energy charge quantification |
|
Redox coupling |
NAD⁺/NADH ratio | >2.5 (LOW) / <1.8 (HIGH) | ↑NAD⁺ promotes SIRT1 activation and PGC-1α deacetylation | ↑Mitochondrial biogenesis and oxidative remodeling | Western blot (Ac-PGC-1α); enzymatic assays (CS, COX) |
| Metabolic readout | p-ACC^Ser79 / p-mTOR^Ser2448 ratio | LOW/HIGH comparison | ↑p-ACC and ↓p-mTOR indicate metabolic gating | Defines activation–inhibition boundary and threshold crossing | Densitometry; phospho/total normalization |
| Computational proxy | Energetic Stress Index (ESI) = z(AMP/ATP) + z(NAD⁺/NADH) | ESI > +1.0 SD → AMPK dominance | Continuous estimate of threshold crossing probability | Predicts binary signaling transitions (on/off) | Systems modeling; ROC analysis; machine-learning classification |
| Validation priority | Model testing tier | Human experimental model | Tier 1 – acute molecular; Tier 2 – repeated exposure; Tier 3 – adaptive trend | Confirms bistability and reversibility of the signaling switch | Sequential trials; biomarker reproducibility across conditions |
| Potential confounders | Inter-individual and environmental modifiers | Context-dependent: nutrition timing, circadian phase, sex | May shift apparent threshold or dampen response magnitude | Controls required for feeding state, chronobiology, and energy availability | Crossover design; standardized diet; matched training load |
| Dimension | Descriptor | Operational range / marker |
Expected molecular bias |
Adaptive outcome | Key verification methods |
| Cycle architecture | Catabolic–anabolic alternation | ~48 h oscillation: endurance (AMPK) → strength (mTORC1) | Alternating ↑p-AMPK^Thr172 and ↑p-p70S6K^Thr389 phases | Integrated oxidative and hypertrophic adaptation | Controlled microcycle scheduling; session timing verification |
| Energetic amplitude | ΔGlycogen between phases | ≈ ±200 mmol·kg⁻¹ dw | Greater amplitude → stronger signaling oscillation | ↑CS +15 %, ↑COX +12 %, ↑CSA +5–8 % | Glycogen assay; enzymatic quantification; muscle imaging |
| Nutritional synchronization | Feeding window and macronutrient timing | Protein early (0–1 h) with delayed CHO (2–3 h) after low-glycogen session | Leucine and insulin signaling reinforce mTORC1 activation post-AMPK phase | Amplified adaptation efficiency (Δ1RM +3–5 %) | Dietary control; post-exercise metabolic profiling |
| Metabolic readout | Oscillation coherence between AMPK/mTORC1 pathways | Phase shift ≈ π (180° out of phase) | Anti-phase coupling between AMPK and mTORC1 markers | Predicts synergistic adaptation | Cosine-fit modeling; phospho-signature time course |
| Computational proxy | Adaptive Oscillation Index (AOI) = Δφ / π (phase difference from cosinor-fitted AMPK and mTORC1 time-series) | AOI > 0.7 → coherent anti-phase oscillation | Quantifies systemic oscillatory alignment | Predicts global adaptation score | Signal analysis; cross-correlation algorithms |
| Validation priority | Model scalability | Short-term mesocycle studies (6–8 weeks); athlete-level | Tier 2 – longitudinal training; Tier 3 – systems adaptation | Demonstrates emergent stability from oscillatory control | Randomized intervention trials; performance & biopsy endpoints |
| Potential confounders | Recovery duration, sleep, circadian phase, hormonal fluctuations | Inter-individual variation in oscillation amplitude | Desynchronization reduces adaptive coherence | ↑Variance of ΔCS or ΔCSA | Standardized recovery timing; circadian alignment; sleep tracking |
| Dimension | Descriptor | Operational range / marker |
Expected molecular bias |
Adaptive outcome | Key verification methods |
| Feedback inputs | Composite physiological signals (RPE × [La] × ΔHRV) | r > 0.6 vs. glycogen depletion; CV < 10 % | Reliable internal sensing of energetic status | Dynamic fueling adjustments improve session quality | Continuous monitoring of RPE, HRV, lactate |
| Control algorithm | Adaptive fueling via CGM-HRV-RPE integration | Δglucose ±1.5 mmol·L⁻¹·h⁻¹, HRV LF/HF ratio normalization | Closed-loop modulation of substrate intake → AMPK-mTORC1 balance | Stable performance output across microcycles | Algorithmic feedback loop; wearable integration |
| Energetic feedback gain | Sensitivity of fueling adjustment to physiological drift | Gain coefficient k_feedback ≈ 0.4–0.6 | Higher gain → faster correction of energy imbalance | ↓Session variability; ↑adaptive efficiency | Regression analysis; signal-response modeling |
| Metabolic readout | p-AMPK^Thr172 amplitude across cycles | ↓Amplitude (−20 %) with maintained output | Reduced stress oscillation → adaptive homeostasis | Efficient substrate use with less molecular noise | Serial biopsies; longitudinal phospho-profiling |
| Computational proxy | Closed-Loop Performance Index (CLPI) = stability × gain | CLPI > +0.5 SD → optimized adaptation | Quantifies efficiency of feedback learning | Predicts performance retention across cycles | Time-series analysis; machine-learning prediction |
| Validation priority | Systems-level training studies | Athlete or advanced trainee cohorts; 6–8-week duration | Tier 2 – longitudinal performance; Tier 3 – real-time sensor adaptation | Demonstrates emergent self-regulation | Controlled trials with integrated wearables |
| Potential confounders | Sensor delay, data noise, motivation, hydration status | Context-dependent; may distort feedback accuracy | Delayed or false feedback → suboptimal control | Blunted adaptation or instability | Signal filtering; algorithm calibration; controlled hydration |
| H# | Core construct |
Prediction (summary) |
Mechanistic rationale |
Experimental test (design) |
Primary outcomes / falsification criteria |
|---|---|---|---|---|---|
| H1 | Energetic variability → adaptive efficiency | At same external load, signaling diverges with glycogen state: <350 mmol·kg⁻¹ dw → ↑p-AMPK^Thr172 ↑p-ACC^Ser79 ↑PGC-1α; >500 mmol·kg⁻¹ dw → ↑p-p70S6K^Thr389 ↑4E-BP1^Thr37/46. | Substrate state modulates AMP/ATP and NAD⁺/NADH ratios, shifting control between AMPK–SIRT1–PGC-1α and Rheb–mTORC1 pathways. | Randomized crossover HIIT (8×3 min @ 90% VO₂max) under LOW vs HIGH glycogen; biopsies 0/1/3 h. | Condition × Time effect (↑AMPK, ↓mTORC1 in LOW, p < 0.05); Δ < 0.2 SD = falsified. |
| H2 | Threshold regulation of signaling dominance | Crossing energetic threshold (~300 mmol·kg⁻¹ dw; AMP/ATP > 0.03, NAD⁺/NADH > 2.5) flips signaling polarity (↑AMPK / ↓mTORC1). | Glycogen depletion activates AMPK–TSC2–Raptor cascade; substrate repletion re-engages mTORC1. System behaves as bistable molecular switch. | Strength crossover (5×5 @ 85% 1RM) under LOW vs HIGH glycogen; biopsies 0/1/3 h. | LOW: AMPK↑, mTORC1↓; HIGH: inverse. Trivial Δ < 0.2 SD = falsified. |
| H3 | Oscillatory coupling → dual adaptation | Alternating AMPK-dominant endurance and mTORC1-dominant strength (≈48 h cycle) yields dual enhancement (↑CS +15 %, ↑COX +12 %, ↑CSA +5–8 %). | Periodic metabolic oscillation prevents desensitization, aligning catabolic/anabolic phases to maximize net adaptation. | 8-week intervention: oscillatory (TFC microcycle train-low→lift-fed) vs constant-fuel control. | ΣZ > +0.5 SD = validated; loss of dual gains = falsified. |
| H4 | Closed-loop regulation → feedback optimization | Feedback indices (RPE×[La], ΔHRV, Δglucose ± 1.5 mmol L⁻¹ h⁻¹) predict energetic state (r > 0.6) and enable adaptive fueling that stabilizes performance. | Iterative sensing of metabolic stress drives adaptive homeostasis (↓signal amplitude, ↑efficiency). | 6-week closed-loop (CGM + HRV + RPE) vs fixed schedule; monitor Δ1RM, ΔTT, session variability. | ↑Δ1RM (+3–5 %), ↑ΔTT (+2–3 %), ↓CV session quality (p < 0.05) = validated; AUC ≈ 0.5 = falsified. |
| Training Goal | Session Type | Energetic Context (Glycogen / Redox) | Feeding Strategy | Dominant Signaling Pathway | Expected Adaptive Outcome | Monitoring / Control Variable | Safety / Practical Notes |
| Aerobic capacity / mitochondrial biogenesis | Prolonged endurance (HIIT, tempo runs, long intervals) | Low glycogen (<350 mmol·kg⁻¹ dw); NAD⁺/NADH > 2.5; AMP/ATP > 0.03 | Train-low: fasted or CHO-depleted; protein early (0–1 h), CHO delayed (2–3 h) | ↑AMPK / ↑SIRT1–PGC-1α | ↑CS, ↑COX, ↑β-HAD; ↑oxidative efficiency | HRV ↓5–10 %, CGM Δglucose < −1 mmol·L⁻¹·h⁻¹ | Avoid chronic depletion; monitor LEA/RED-S risk |
| Strength / hypertrophy | Resistance or mixed-power sessions (5×5, 8–12RM) | High glycogen (>500 mmol·kg⁻¹ dw); NAD⁺/NADH < 1.8 | Lift-fed: CHO 0.5–1.0 g·kg⁻¹ + EAA 0.3 g·kg⁻¹ pre/post | ↑mTORC1 / ↑p70S6K / ↓AMPK | ↑CSA, ↑1RM, ↑protein synthesis | ΔHRV recovery +5–8 %, RPE ≤7/10 | Match caloric intake to workload; avoid overfeeding days off |
| Concurrent / hybrid training | Endurance + resistance within 24–48 h | Alternating low → high glycogen microcycle | Train-low, lift-fed sequencing | Anti-phase AMPK–mTORC1 oscillation | Dual adaptation (↑oxidative + ↑strength) | AOI > 0.7 (phase coherence) | Maintain 24–48 h separation between opposing sessions (≈48 h when both sessions are high-intensity or recovery markers are unfavorable). |
| Metabolic flexibility / body composition | Mixed metabolic circuit, intervals + moderate-load resistance | Moderate glycogen (~400 mmol·kg⁻¹ dw) | Isoenergetic cycling: moderate CHO, high protein | Balanced AMPK-mTOR equilibrium | ↑Fat oxidation, ↑efficiency, ↓mass gain | ESI ≈ 0, EVI moderate | Ensure micronutrient sufficiency |
| Recovery / adaptive rebound | Active recovery, mobility, rest days | Nutrient-rich, low energy stress | Recover-high: CHO 1.0 g·kg⁻¹ + EAA 0.4 g·kg⁻¹ | ↑mTORC1 / ↓AMPK | ↑Protein synthesis, glycogen resynthesis | CLPI > +0.5 SD | Avoid excess fatigue or underfeeding |
| Monitoring-based adjustment | Ongoing (wearable data) | Context-dependent | CGM + HRV + RPE adaptive loop | Balanced oscillation (feedback optimization) | ↑Adaptive stability, ↓performance variability | Δglucose ±1.5 mmol·L⁻¹·h⁻¹; HRV normalized | Calibrate algorithm weekly; sensor lag compensation |
| Discipline |
Microcycle Structure (5–7 days) |
Energetic Logic / Feeding Pattern |
Expected Adaptive Focus |
| Endurance (Marathon / Triathlon) | Day 1: Long aerobic (train-low) | Day 2: Rest or technique (recover-high) | Day 3: HIIT (train-moderate) | Day 4: Recovery (feed-high) | Day 5: Tempo or progressive long run (train-low) | Day 6–7: Refuel & taper | Alternating low–high glycogen states (Δ ≈ 200 mmol·kg⁻¹ dw). Post–low sessions: delayed CHO (2–3 h), protein early. Post–high sessions: immediate CHO + EAA. | ↑Mitochondrial biogenesis, ↑oxidative efficiency, ↑metabolic flexibility |
| Team Sports (Football / Basketball) | Day 1: Tactical + small-sided games (train-moderate) | Day 2: Speed–power (lift-fed) | Day 3: Aerobic technical (train-low) | Day 4: Rest / active recovery | Day 5: Match-simulation (feed-high) | Day 6–7: Regeneration | Micro-oscillation of glycogen: technical days ≈350 mmol·kg⁻¹, match days >500 mmol·kg⁻¹. Use sleep-low 1×/week. Maintain protein 1.6–1.8 g·kg⁻¹·day⁻¹. | ↑Game endurance, ↑recovery kinetics, stable anabolic–oxidative balance |
| Strength / Power (Weightlifting / CrossFit) | Day 1: Fasted mobility + AMPK activation (short aerobic) | Day 2: Strength session (lift-fed) | Day 3: Rest or low-intensity conditioning | Day 4: Power + accessory lifts (feed-high) | Day 5: Low-glycogen hypertrophy (train-low) | Day 6: Full refuel + recovery | Day 7: Optional deload | Controlled alternation of AMPK–mTOR phases within week. High-CHO days align with strength sessions; low-CHO days with metabolic conditioning. | ↑Hypertrophy efficiency, ↑substrate turnover, ↓training fatigue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
