Submitted:
26 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Research Background
1.2. Our Contributions
2. Related Work
2.1. Information Extraction in Agricultural Meteorological Disasters
2.2. Neural Relation Extraction Techniques
3. Model Design and Implementation
3.1. Overall Model Architecture
3.2. Dual-Path Feature Extraction Module
3.3. Syntactic Enhancement Module
3.4. Feature Denoising Module: Residual Shrinkage Network
3.5. Fusion and Classification Module
4. Experiments and Analysis
4.1. Datasets and Evaluation Metrics
4.2. Experimental Environment and Parameters
4.3. Comparative Experiments and Result Analysis
- R-BERT: A classic BERT-based relation classification model that combines entity information with marker representations for prediction, representing the baseline for pure semantic methods.
- AGGCN: An attention-guided graph convolutional network, representing advanced technology for “soft pruning” on the complete dependency tree; a key baseline for comparison with our model’s structured information processing.
- BiLSTM-CRF: A classic model widely used in NER and sequence labeling tasks, used to compare the effect without using pre-trained models and graph structures [58].
4.4. Ablation Study
- Contribution of GCN: After adding a standard GCN to the BERT baseline, the F1 score slightly increased (+2.74%), demonstrating the preliminary effectiveness of introducing syntactic structure information.
- Contribution of SA-GCN: Adding self-attention pruning (SAG) on top of GCN further improved performance (+3.30%), indicating that dynamically pruning irrelevant nodes in the syntactic graph can effectively reduce structural noise interference, thus aggregating information more precisely.
- Contribution of RSN: Adding the Residual Shrinkage Network (RS) to the model led to a significant performance leap (+2.32%). To verify that this improvement is not due to random chance, we conducted a paired t-test over 5 runs with different random seeds. The results show that our model statistically outperforms the baseline (p-value < 0.05). This strongly proves that feature-level noise is a key bottleneck affecting model performance. The adaptive soft thresholding denoising mechanism of RSN can extremely effectively purify feature representations, greatly enhancing classification accuracy. This validates the synergistic effect of the “dual denoising” architecture.
- Contribution of Interpolation Loss: After replacing the full model’s interpolation loss with a standard cross-entropy loss, performance dropped (-0.17%). This shows that the training strategy of using an auxiliary classifier for regularization can improve the model’s stability and generalization ability, preventing it from overfitting to the noise in the syntactic branch.
4.5. Qualitative Analysis
5. Conclusions and Future Work
Acknowledgments
References
- Qiu, M.; Xie, N.; Ji, L.; Huang, Y. Research on the Construction of Knowledge Graphs for Agricultural Meteorological Disasters: A Review. Chin. J. Agrometeorol. 2024, 45, 1216. [Google Scholar] [CrossRef]
- Qiu, C.; Shen, Q.; Zhang, P.; Li, Y. Cn-MAKG: China Meteorology and Agriculture Knowledge Graph Construction Based on Semi-Structured Data. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS); IEEE: Singapore, 2018; pp. 692–696. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, R. Knowledge Graph of Agricultural Engineering Technology Based on Large Language Model. Displays 2024, 85, 102820. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Yu, L.C.; Wu, X.; Xue, L. Pruning Self-Attention With Local and Syntactic Dependencies for Aspect Sentiment Triplet Extraction. IEEE Trans. Audio Speech Lang. Process. 2025, 33, 2527–2538. [Google Scholar] [CrossRef]
- Bach, N.; Badaskar, S. A Review of Relation Extraction; Technical Report; Carnegie Mellon University: Pittsburgh, PA, USA, 2007. [Google Scholar]
- Bassignana, E.; Plank, B. What Do You Mean by Relation Extraction? A Survey on Datasets and Study on Scientific Relation Classification. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop; Association for Computational Linguistics: Dublin, Ireland, 2022; pp. 67–76. [Google Scholar] [CrossRef]
- Delaunay, J.; Tran, H.T.H.; González-Gallardo, C.E.; Ermakova, L. A Comprehensive Survey of Document-Level Relation Extraction (2016–2023). arXiv 2023, arXiv:2309.16396. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, S.; Huang, L. A Comprehensive Survey on Document-Level Information Extraction. In Proceedings of the Workshop on the Future of Event Detection (FuturED); Association for Computational Linguistics: Bangkok, Thailand, 2024; pp. 58–72. [Google Scholar] [CrossRef]
- Smirnova, A.; Cudré-Mauroux, P. Relation Extraction Using Distant Supervision: A Survey. ACM Comput. Surv. 2018, 51, 1–35. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef]
- Zhao, X.; Deng, Y.; Yang, M.; Wang, Y.; Wang, J. A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers. arXiv 2023, arXiv:2306.02051. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, Y.; Liu, Z.; Fu, J.; Chua, T.S.; Sun, M. Graph Neural Networks with Generated Parameters for Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics: Florence, Italy, 2019; pp. 1331–1339. [Google Scholar] [CrossRef]
- Du, J.; Liu, G.; Gao, J.; Han, T. Graph Neural Network-Based Entity Extraction and Relationship Reasoning in Complex Knowledge Graphs. In Proceedings of the 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML); IEEE: Chengdu, China, 2024; pp. 679–683. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Li, Z. A Survey of Graph Neural Network Methods for Relation Extraction. Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) 2022, Volume 10, 2209–2223. [Google Scholar] [CrossRef]
- Wu, T.; You, X.; Xian, X.; Wang, S. Towards Deep Understanding of Graph Convolutional Networks for Relation Extraction. Data Knowl. Eng. 2024, 149, 102265. [Google Scholar] [CrossRef]
- Li, J.; Feng, S.; Chiu, B. Few-Shot Relation Extraction With Dual Graph Neural Network Interaction. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 14396–14408. [Google Scholar] [CrossRef]
- Zeng, L.; Tong, Y.; Guo, W.; Wang, Y. AgriCHN: A Comprehensive Cross-domain Resource for Chinese Agricultural Named Entity Recognition. arXiv 2025, arXiv:2506.17578. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, C.; Chen, M.; Sun, Z.; Wan, H. Typhoon Disaster State Information Extraction for Chinese Texts. Sci. Rep. 2024, 14, 7925. [Google Scholar] [CrossRef]
- Qiu, M.; Jiang, L.; Xie, N.; Li, M.; Hu, Y. Research on Agricultural Meteorological Disaster Event Extraction Method Based on Character–Word Fusion. Agronomy 2025, 15, 2135. [Google Scholar] [CrossRef]
- Wu, D.; Liu, X.; Zai, S.; Zhang, H. Analysis of Agrometeorological Hazard Based on Knowledge Graph. Agriculture 2024, 14, 1130. [Google Scholar] [CrossRef]
- Efeoglu, S.; Karagoz, P. A Continual Relation Extraction Approach for Knowledge Graph Completeness. arXiv 2024, arXiv:2404.17593. [Google Scholar] [CrossRef]
- Fei, H.; Zhang, Y.; Ren, Y.; Dong, X. A Span-Graph Neural Model for Overlapping Entity Relation Extraction in Biomedical Texts. Bioinformatics 2021, 37, 1581–1589. [Google Scholar] [CrossRef]
- Park, S.; Kim, H. Effective Sentence-Level Relation Extraction Model Using Entity-Centric Dependency Tree. PeerJ Comput. Sci. 2024, 10, e2311. [Google Scholar] [CrossRef]
- Wang, L.; Wu, F.; Liu, X.; Li, J. Relationship Extraction Between Entities with Long Distance Dependencies and Noise Based on Semantic and Syntactic Features. Sci. Rep. 2025, 15, 15750. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar] [CrossRef]
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In Proceedings of the 8th International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020. [Google Scholar]
- He, P.; Liu, X.; Gao, J.; Chen, W. DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Vienna, Austria, 2021. [Google Scholar]
- Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. In Proceedings of the 8th International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020. [Google Scholar]
- Alt, C.; Hübner, M.; Hennig, L. Fine-Tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics: Florence, Italy, 2019; pp. 1388–1398. [Google Scholar] [CrossRef]
- Wang, X.; Gao, T.; Zhu, Z.; Zhang, Z.; Liu, Z.; Li, J.; Tang, J. KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. Assoc. Comput. Linguist. 2021, 9, 176–194. [Google Scholar] [CrossRef]
- Yamada, I.; Asai, A.; Shindo, H.; Takeda, H.; Matsumoto, Y. LUKE: Deep Contextualized Entity Representations with Entity-Aware Self-Attention. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics: Online, 2020; pp. 6442–6454. [Google Scholar] [CrossRef]
- Joshi, M.; Chen, D.; Liu, Y.; Weld, D.S.; Zettlemoyer, L.; Levy, O. SpanBERT: Improving Pre-training by Representing and Predicting Spans. Assoc. Comput. Linguist. 2020, 8, 64–77. [Google Scholar] [CrossRef]
- Lin, Y.; Xiao, H.; Liu, J. Knowledge-Enhanced Relation Extraction Dataset. arXiv 2022, arXiv:2210.11231. [Google Scholar] [CrossRef]
- Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The Long-Document Transformer. arXiv 2020, arXiv:2004.05150. [Google Scholar] [CrossRef]
- Swarup, A.; Bhandarkar, A.; Dizon-Paradis, O.P.; Pan, S.J.; Asadizanjani, N. Maximizing Relation Extraction Potential: A Data-Centric Study to Unveil Challenges and Opportunities. IEEE Access 2024, 12, 167655–167682. [Google Scholar] [CrossRef]
- Sahu, S.K.; Thomas, D.; Chiu, B.; Sengupta, N. Relation Extraction with Self-determined Graph Convolutional Network. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ‘20); ACM: New York, NY, USA, 2020; pp. 3075–3082. [Google Scholar] [CrossRef]
- Carbonell, M.; Riba, P.; Villegas, M.; Fornés, A.; Lladós, J. Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR); IEEE: Milan, Italy, 2021; pp. 9622–9627. [Google Scholar] [CrossRef]
- Blum, M.; Nolano, G.; Ell, B.; Cimiano, P. Investigating the Impact of Different Graph Representations for Relation Extraction with Graph Neural Networks. In Proceedings of the Workshop on Deep Learning and Linked Data (DLnLD) @ LREC-COLING 2024, 2024; ELRA and ICCL: Torino, Italy; pp. 1–13. Available online: https://aclanthology.org/2024.dlnld-1.1.
- Yan, Z.; Yang, S.; Liu, W.; Tu, K. Joint Entity and Relation Extraction with Span Pruning and Hypergraph Neural Networks. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics: Singapore, 2023; pp. 7512–7526. [Google Scholar] [CrossRef]
- Mandya, A.; Bollegala, D.; Coenen, F. Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction. In Proceedings of the 28th International Conference on Computational Linguistics; International Committee on Computational Linguistics: Barcelona, Spain (Online), 2020; pp. 6424–6435. [Google Scholar] [CrossRef]
- Nan, G.; Guo, Z.; Sekulić, I.; Lu, W. Reasoning with Latent Structure Refinement for Document-Level Relation Extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL); Association for Computational Linguistics: Online, 2020; pp. 1546–1557. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Yang, Y.; Wang, J. Location-Enhanced Syntactic Knowledge for Biomedical Relation Extraction. J. Biomed. Inform. 2024, 156, 104676. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bai, X. Entity-Aware Self-Attention and Contextualized GCN for Enhanced Relation Extraction in Long Sentences. arXiv 2024, arXiv:2409.13755. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, P.; Manning, C.D. Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), Brussels, Belgium, 2018; pp. 2205–2215. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Lu, W. Attention Guided Graph Convolutional Networks for Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics: Florence, Italy, 2019; pp. 241–251. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Zhang, Y. New Deep Learning Network (Deep Residual Shrinkage Network) Is Applied for Lithology Identification to Search for the Reservoir of CO2 Geological Storage. Energy Fuels 2024, 38, 2200–2211. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Wu, J.; Li, Y.; Li, W. Deep Residual Shrinkage Relation Network for Anomaly Detection of Rotating Machines. J. Manuf. Syst. 2022, 65, 579–590. [Google Scholar] [CrossRef]
- Zheng, C.; Feng, J.; Fu, Z.; Cai, Y.; Li, Q.; Wang, T. Multimodal Relation Extraction with Efficient Graph Alignment. In Proceedings of the 29th ACM International Conference on Multimedia (MM ‘21); ACM: New York, NY, USA, 2021; pp. 5298–5306. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems 30 (NIPS 2017); Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 5998–6008. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 2015. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics: Lisbon, Portugal, 2015; pp. 1412–1421. [Google Scholar] [CrossRef]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France, 2015; PMLR; Volume 37, pp. 2048–2057. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Dong, L.; Lapata, M. Long Short-Term Memory-Networks for Machine Reading. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics: Austin, TX, USA, 2016; pp. 551–561. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics: Doha, Qatar, 2014; pp. 1724–1734. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, K.; Ma, T.; Huang, H. Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. In Proceedings of the AAAI Conference on Artificial Intelligence; AAAI Press: Palo Alto, CA, USA, 2021; Volume 35, pp. 14612–14620. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, K.; Huang, K.; Xu, T.; Li, X.; Liu, Y. Document-Level Relation Extraction with Two-Stage Dynamic Graph Attention Networks. Knowl.-Based Syst. 2023, 268, 110428. [Google Scholar] [CrossRef]





| Dataset | Language | Classes | Train | Test | Validation | Main Features |
|---|---|---|---|---|---|---|
| Agri-Disaster | Chinese | 21 | 8,997 | 1,126 | 1124 | Domain-specific, complex sentence |
| DUIE 2.0 | Chinese | 49 | 13,669 | 3,000 | 2996 | General domain, large-scale |
| Parameter Item | Parameter Value |
|---|---|
| Operating System | Microsoft Windows 10 IoT |
| CPU | Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz |
| GPU | NVIDIA RTX A6000 |
| Memory | 128GB |
| Programming Env | Python 3.11 + PyTorch 2.1.1 |
| Model | Agri-Disaster | DUIE 2.0 | ||||
|---|---|---|---|---|---|---|
| F1 (%) | R (%) | P (%) | F1 (%) | R (%) | P (%) | |
| R-BERT | 84.48 | 85.92 | 83.10 | 91.86 | 90.72 | 90.08 |
| BERT-LSTM | 91.28 | 90.57 | 90.47 | 90.28 | 89.57 | 89.47 |
| AGGCN | 91.87 | 91.32 | 92.59 | 91.87 | 91.32 | 92.59 |
| Ours | 92.84 | 91.02 | 90.05 | 91.51 | 91.35 | 90.97 |
| Model Variant | F1 (%) | ∆ |
|---|---|---|
| BERT (Baseline) | 84.48 | - |
| + GCN (Introduce syntactic graph) | 87.22 | +2.74 |
| +SA-GCN (Pruning) | 90.52 | +3.3 |
| + RSN (Full Model) | 92.84 | +2.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
