Submitted:
26 November 2023
Posted:
27 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Related Work
3. Methodology
3.1. Graph-Based Neural Networks
3.2. Syntactic Attention Layer
3.3. Linear Layer
3.4. Linear Combination Layer
3.5. SDANNs for Relation Extraction
4. Experiments
4.1. Experimental Framework
4.2. Results on Cross-Sentence n-ary Relation Extraction
4.3. Results on Sentence-level Relation Extraction
4.4. Results on Sentence-level Relation Extraction
4.5. Further Results
Ablation Study.
Performance with Pruned Trees.
Performance against Sentence Length.
Performance against Training Data Size.
5. Conclusion and Future Directions
References
- Quirk, C.; Poon, H. Distant Supervision for Relation Extraction beyond the Sentence Boundary. Proc. of EACL, 2017.
- Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; Manning, C.D. Position-aware Attention and Supervised Data Improve Slot Filling. Proc. of EMNLP, 2017.
- Yu, M.; Yin, W.; Hasan, K.S.; dos Santos, C.N.; Xiang, B.; Zhou, B. Improved Neural Relation Detection for Knowledge Base Question Answering. Proc. of ACL, 2017.
- Fei, H.; Li, J.; Wu, S.; Li, C.; Ji, D.; Li, F. Global Inference with Explicit Syntactic and Discourse Structures for Dialogue-Level Relation Extraction. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, 2022, pp. 4082–4088.
- Wu, S.; Fei, H.; Ren, Y.; Ji, D.; Li, J. Learn from Syntax: Improving Pair-wise Aspect and Opinion Terms Extraction with Rich Syntactic Knowledge. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021, pp. 3957–3963.
- Xiang, C.; Zhang, J.; Li, F.; Fei, H.; Ji, D. A semantic and syntactic enhanced neural model for financial sentiment analysis. Information Processing & Management 2022, 59, 102943.
- Fei, H.; Zhang, Y.; Ren, Y.; Ji, D. Latent Emotion Memory for Multi-Label Emotion Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 7692–7699.
- Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for Target-Dependent Sentiment Classification. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016, pp. 3298–3307.
- Wu, S.; Fei, H.; Li, F.; Zhang, M.; Liu, Y.; Teng, C.; Ji, D. Mastering the Explicit Opinion-Role Interaction: Syntax-Aided Neural Transition System for Unified Opinion Role Labeling. Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022, pp. 11513–11521.
- Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive Attention Networks for Aspect-Level Sentiment Classification. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 4068–4074.
- Fei, H.; Zhang, M.; Ji, D. Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 7014–7026.
- Chen, P.; Sun, Z.; Bing, L.; Yang, W. Recurrent attention network on memory for aspect sentiment analysis. Proceedings of the 2017 conference on empirical methods in natural language processing, 2017, pp. 452–461.
- Fei, H.; Zhang, M.; Li, B.; Ji, D. End-to-end Semantic Role Labeling with Neural Transition-based Model. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 12803–12811.
- Zhang, M.; Qian, T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis. Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), 2020, pp. 3540–3549.
- Wu, S.; Fei, H.; Ren, Y.; Li, B.; Li, F.; Ji, D. High-Order Pair-Wise Aspect and Opinion Terms Extraction With Edge-Enhanced Syntactic Graph Convolution. IEEE ACM Trans. Audio Speech Lang. Process. 2021, 29, 2396–2406. [CrossRef]
- Chen, C.; Teng, Z.; Zhang, Y. Inducing target-specific latent structures for aspect sentiment classification. Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), 2020, pp. 5596–5607.
- Fei, H.; Wu, S.; Ren, Y.; Zhang, M. Matching Structure for Dual Learning. Proceedings of the International Conference on Machine Learning, ICML, 2022, pp. 6373–6391.
- Huang, L.; Sun, X.; Li, S.; Zhang, L.; Wang, H. Syntax-aware graph attention network for aspect-level sentiment classification. Proceedings of the 28th international conference on computational linguistics, 2020, pp. 799–810.
- Fei, H.; Li, F.; Li, B.; Ji, D. Encoder-Decoder Based Unified Semantic Role Labeling with Label-Aware Syntax. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 12794–12802.
- Fei, H.; Ren, Y.; Zhang, Y.; Ji, D. Nonautoregressive Encoder-Decoder Neural Framework for End-to-End Aspect-Based Sentiment Triplet Extraction. IEEE Transactions on Neural Networks and Learning Systems 2023, 34, 5544–5556. [CrossRef] [PubMed]
- Hou, X.; Huang, J.; Wang, G.; He, X.; Zhou, B. Selective attention based graph convolutional networks for aspect-level sentiment classification. arXiv preprint arXiv:1910.10857 2019.
- Fei, H.; Li, J.; Ren, Y.; Zhang, M.; Ji, D. Making Decision like Human: Joint Aspect Category Sentiment Analysis and Rating Prediction with Fine-to-Coarse Reasoning. Proceedings of the ACM Web Conference 2022, WWW, 2022, pp. 3042–3051.
- Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation Classification via Convolutional Deep Neural Network. Proc. of COLING, 2014.
- Wang, L.; Cao, Z.; de Melo, G.; Liu, Z. Relation Classification via Multi-Level Attention CNNs. Proc. of ACL, 2016.
- Bunescu, R.C.; Mooney, R.J. A Shortest Path Dependency Kernel for Relation Extraction. Proc. of EMNLP, 2005.
- Peng, N.; Poon, H.; Quirk, C.; Toutanova, K.; tau Yih, W. Cross-Sentence N-ary Relation Extraction with Graph LSTMs. Transactions of the Association for Computational Linguistics 2017, 5, 101–115. [CrossRef]
- Xu, K.; Feng, Y.; Huang, S.; Zhao, D. Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling. Proc. of EMNLP, 2015.
- Fei, H.; Wu, S.; Li, J.; Li, B.; Li, F.; Qin, L.; Zhang, M.; Zhang, M.; Chua, T.S. LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model. Proceedings of the Advances in Neural Information Processing Systems, NeurIPS 2022, 2022, pp. 15460–15475.
- Xu, Y.; Mou, L.; Li, G.; Chen, Y.; Peng, H.; Jin, Z. Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths. Proc. of EMNLP, 2015.
- Miwa, M.; Bansal, M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. Proc. of ACL, 2016.
- Zhang, Y.; Qi, P.; Manning, C.D. Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. Proc. of EMNLP, 2018.
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. Proc. of ICLR, 2017.
- Li, J.; Fei, H.; Liu, J.; Wu, S.; Zhang, M.; Teng, C.; Ji, D.; Li, F. Unified Named Entity Recognition as Word-Word Relation Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 10965–10973.
- Fei, H.; Ren, Y.; Zhang, Y.; Ji, D.; Liang, X. Enriching contextualized language model from knowledge graph for biomedical information extraction. Briefings in Bioinformatics 2021, 22. [CrossRef] [PubMed]
- Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; Xu, K. Adaptive recursive neural network for target-dependent twitter sentiment classification. Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: Short papers), 2014, Vol. 2, pp. 49–54.
- Fei, H.; Ren, Y.; Ji, D. Boundaries and edges rethinking: An end-to-end neural model for overlapping entity relation extraction. Information Processing & Management 2020, 57, 102311.
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. Proc. of NeurIPS, 2017.
- Fei, H.; Ji, D.; Li, B.; Liu, Y.; Ren, Y.; Li, F. Rethinking Boundaries: End-To-End Recognition of Discontinuous Mentions with Pointer Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 12785–12793.
- Mukherjee, R.; Shetty, S.; Chattopadhyay, S.; Maji, S.; Datta, S.; Goyal, P. Reproducibility, replicability and beyond: Assessing production readiness of aspect based sentiment analysis in the wild. Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28–April 1, 2021, Proceedings, Part II 43. Springer, 2021, pp. 92–106.
- Fei, H.; Chua, T.; Li, C.; Ji, D.; Zhang, M.; Ren, Y. On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model, Data, and Training. ACM Transactions on Information Systems 2023, 41, 50:1–50:32. [CrossRef]
- Zhuang, L.; Fei, H.; Hu, P. Knowledge-enhanced event relation extraction via event ontology prompt. Inf. Fusion 2023, 100, 101919. [CrossRef]
- Zhang, C.; Li, Q.; Song, D. Aspect-based sentiment classification with aspect-specific graph convolutional networks. arXiv preprint arXiv:1909.03477 2019.
- Fei, H.; Wu, S.; Ren, Y.; Li, F.; Ji, D. Better Combine Them Together! Integrating Syntactic Constituency and Dependency Representations for Semantic Role Labeling. Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, 2021, pp. 549–559.
- Chen, X.; Sun, C.; Wang, J.; Li, S.; Si, L.; Zhang, M.; Zhou, G. Aspect sentiment classification with document-level sentiment preference modeling. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 3667–3677.
- Li, J.; Xu, K.; Li, F.; Fei, H.; Ren, Y.; Ji, D. MRN: A Locally and Globally Mention-Based Reasoning Network for Document-Level Relation Extraction. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 1359–1370.
- Liu, J.; Fei, H.; Li, F.; Li, J.; Li, B.; Zhao, L.; Teng, C.; Ji, D. TKDP: Threefold Knowledge-enriched Deep Prompt Tuning for Few-shot Named Entity Recognition. CoRR 2023, abs/2306.03974.
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; AL-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; others. Semeval-2016 task 5: Aspect based sentiment analysis. ProWorkshop on Semantic Evaluation (SemEval-2016). Association for Computational Linguistics, 2016, pp. 19–30.
- Fei, H.; Li, F.; Li, C.; Wu, S.; Li, J.; Ji, D. Inheriting the Wisdom of Predecessors: A Multiplex Cascade Framework for Unified Aspect-based Sentiment Analysis. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, 2022, pp. 4096–4103.
- Wang, F.; Li, F.; Fei, H.; Li, J.; Wu, S.; Su, F.; Shi, W.; Ji, D.; Cai, B. Entity-centered Cross-document Relation Extraction. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022, pp. 9871–9881.
- Fei, H.; Ren, Y.; Ji, D. Retrofitting Structure-aware Transformer Language Model for End Tasks. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020, pp. 2151–2161.
- Jia, Y.; Wang, Y.; Zan, H.; Xie, Q. Syntactic information and multiple semantic segments for aspect-based sentiment classification. International Journal of Asian Language Processing 2021, 31, 2250006. [CrossRef]
- Cao, H.; Li, J.; Su, F.; Li, F.; Fei, H.; Wu, S.; Li, B.; Zhao, L.; Ji, D. OneEE: A One-Stage Framework for Fast Overlapping and Nested Event Extraction. Proceedings of the 29th International Conference on Computational Linguistics, 2022, pp. 1953–1964.
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. Proc. of CVPR, 2017.
- Guo, Z.; Zhang, Y.; Teng, Z.; Lu, W. Densely Connected Graph Convolutional Networks for Graph-to-Sequence Learning. Transactions of the Association of Computational Linguistics 2019. [CrossRef]
- Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. Proc. of ACL, 2015.
- Zelenko, D.; Aone, C.; Richardella, A. Kernel Methods for Relation Extraction. Proc. of EMNLP, 2002.
- McDonald, R.T.; Pereira, F.; Kulick, S.; Winters, R.S.; Jin, Y.; White, P.S. Simple Algorithms for Complex Relation Extraction with Applications to Biomedical IE. Proc. of ACL, 2005.
- Mintz, M.; Bills, S.; Snow, R.; Jurafsky, D. Distant supervision for relation extraction without labeled data. Proc. of ACL, 2009.
- Nguyen, T.H.; Grishman, R. Relation Extraction: Perspective from Convolutional Neural Networks. Proc. of VS@NAACL-HLT, 2015.
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification. Proc. of ACL, 2016.
- Fei, H.; Liu, Q.; Zhang, M.; Zhang, M.; Chua, T.S. Scene Graph as Pivoting: Inference-time Image-free Unsupervised Multimodal Machine Translation with Visual Scene Hallucination. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 5980–5994.
- Vu, N.T.; Adel, H.; Gupta, P.; Schütze, H. Combining Recurrent and Convolutional Neural Networks for Relation Classification. Proc. of NAACL-HLT, 2016.
- Verga, P.; Strubell, E.; McCallum, A. Simultaneously Self-Attending to All Mentions for Full-Abstract Biological Relation Extraction. Proc. of NAACL-HLT, 2018.
- Song, L.; Zhang, Y.; Wang, Z.; Gildea, D. N-ary Relation Extraction using Graph State LSTM. Proc. of EMNLP, 2018.
- Song, L.; Zhang, Y.; Wang, Z.; Gildea, D. A Graph-to-Sequence Model for AMR-to-Text Generation. Proc. of ACL, 2018.
- Fei, H.; Zhang, M.; Zhang, M.; Chua, T.S. Constructing Code-mixed Universal Dependency Forest for Unbiased Cross-lingual Relation Extraction. Findings of the Association for Computational Linguistics: ACL 2023, 2023, pp. 9395–9408.
- Fei, H.; Ren, Y.; Ji, D. Mimic and Conquer: Heterogeneous Tree Structure Distillation for Syntactic NLP. Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 183–193.
- Liu, Y.; Wei, F.; Li, S.; Ji, H.; Zhou, M.; Wang, H. A Dependency-Based Neural Network for Relation Classification. Proc. of ACL, 2015.
- Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. Proc. of IJCNN, 2005.
- Bruna, J. Spectral Networks and Deep Locally Connected Networks on Graphs. Proc. of ICLR, 2014.
- Henaff, M.; Bruna, J.; LeCun, Y. Deep Convolutional Networks on Graph-Structured Data. arXiv preprint 2015.
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. Proc. of NeurIPS, 2016.
- Fei, H.; Ren, Y.; Ji, D. Improving Text Understanding via Deep Syntax-Semantics Communication. Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 84–93.
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. Proc. of ICLR, 2018.
- Marcheggiani, D.; Titov, I. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. Proc. of EMNLP, 2017.
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.C.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Proc. of ICML, 2015.
- Cheng, J.; Dong, L.; Lapata, M. Long Short-Term Memory-Networks for Machine Reading. Proc. of EMNLP, 2016.
- Hendrickx, I.; Kim, S.N.; Kozareva, Z.; Nakov, P.; Séaghdha, D.Ó.; Padó, S.; Pennacchiotti, M.; Romano, L.; Szpakowicz, S. SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations between Pairs of Nominals. SemEval@ACL, 2010.
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. Proc. of EMNLP, 2014.
- Rink, B.; Harabagiu, S.M. UTD: Classifying Semantic Relations by Combining Lexical and Semantic Resources. SemEval@ACL, 2010.
- Bastings, J.; Titov, I.; Aziz, W.; Marcheggiani, D.; Sima’an, K. Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. EMNLP, 2017.
| Model | Binary-class | Multi-class | ||||
|---|---|---|---|---|---|---|
| T | B | T | B | |||
| Single | Cross | Single | Cross | Cross | Cross | |
| Feature-Based (Quirk and Poon 2017) | 74.7 | 77.7 | 73.9 | 75.2 | - | - |
| SPTree (Miwa and Bansal 2016) | - | - | 75.9 | 75.9 | - | - |
| Graph LSTM-EMBED (Peng et al. 2017) | 76.5 | 80.6 | 74.3 | 76.5 | - | - |
| Graph LSTM-FULL (Peng et al. 2017) | 77.9 | 80.7 | 75.6 | 76.7 | - | - |
| + multi-task | - | 82.0 | - | 78.5 | - | - |
| Bidir DAG LSTM (Song et al. 2018a) | 75.6 | 77.3 | 76.9 | 76.4 | 51.7 | 50.7 |
| GS GLSTM (Song et al. 2018a) | 80.3 | 83.2 | 83.5 | 83.6 | 71.7 | 71.7 |
| GCN (Full Tree) (Zhang et al. 2018) | 84.3 | 84.8 | 84.2 | 83.6 | 77.5 | 74.3 |
| GCN (K=0) (Zhang et al. 2018) | 85.8 | 85.8 | 82.8 | 82.7 | 75.6 | 72.3 |
| GCN (K=1) (Zhang et al. 2018) | 85.4 | 85.7 | 83.5 | 83.4 | 78.1 | 73.6 |
| GCN (K=2) (Zhang et al. 2018) | 84.7 | 85.0 | 83.8 | 83.7 | 77.9 | 73.1 |
| SDANN (ours) | 87.1 | 87.0 | 85.2 | 85.6 | 79.7 | 77.4 |
| Model | P | R | F1 |
|---|---|---|---|
| LR (Zhang et al. 2017) | 73.5 | 49.9 | 59.4 |
| SDP-LSTM (Xu et al. 2015)* | 66.3 | 52.7 | 58.7 |
| Tree-LSTM (Tai et al. 2015)** | 66.0 | 59.2 | 62.4 |
| PA-LSTM (Zhang et al. 2017) | 65.7 | 64.5 | 65.1 |
| GCN (Zhang et al. 2018) | 69.8 | 59.0 | 64.0 |
| C-GCN (Zhang et al. 2018) | 69.9 | 63.3 | 66.4 |
| SDANN (ours) | 69.9 | 60.9 | 65.1 |
| C-SDANN (ours) | 73.1 | 64.2 | 69.0 |
| Model | F1 | |||
|---|---|---|---|---|
| SVM (Rink and Harabagiu 2010) | 82.2 | |||
| SDP-LSTM (Xu et al. 2015) | 83.7 | |||
| SPTree (Miwa and Bansal 2016) | 84.4 | |||
| PA-LSTM (Zhang et al. 2017) | 82.7 | |||
| C-GCN (Zhang et al. 2018) | 84.8 | |||
| C-SDANN (ours) | 85.7 |
| Model | F1 | |||
|---|---|---|---|---|
| SDANN (contextualized) | 69.0 | |||
| – Attention-guided layer | 67.1 | |||
| – Densely connected layer | 67.3 | |||
| – Both attention and densely connected layers | 66.7 | |||
| – Feed-Forward layer | 67.8 |
| Model | F1 | |||
|---|---|---|---|---|
| SDANN (Full tree structure) | 69.0 | |||
| SDANN (Pruning level K=2) | 67.5 | |||
| SDANN (Pruning level K=1) | 67.9 | |||
| SDANN (Pruning level K=0) | 67.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).