Submitted:
24 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. At the Beginning
2. The Revolution of the 1980s
3. Evidence in Support of Lactate as the Only Triose end-Product of Glycolysis
4. The roles of MCT and mLDH in Mitochondrial Lactate Metabolism
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Holmes, EG; Holmes, BE. Contributions to the study of brain metabolism. II. Carbohydrate metabolism. Biochem. J. 2025, 199(5), 836–39. [Google Scholar] [CrossRef]
- Holmes, EG; Holmes, BE. Contributions to the study of brain metabolism. III. Carbohydrate metabolism relationship of glycogen and lactic acid. Biochem. J. 1926, 20(6), 1196–203. [Google Scholar] [CrossRef]
- Holmes, EG; Holmes, B E. Contributions to the study of brain metabolism. IV. Carbohydrate metabolism of the brain tissue of depancreatised cats. Biochem. J. 1927, 21(2), 412–18. [Google Scholar] [CrossRef] [PubMed]
- Ashford, CA; Holmes, EG. Contributions to the study of brain metabolism. V. Role of phosphates in lactic acid production. Biochem. J. 1929, 23(4), 748–59. [Google Scholar] [CrossRef]
- Holmes, EG. Oxidations in central and peripheral nervous tissue. Biochem. J. 1930, 24(4), 914–25. [Google Scholar] [CrossRef]
- Holmes, EG; Ashford, CA. Lactic acid oxidation in brain with reference to the “Meyerfof cycle.”. Biochem. J. 1930:249, 4, 1119–27. [Google Scholar] [CrossRef]
- Holmes, EG. The metabolism of brain and nerve. Ann. Rev. Biochem. 1932:1, 487–506. [Google Scholar] [CrossRef]
- Holmes, EG. The relation between carbohydrate metabolism and the function of the grey matter of the central nervous system. Biochem. J. 1933, 27(2), 523–36. [Google Scholar] [PubMed]
- Schurr, A. Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front. Neurosci. 2014, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H. A.; Johnson, W. A. The role of citric acid in intermediary metabolism in animal tissue. Enzymologia 1937, 4, 148–56. [Google Scholar]
- Brooks, GA. “Lactate: glycolytic product and oxidative substrate during sustained exercise in mammals – the “lactate shuttle” in Comparative Physiology and Biochemistry: Current Topics and Trends, Vol. A. Respiration-Metabolism–Circulation, ed R. Gilles (Berlin: Springer-Verlag), 208–218.
- Schurr, A; West, CA; Rigor, BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 1988, 240(4857), 1326–8. [Google Scholar] [CrossRef]
- Fox, PT; Raichle, ME; Mintun, MA; Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988, 241(4864), 462–4. [Google Scholar] [CrossRef] [PubMed]
- Barros, LF. Metabolic signaling by lactate in the brain. Trends in neurosciences 2013, 36(7), 396–404. [Google Scholar] [CrossRef]
- Proia, P; Di Liegro, CM; Schiera, G; Fricano, A; Di Liegro, I. Lactate as a Metabolite and a Regulator in the Central Nervous System. International Journal of Molecular Sciences 2016, 17(9), 1450. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P; Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018, 19, 235–49. [Google Scholar] [CrossRef] [PubMed]
- Cai, M; Wang, H; Song, H; Yang, R; Wang, L; Xue, X; Sun, W; Hu, J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front. Nutr. 2022, 9, 800901. [Google Scholar] [CrossRef]
- Wu, A; Lee, D; Xiong, W.-C. Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases. Internatl. J. Molec. Sci,. 2023, 2023:24(17), 13398. [Google Scholar] [CrossRef]
- Zhu, X; Chen, W; Pinho, RA; Thirupathi, A. Lactate-induced metabolic signaling is the potential mechanism for reshaping the brain function - role of physical exercise. Front. Endocrinol. 2025, 16, 1598419. [Google Scholar] [CrossRef]
- 13.1: Glycolysis - Biology LibreTexts.
- Chaudhry, R; Varacallo, MA. Biochemistry, Glycolysis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island (FL), 8 Aug 2023. [Google Scholar] [PubMed]
- Kierans, SJ; Taylor, CT. Glycolysis: A multifaceted metabolic pathway and signaling hub. J. Biol. Chem. 2024, 300(11), 107906. [Google Scholar] [CrossRef]
- Fuentes-Lemus, E; Usgame, K; Fierro, A; López-Alarcón, C. Enzymes of glycolysis and the pentose phosphate pathway as targets of oxidants: Role of redox reactions on the carbohydrate catabolism. Redox Biochemistry and Chemistry 2025:11, 100049. [Google Scholar] [CrossRef]
- Rogatzki, MJ; Ferguson, BS; Goodwin, ML; Gladden, LB. Lactate is always the end product of glycolysis. Front. Neurosci. 2015, 9:22. [Google Scholar] [CrossRef]
- Schurr, A. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue. Front. Neurosci. 2018, 12, 700. [Google Scholar] [CrossRef]
- Schurr, A; Passarella, S. Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology. Metabolites 2022, 2022:12(1), 72. [Google Scholar] [CrossRef]
- Brooks, GA; Curl, CC; Leija, RG; Osmond, AD; Duong, JJ; Arevalo, JA. Tracing the lactate shuttle to the mitochondrial reticulum. Exp. Mol. Med. 2022, 54(9), 1332–47. [Google Scholar] [CrossRef]
- Schurr, A. How the ‘Aerobic/Anaerobic Glycolysis’ Meme Formed a ‘Habit of Mind’ Which Impedes Progress in the Field of Brain Energy Metabolism. Internatl. J. Molec. Sci. 2024, 25(3), 1433. [Google Scholar] [CrossRef]
- Passarella, S. Revisiting Concepts of Mitochondrial Transport and Energy Metabolism in Health and Cancer. Acad. Biol. 2025, 3(4). [Google Scholar] [CrossRef]
- Park, J; Rubin, S; Xu, YF; Amador-Noguez, D; Fan, J; Shlomi, T; Rabinowitz, J. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat Chem Biol 2016, 12, 482–9. [Google Scholar] [CrossRef]
- Chen, J; Zaidi, M; Chaudhary, J; Erfani, Z; Al Nemri, S; Plautz, EJ; Wen, X; Seeley, EH; Bartnik-Olson, BL; Corbin, IR; Park, JM. Comparative Evaluation of Hyperpolarized [13C] pyruvate and [13C] lactate for Imaging Neuronal and Glioma Metabolism. ACS sensors 2025. [Google Scholar] [CrossRef] [PubMed]
- McNair, LF; Kornfelt, R; Walls, AB; Andersen, JV; Aldana, BI; Nissen, JD; Schousboe, A; Waagepetersen, HS. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates. Neurochem. Res. 2017, 42(3), 810–26. [Google Scholar] [CrossRef] [PubMed]
- Yellen, G. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J. Cell Biol. 2018, 217(7), 2235–46. [Google Scholar] [CrossRef] [PubMed]
- Jang, C; Chen, L; Rabinowitz, JD. Metabolomics and isotope tracing. Cell 2018, 3173(4), 822–37. [Google Scholar] [CrossRef] [PubMed]
- Casson, RJ; Chidlow, G; Crowston, JG; Williams, PA; Wood, JP. Retinal energy metabolism in health and glaucoma. Progress in retinal and eye research 2021, 81, 100881. [Google Scholar] [CrossRef]
- Westi, EW; Jakobsen, E; Voss, CM; Bak, LK; Pinborg, LH; Aldana, BI; Andersen, JV. Divergent cellular energetics, glutamate metabolism, and mitochondrial function between human and mouse cerebral cortex. Molec. Neurobio 2022, 59, 7495–512. [Google Scholar] [CrossRef]
- Rae, CD; Baur, JA; Borges, K; Dienel, G; Díaz-García, CM; Douglass, SR; Drew, K; Duarte, JM; Duran, J; Kann, O; Kristian, T. Brain energy metabolism: A roadmap for future research. J. Neurochem. 2024, 168, 910–54. [Google Scholar] [CrossRef] [PubMed]
- Margolis, H. Paradigms and Barriers: How Habits of Mind Govern Scientific Beliefs; The University of Chicago Press: Chicago and London, 1993. [Google Scholar]
- Schurr, A. The Feud over Lactate and Its Role in Brain Energy Metabolism: An Unnecessary Burden on Research and the Scientists Who Practice It. Internl. J. Molec. Sci. 2025, 26(9), 4429. [Google Scholar] [CrossRef] [PubMed]
- Brooks, GA; Dubouchaud, H; Brown, M; Sicurello, JP; Butz, CE. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc. Nat. Acad. Sci. 1999, 96(3), 1129–34. [Google Scholar] [CrossRef]
- Schurr, A; Payne, R S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study. Neuroscience 2007, 147(3), 613–9. [Google Scholar] [CrossRef]
- Hashimoto, T; Hussien, R; Cho, HS; Kaufer, D; Brooks, GA. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PloS 2008, 3(8), e2915. [Google Scholar] [CrossRef]
- Passarella, S; Paventi, G; Pizzuto, R. The mitochondrial L-lactate dehydrogenase affair. Front. Neurosci. 2014, 8, 407. [Google Scholar] [CrossRef]
- Passarella, S; Schurr, A. l-Lactate transport and metabolism in mitochondria of Hep G2 cells—The Cori cycle revisited. Front. Oncol. 2018, 8, 120. [Google Scholar] [CrossRef]
- Young, A; Oldford, C; Mailloux, RJ. Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox biol. 2020, 28, 101339. [Google Scholar] [CrossRef] [PubMed]
- Glancy, B; Kane, DA; Kavazis, AN; Goodwin, ML; Willis, WT; Gladden, LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J. Physiol. 2021, 599(3), 863–88. [Google Scholar] [CrossRef]
- Leija, RG; Arevalo, JA; Xing, D; Vázquez-Medina, JP; Brooks, GA. The mitochondrial lactate oxidation complex: endpoint for carbohydrate carbon disposal. Am. J. Physiol-Endocrinol. Metab. 2025, 2025:328(1), E126-36. [Google Scholar] [CrossRef]
- Cai, X; Ng, CP; Jones, O; Fung, TS; Ryu, KW; Li, D; Thompson, CB. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Molec. cell 2023, 2023:83(21), 3904–20. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y; Wilson, GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem. 1997, 69(4), 1484–90. [Google Scholar] [CrossRef]
- Schurr, A; Miller, JJ; Payne, RS; Rigor, BM. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J. Neurosci. 1999, 19(1), 34–9. [Google Scholar] [CrossRef]
- Bouzier-Sore, AK; Voisin, P; Canioni, P; Magistretti, PJ; Pellerin, L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J. Cereb. Blood Flow Metab 2003, 23(11), 1298–306. [Google Scholar] [CrossRef]
- Smith, D; Pernet, A; Hallett, WA; Bingham, E; Marsden, PK; Amiel, SA. Lactate: a preferred fuel for human brain metabolism in vivo. J. Cereb. Blood Flow Metab. 2003, 23(6), 658–64. [Google Scholar] [CrossRef] [PubMed]
- Schurr, A. Lactate: the ultimate cerebral oxidative energy substrate? J. Cereb. Blood Flow Metab. 2006, 26(1), 142–52. [Google Scholar] [CrossRef]
- Van Hall, G; Stømstad, M; Rasmussen, P; Jans, Ø; Zaar, M; Gam, C; Quistorff, B; Secher, NH; Nielsen, HB. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 2009, 29(6), 1121–29. [Google Scholar] [CrossRef]
- Chen, YJ; Mahieu, NG; Huang, X; Singh, M; Crawford, PA; Johnson, SL; Gross, RW; Schaefer, J; Patti, GJ. Lactate metabolism is associated with mammalian mitochondria. Nature Chem. Biol. 2016, 12(11), 937–43. [Google Scholar] [CrossRef]
- Hui, S; Ghergurovich, JM; Morscher, RJ; Jang, C; Teng, X; Lu, W; Esparza, LA; Reya, T; Zhan, L; Yanxiang Guo, J; White, E. Glucose feeds the TCA cycle via circulating lactate. Nature 2017, 551(7678), 115–8. [Google Scholar] [CrossRef]
- Li, X; Zhang, Y; Xu, L; Wang, A; Zou, Y; Li, T; Huang, L; Chen, W; Liu, S; Jiang, K; Zhang, X. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metab. 2023, 35(1), 200–11. [Google Scholar] [CrossRef]
- Warburg, O. The metabolism of carcinoma cells. J. Cancer Res. 1925, 9(1), 148–63. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123(3191), 309–14. [Google Scholar] [CrossRef]
- Theriault, JE; Shaffer, C; Dienel, GA; Sander, CY; Hooker, JM; Dickerson, BC; Barrett, LF; Quigley, KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci. Biobehav. Rev. 2023, 153;105373. [Google Scholar] [CrossRef]
- Morelli, AM; Scholkmann, F. The Significance of Lipids for the Absorption and Release of Oxygen in Biological Organisms. Adv. Exp. Med. Biol. 2023, 93–9. [Google Scholar] [CrossRef]
- Vervust, W; Safaei, S; Witschas, K; Leybaert, L; Ghysels, A. Myelin sheaths can act as compact temporary oxygen storage units as modeled by an electrical RC circuit model. Proc. Nat Acad. Sci. 2025, 122(20), e2422437122.e2422437122. [Google Scholar] [CrossRef] [PubMed]
- Schurr, A. Where Is the Oxygen? The Mirage of Non-Oxidative Glucose Consumption During Brain Activity. NeuroSci. 2025, 6(4), 126. [Google Scholar] [CrossRef] [PubMed]
- Brandt, RB; Laux, JE; Spainhour, SE; Kline, ES. Lactate dehydrogenase in rat mitochondria. Archives of Biochemistry and Biophysics 1987, 259(2), 412–22. [Google Scholar] [CrossRef]
- Van Hall, G. Lactate as a fuel for mitochondrial respiration. Acta Physiol. Scand. 2000, 168(4), 643–6. [Google Scholar] [CrossRef]
- Atlante, A; de Bari, L; Bobba, A; Marra, E; Passarella, S. Transport and metabolism of L-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis. Biochim. et Biophys. Acta 2007, 2007:1767(11), 1285–99. [Google Scholar] [CrossRef]
- Pierre K. Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 2005, 94(1), 1–14. [CrossRef]
- Ueno, M; Chiba, Y; Murakami, R; Miyai, Y; Matsumoto, K; Wakamatsu, K; Takebayashi, G; Uemura, N; Yanase, K. Distribution of Monocarboxylate Transporters in Brain and Choroid Plexus Epithelium. Pharmaceutics 2023, 15(8), 2062. [Google Scholar] [CrossRef]
- Pierre, K; Pellerin, L; Debernardi, R; Riederer, B; Magistretti, P. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 2000, 1009(3), 617–27. [Google Scholar] [CrossRef]
- Lundquist, AJ; Llewellyn, GN; Kishi, SH; Jakowec, NA; Cannon, PM; Petzinger, G.M; Jakowec, MW. Knockdown of Astrocytic Monocarboxylate Transporter 4 in the Motor Cortex Leads to Loss of Dendritic Spines and a Deficit in Motor Learning. Mol. Neurobiol. 2022, 59(2), 1002–17. [Google Scholar] [CrossRef] [PubMed]
- Dimmer, K-S; Friedrich, B; Lang, F; Deitmer, JW; Bröer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 2000, 350(1), 219–227. [Google Scholar] [CrossRef]
- Halestrap, A.P. The SLC16 gene family—Structure, role and regulation in health and disease. Mol. Asp. Med. 2013, 34, 337–349. [Google Scholar] [CrossRef]
- Valvona, CJ; Fillmore, HL; Nunn, PB; Pilkington, GJ. The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol. 2016, 26(1), 3–17. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T; Hussien, R; Brooks, GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am. J. Physiol. Endocrinol. Metabol. 2006, 290(6), E1237-44. [Google Scholar] [CrossRef] [PubMed]
- Hussien, R; Brooks, GA. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol. Genom. 2011, 43(5), 255–64. [Google Scholar] [CrossRef]
- https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways.
- Li, X; Zhang, Y; Xu, L; Wang, A; Zou, Y; Li, T; Huang, L; Chen, W.; Liu, S; Jiang, K; Zhang, X. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metab. 2023, 35(1), 200–211. [Google Scholar] [CrossRef]
- Koep, JL; Duffy, JS; Carr, JM; Brewster, ML; Bird, JD; Monteleone, JA; Monaghan, TD; Islam, H; Steele, AR; Howe, CA; MacLeod, DB. Preferential lactate metabolism in the human brain during exogenous and endogenous hyperlactataemia. The Journal of Physiology 2025, 603(22), 6783–800. [Google Scholar] [CrossRef]
- Bolaños, JP; Alberini, CM; Almeida, A; Barros, LF; Bonvento, G; Bouzier-Sore, AK; Dringen, R; Hardingham, GE; Hirrlinger, J; Magistretti, PJ; Marsicano, G; et al. Embracing the modern biochemistry of brain metabolism. J. Neurochem. 2025, 169(70), e70166. [Google Scholar] [CrossRef] [PubMed]
- Dienel, GA; Rothman, DL; Mangia, S. Comment on the Editorial “Embracing the Modern Biochemistry of Brain Metabolism”. Journal of Neurochemistry 2025, 169(8), e70197. [Google Scholar] [CrossRef] [PubMed]
- Andersen, JV; Aldana, BI; Bak, LK; Behar, KL; Borges, K; Carruthers, A; Cumming, P; Derouiche, A; Díaz-García, CM; Drew, KL; Duarte, JM; et al. Embracing scientific debate in brain metabolism. Journal of Neurochemistry 2025, 169(9), e70230. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
