Submitted:
22 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Phylogenetic and Biogeographic Context
3. Trait-Environment Associations in Ethiopian Finches
3.1. Diet and Foraging Ecology
3.2. Habitat and Environmental Gradients
3.3. Climatic Factors and Thermoregulation
3.4. Human-Mediated Environmental Change
4. Conclusion
Ethics Approval and Consent
Data Availability
Competing Interests
Author Contributions
Funding
Acknowledgments
References
- Abzhanov, A.; Kuo, W.P.; Hartmann, C.; Grant, B.R.; Grant, P.R.; Tabin, C.J. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 2006, 442, 563–567. [Google Scholar] [CrossRef]
- Abzhanov, A.; Protas, M.; Grant, B.R.; Grant, P.R.; Tabin, C.J. Bmp4 and Morphological Variation of Beaks in Darwin's Finches. Science 2004, 305, 1462–1465. [Google Scholar] [CrossRef]
- Alberch, P. Developmental constraints in evolutionary processes. In Evolution and development; Bonner, J. T., Ed.; Springer: Berlin, Germany, 1982; pp. 313–332. [Google Scholar]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C.; Hoelzel, A.R. Global urban signatures of phenotypic change in animal and plant populations. Proceedings of the National Academy of Sciences 2017, 114, 8957–8962. [Google Scholar] [CrossRef]
- Arnold, S.J. Morphology, performance, and fitness. Am. Zool 1983, 23, 347–361. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Clilliers, S.; Clarkson, B.; et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133330. [Google Scholar] [CrossRef]
- Asefa, A.; Davies, A.B.; McKechnie, A.E.; Kinahan, A.A.; van Rensburg, B.J. Effects of anthropogenic disturbance on bird diversity in Ethiopian montane forests. Condor 2017, 119, 416–430. [Google Scholar] [CrossRef]
- Ash, J.S.; Atkins, J.; Ash, C. Birds of Ethiopia and Eritrea: An atlas of distribution. 2009. Available online: https://api.semanticscholar.org/CorpusID:129869873.
- Badyaev, A.V.; Schwabl, H.; Young, R.L.; A Duckworth, R.; Navara, K.J.; Parlow, A. Adaptive sex differences in growth of pre-ovulation oocytes in a passerine bird. Proc. R. Soc. B: Biol. Sci. 2005, 272, 2165–2172. [Google Scholar] [CrossRef]
- Badyaev, A.V.; Young, R.L.; Hill, G.E.; Duckworth, R.A. Evolution of sex-biased maternal effects in birds. Proceedings of the Royal Society B 2008, 275, 915–923. [Google Scholar]
- Bell, H.L. Foraging behavior and microhabitat use in forest birds. Journal of Avian Biology 2000, 31, 355–363. [Google Scholar]
- Benkman, C.W. Divergent selection drives the adaptive radiation of crossbills. Evolution 2003, 57, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Bock, C.E.; Jones, Z.F. Avian habitat evaluation: should counting birds count? Frontiers in Ecology and the Environment 2004, 2, 403–410. [Google Scholar] [CrossRef]
- Bock, W.J. The Definition and Recognition of Biological Adaptation. Am. Zoöl. 1980, 20, 217–227. [Google Scholar] [CrossRef]
- Bock, W.J.; von Wahlert, G. Adaptation and the Form-Function Complex. Evolution 1965, 19, 269. [Google Scholar] [CrossRef]
- Bonte, D.; Van Dyck, H.; Bullock, J.M.; Coulon, A.; Delgado, M.; Gibbs, M.; Lehouck, V.; Matthysen, E.; Mustin, K.; Saastamoinen, M.; et al. Costs of dispersal. Biol. Rev. 2012, 87, 290–312. [Google Scholar] [CrossRef]
- Bright, J.A.; Marugán-Lobón, J.; Cobb, S.N.; Rayfield, E.J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl. Acad. Sci. 2016, 113, 5352–5357. [Google Scholar] [CrossRef]
- Charmantier, A.; McCleery, R.H.; Cole, L.R.; Perrins, C.; Kruuk, L.E.B.; Sheldon, B.C. Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population. Science 2008, 320, 800–803. [Google Scholar] [CrossRef]
- Cheng, Y.; Miller, M.J.; Lei, F. Molecular Innovations Shaping Beak Morphology in Birds. Annu. Rev. Anim. Biosci. 2024, 13, 99–119. [Google Scholar] [CrossRef]
- Clayton, D.H.; Moyer, B.R.; E Bush, S.; Jones, T.G.; Gardiner, D.W.; Rhodes, B.B.; Goller, F. Adaptive significance of avian beak morphology for ectoparasite control. Proc. R. Soc. B: Biol. Sci. 2005, 272, 811–817. [Google Scholar] [CrossRef]
- Clement, P.; Harris, A.; Davis, J. Finches and sparrows: An identification guide; Helm Field Guides, 1993. [Google Scholar]
- De León, L.F.; McNew, S.M.; Hendry, A.P. Evolutionary divergence in Darwin’s finches: Recent advances and future directions. Evolutionary Ecology 2011, 25, 305–328. [Google Scholar]
- De León, L.F.; Podos, J.; Gardezi, T.; Herrel, A.; Hendry, A.P. Darwin's finches and their diet niches: the sympatric coexistence of imperfect generalists. J. Evol. Biol. 2014, 27, 1093–1104. [Google Scholar] [CrossRef]
- del Hoyo, J.; Collar, N.J. HBW and BirdLife International illustrated checklist of the birds of the world. In Non-passerines; Lynx Edicions, 2014; Volume 1. [Google Scholar]
- Deng, J.; Zhu, Y.; Luo, Y.; Zhong, Y.; Tu, J.; Yu, J.; He, J. Urbanization drives biotic homogenization of the avian community in China. Integr. Zoöl. 2025, 20, 60–72. [Google Scholar] [CrossRef]
- Devictor, V.; Julliard, R.; Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 2008, 117, 507–514. [Google Scholar] [CrossRef]
- Endler, J.A. Natural selection in the wild; Princeton University Press, 1986. [Google Scholar]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Feijó, A.; Wen, Z.; Cheng, J.; Ge, D.; Xia, L.; Yang, Q. Divergent selection along elevational gradients promotes genetic and phenotypic disparities among small mammal populations. Ecol. Evol. 2019, 9, 7080–7095. [Google Scholar] [CrossRef]
- Felice, R.N.; Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl. Acad. Sci. 2018, 115, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Fjeldså, J.; Bowie, R.C.K. New perspectives on the origin and diversification of Africa’s forest avifauna. Afr. J. Ecol. 2008, 46, 235–247. [Google Scholar] [CrossRef]
- Friedman, N.R.; Miller, E.T.; Ball, J.R.; Kasuga, H.; Remeš, V.; Economo, E.P. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. B: Biol. Sci. 2019, 286, 20192474. [Google Scholar] [CrossRef]
- Friis, I.; van Breugel, P. Atlas of the potential vegetation of Ethiopia. In Biologiske Skrifter; The Royal Danish Academy of Sciences and Letters, 2010; Vol. 58. [Google Scholar]
- Grant, P.R.; Grant, B.R. Ecology and evolution of Darwin’s finches; Princeton University Press, 1986. [Google Scholar]
- Grant, P.R.; Grant, B.R. Unpredictable Evolution in a 30-Year Study of Darwin's Finches. Science 2002, 296, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.R.; Grant, B.R. Evolution of Character Displacement in Darwin's Finches. Science 2006, 313, 224–226. [Google Scholar] [CrossRef]
- Grant, P.R.; Grant, B.R. The beak of the finch: A story of evolution in our time; Princeton University Press, 2008. [Google Scholar]
- Greenberg, R.; Cadena, V.; Danner, R.M.; Tattersall, G. Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLOS ONE 2012, 7, e40933. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Hendry, A.P.; Farrugia, T.J.; Kinnison, M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008, 17, 20–29. [Google Scholar] [CrossRef]
- Herrel, A.; Podos, J.; Huber, S.K.; Hendry, A.P. Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Funct. Ecol. 2005, 19, 43–48. [Google Scholar] [CrossRef]
- Homberger, D.G. The case of the cockatoo bill, horse hoof, rhinoceros horn, whale baleen, and turkey beard: The integument as a model system to explore the concepts of homology and non-homology. In Vertebrate functional morphology: Horizon of research in the 21st century; Dutta, H. M., Munshi, J. S. Datta, Eds.; Oxford & IBH Publishing; Science Publishers, 2001; pp. 317–343. [Google Scholar]
- Homberger, D.G. The comparative biomechanics of a prey–predator relationship: The adaptive morphologies of the feeding apparatus of Australian black-cockatoos and their foods as a basis for the reconstruction of the evolutionary history of the Psittaciformes. In Vertebrate biomechanics and evolution; Bels, V. L., Gasc, J.-P., Casinos, A., Eds.; BIOS Scientific Publishers, 2003; pp. 203–228. [Google Scholar]
- Lamichhaney, S.; Berglund, J.; Almén, M.S.; Maqbool, K.; Grabherr, M.; Martinez-Barrio, A.; Promerová, M.; Rubin, C.-J.; Wang, C.; Zamani, N.; et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 2015, 518, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Lamichhaney, S.; Han, F.; Webster, M.T.; Andersson, L.; Grant, B.R.; Grant, P.R. Rapid hybrid speciation in Darwin’s finches. Science 2018, 359, 224–228. [Google Scholar] [CrossRef]
- Lerner, H.R.; Meyer, M.; James, H.F.; Hofreiter, M.; Fleischer, R.C. Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers. Curr. Biol. 2011, 21, 1838–1844. [Google Scholar] [CrossRef]
- Losos, J.B. Convergence, adaptation, and constraint. Evolution 2011, 65, 1827–1840. [Google Scholar] [CrossRef]
- Losos, J.B. Convergence, adaptation, and constraint. Evolution 2011, 65, 1827–1840. [Google Scholar] [CrossRef]
- MacArthur, R.H.; MacArthur, J.W. On Bird Species Diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Mallarino, R.; Campàs, O.; Fritz, J.A.; Burns, K.J.; Weeks, O.G.; Brenner, M.P.; Abzhanov, A. Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proc. Natl. Acad. Sci. 2012, 109, 16222–16227. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.I.; Marques, D.A.; Mwaiko, S.; Wagner, C.E.; Excoffier, L.; Seehausen, O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 2017, 8, 14363. [Google Scholar] [CrossRef]
- Navalón, G.; Marugán-Lobón, J.; Bright, J.A.; Cooney, C.R.; Rayfield, E.J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 2020, 4, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Newmark, W.D. Conserving Biodiversity in East African Forests; Springer Nature: Durham, NC, United States, 2002; ISBN 9783642076299. [Google Scholar]
- Norberg, U.M. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution; Springer-Verlag: Berlin, Germany, 1990. [Google Scholar]
- Nosil, P. Ecological speciation; Oxford University Press, 2012. [Google Scholar]
- Parchman, T.L.; Benkman, C.W. Diversifying coevolution between crossbills and black spruce. Evolution 2002, 56, 1663–1678. [Google Scholar] [CrossRef]
- Podos, J. Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature 2001, 409, 185–188. [Google Scholar] [CrossRef]
- Podos, J.; Southall, J.A.; Rossi-Santos, M.R. Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency. J. Exp. Biol. 2004, 207, 607–619. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef]
- Schluter, D. The ecology of adaptive radiation; Oxford University Press, 2000. [Google Scholar]
- Schluter, D. The ecology of adaptive radiation; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Schneider, R.A. Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution. Annu. Rev. Genet. 2024, 58, 433–454. [Google Scholar] [CrossRef]
- Demissew, S.; Friis, I.; Weber, O. Diversity and endemism of the flora of Ethiopia and Eritrea: state of knowledge and future perspectives. Rendiconti Lince- Sci. Fis. e Nat. 2021, 32, 675–697. [Google Scholar] [CrossRef]
- Shochat, E.; Warren, P.; Faeth, S.; Mcintyre, N.; Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef]
- Tattersall, G.J.; Andrade, D.V.; Abe, A.S. Heat Exchange from the Toucan Bill Reveals a Controllable Vascular Thermal Radiator. Science 2009, 325, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Tattersall, G.J.; Arnaout, B.; Symonds, M.R.E. The evolution of the avian bill as a thermoregulatory organ. Biol. Rev. 2017, 92, 1630–1656. [Google Scholar] [CrossRef]
- Tattersall, G.J.; Arnaout, B.; Symonds, M.R.E. The evolution of the avian bill as a thermoregulatory organ. Biol. Rev. 2016, 92, 1630–1656. [Google Scholar] [CrossRef]
- Van De Ven, T.M.F.N.; O Martin, R.; Vink, T.J.F.; E McKechnie, A.; Cunningham, S.J. Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans? PLOS ONE 2016, 11, e0154768. [Google Scholar] [CrossRef]
- Vans, K.L.; et al. The evolutionary ecology of dispersal and adaptation to urban environments. Functional Ecology 2011, 25, 405–416. [Google Scholar]
- Pol, J.L.V. A guide to endemic birds of Ethiopia and Eritrea. 2004. [Google Scholar] [CrossRef]
- Wake, D.B.; Larson, A. Multidimensional Analysis of an Evolving Lineage. Science 1987, 238, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.K.; Sherry, T.W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin's Finch” of Cocos Island, Costa Rica. Proc. Natl. Acad. Sci. 1987, 84, 5506–5510. [Google Scholar] [CrossRef]
- Werner, T.K.; Sherry, T.W. Behavioral feeding specialization in some Tennessee warblers. Ecology 1987, 68, 189–196. [Google Scholar]
- Wiens, J.J.; Donoghue, M.J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 2004, 19, 639–644. [Google Scholar] [CrossRef]
- Yeh, P.J. Rapid evolution of a sexually selected trait following population establishment in a novel habitat. Evolution 2004, 58, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Zuccon, D.; Cibois, A.; Pasquet, E.; Ericson, P.G.P. Nuclear and mitochondrial phylogenetic analyses of the Fringillidae (Aves: Passeriformes). Molecular Phylogenetics and Evolution 2012, 62, 157–164. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
