Submitted:
22 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Main Text
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Declaration on the Use of Artificial Intelligence
Conflicts of Interest
Abbreviations
| AMPs | antimicrobial compounds |
| APC | antigen-presenting cells |
| CTL | cytotoxic T lymphocytes |
| DAMPs | damage-associated molecular patterns |
| ETI | effector-triggered immunity |
| ETS | effector-triggered susceptibility |
| HR | hypersensitive response |
| ICD | immunogenic cell death |
| NCE | non-cancer environment |
| NHR | non-host resistance |
| NK | natural killer cells |
| PAMPs | pathogen-associated molecular patterns |
| PTI | PAMP-triggered immunity |
| R genes | resistance genes |
| SAR | systemic acquired resistance |
| SR | spontaneous tumor regression |
| TAA | tumor-associated antigens |
| TCR | T-cell Receptors |
References
- Balint-Kurti, P. The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology 2019, 20, 1163–1178. [Google Scholar] [CrossRef]
- Braun, A.C. A Demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proc Natl Acad Sci USA 1959, 45, 932-938. [Google Scholar] [CrossRef]
- Caulin, A.F.; Maley, C.C. Peto’s Paradox: Evolution’s Prescription for Cancer Prevention. Trends Ecol Evol. 2011, 26, 175–182. [Google Scholar] [CrossRef]
- Chase, J.M.; Leibold, M.A. Ecological Niches Linking Classical and Contemporary Approaches; University of Chicago Press, 2003; p. 4. [Google Scholar]
- Chen, M.; Xie, S. Therapeutic targeting of cellular stress responses in cancer. Thorac Cancer 2018, 9, 1575–1582. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy 2023, 8, 70. [Google Scholar] [CrossRef]
- Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, et al. (2006). Priming: getting ready for battle. Mol Plant Microbe Interact 19 1062–1071 Conrath, U., 2011. Molecular aspects of defence priming. Trends Plant Sci. 16,524–531.
- Conrath, U. Molecular aspects of defence priming. Trends Plant Sci. 2011, 8 16, 524–31. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z; Willingham, MC; Hicks, AM; Alexander-Miller, MA; Howard, TD; Hawkins, GA; Miller, MS; Weir, HM; Du, W; DeLong, CJ.; DeLong. Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. PNAS 2003, 100, 6682–6687. [Google Scholar] [CrossRef] [PubMed]
- De Cleene, M.; De Ley. J. Bot. Rev. 1976, 10 42, 389–466. [CrossRef]
- Dhabhar, F. The Short-Term Stress Response – Mother Nature’s Mechanism for Enhancing Protection and Performance Under Conditions of Threat, Challenge, and Opportunity. Front Neuroendocrinol. 2018, 49, 175–192. [Google Scholar] [CrossRef]
- Dunn, GP; Bruce, AT; Ikeda, H; et al. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 2002, 12 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Efremova, M.; Finotello, F.; Rieder, D.; Trajanoski, Z. Neoantigens Generated by Individual Mutations and Their Role in Cancer Immunity and Immunotherapy. Front Immunol. 2017, 28;8, 1679. [Google Scholar] [CrossRef]
- Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; Salehi, R.; Sadeghi, B.; Manian, M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell International 2021, 14 21(1), 62. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Liu, Z; Gao, M.; Tu, K.; Xu, Q.; Zhang, Y. Targeting Nutrient Dependency in Cancer Treatment. Front Oncol. 2022, 15 12, 820173. [Google Scholar] [CrossRef]
- Fang, X.; Guo, Z.; Liang, J.; Wen, J.; Liu, Y.; Guan, X.; Li, H. Neoantigens and their potential applications in tumor immunotherapy (Review). Oncol Lett. 2022, 16 23(3), 88. [Google Scholar] [CrossRef]
- Gill, U.S.; Lee, S.; Mysore, K.S. Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathology 2015, 17 105(5), 580–7. [Google Scholar] [CrossRef]
- Greger, V.; Passarge, E.; Höpping, W.; Messmer, E.; Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989, 18 83, 155–8. [Google Scholar] [CrossRef]
- 19. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hernandez, C.; Huebener, P.; Schwabe, R.F. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 2016, 21 35, 5931–5941. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 22 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Karasov, T.L.; Chae, E.; Herman, J.J.; Bergelson, J. Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell. 2017, 29, 666–680. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef] [PubMed]
- Kucerova, P.; Cervinkova, M. Spontaneous regression of tumour and the role of microbial infection – possibilities for cancer treatment. Anticancer Drugs 2016, 27, 269–277. [Google Scholar] [CrossRef]
- Lane, D.P.; Crawford, L.V. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979, 26 278, 261–3. [Google Scholar] [CrossRef]
- Lane, D.P. Cancer. p53, guardian of the genome. Nature 1992, 358, 15–6. [Google Scholar] [CrossRef]
- Li, S.; Zou, Y.; McMasters, A.; Chen, F.; Yan, J. Trained immunity: A new player in cancer immunotherapy. eLife 2025, 28 14, e104920. [Google Scholar] [CrossRef]
- Lin, N.YT.; Fukuoka, S.; Koyama, S. Microbiota-driven antitumor immunity mediated by dendritic cell migration. Nature 2025, 644, 1058–1068. [Google Scholar] [CrossRef]
- Linzer, D.I.; Levine, A.J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979, 30 17, 43–52. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Q.; Ren, X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol. 2023, 16, 38. [Google Scholar] [CrossRef]
- Madukwe, J.C. Overcoming drug resistance in cancer. Cell 2023, 32 186, 1515–1516. [Google Scholar] [CrossRef]
- Malik, N.AA.; Kumar, I.S.; Kalaivani Nadarajah, K. Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci. 2020, 21(3), 963. [Google Scholar] [CrossRef]
- McLellan, H.; Harvey, S.E.; Steinbrenner, J.; Armstrong, M.R.; He, Q.; Clewes, R.; Pritchard, L.; Wang, W.; Wang, S.; Nussbaumer, T.; et al. Exploiting breakdown in nonhost effector–target interactions to boost host disease resistance. Proc. Natl. Acad. Sci. USA 2022, 119(35), e2114064119. [Google Scholar] [CrossRef] [PubMed]
- Messerschmidt, J.L.; Prendergast, G.C.; Messerschmidt, G.L. How Cancers Escape Immune Destruction and Mechanisms of Action for the New Significantly Active Immune Therapies: Helping Nonimmunologists Decipher Recent Advances. The Oncologist 2016, 21, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Naz, M; Zhang, D; Liao, K; Chen, X; Ahmed, N; Wang, D; Zhou, J; Chen, Z. The Past, Present, and Future of Plant Activators Targeting the Salicylic Acid Signaling Pathway. Genes (Basel) 2024, 15(9), 1237. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Quintin, J.; van der Meer, J.W.M. Trained Immunity: A Memory for Innate Host Defense. Cell Host & Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef]
- Nürnberger, T.; Lipka, V. Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol. 2005, 6, 335–45. [Google Scholar] [CrossRef]
- Nwosu, ZC; Ward, MH; Sajjakulnukit, P; Poudel, P; Ragulan, C; Kasperek, S; Radyk, M; Sutton, D; Menjivar, RE; Andren, A; Apiz-Saab, JJ; Tolstyka, Z; Brown, K; Lee, HJ; Dzierozynski, LN; He, X; Ps, H; Ugras, J; Nyamundanda, G; Zhang, L; Halbrook, CJ; Carpenter, ES; Shi, J; Shriver, LP; Patti, GJ; Muir, A; Pasca di Magliano, M; Sadanandam, A; Lyssiotis, CA. Uridine-derived ribose fuels glucose-restricted pancreatic cancer. Nature 2023, 618, 151–158. [Google Scholar] [CrossRef]
- Oskarsson, T.; Batlle, E.; Massagué, J. Metastatic Stem Cells: Sources, Niches, and Vital Pathways. Cell Stem Cell. 2014, 14, 306–321. [Google Scholar] [CrossRef]
- Panstruga, R.; Moscou, M. J. What is the molecular basis of nonhost resistance? Mol Plant Microbe Interact. 2020, 33, 1253–1264. [Google Scholar] [CrossRef]
- Park, S-Y; Nam, J-S. The force awakens: metastatic dormant cancer cells. Experimental & Molecular Medicine 2020, 42 52, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer Biomarkers - Emerging Trends and Clinical Implications for personalized treatment. Cell. 2024, 187(7), 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Pastor, V.; Luna, E.; Mauch-Mani, B.; Ton, J.; Flors, V. Primed plants do not forget. Environmental and Experimental Botany 2013, 94, 46–56. [Google Scholar] [CrossRef]
- Pavlova, N.; Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 2016, 45 23, 27–47. [Google Scholar] [CrossRef]
- Plaks, V.; Kong, N.; Werb, Z. The Cancer Stem Cell Niche: How Essential is the Niche in Regulating Stemness of Tumor Cells? Cell Stem Cell. 2015, 16, 225–238. [Google Scholar] [CrossRef]
- Qu, B.; Yuan, J.; Liu, X.; Zhang, S.; Ma, X.; Lu, L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol. 2024, 14, 1321386. [Google Scholar] [CrossRef]
- Radha, G.; Lopus, M. The spontaneous remission of cancer: current insights and therapeutic significance. Translational Oncology 2021, 48 14, 101166. [Google Scholar] [CrossRef]
- Ribatti, D. A revisited concept: Contact inhibition of growth. From cell biology to malignancy. Exp Cell Res. 2017, 359(1), 17–19. [Google Scholar] [CrossRef]
- Ricci, S.B.; Cerchiari, U. Spontaneous regression of malignant tumors: Importance of the immune system and other factors (Review). Oncol Lett. 2010, 1, 941–945. [Google Scholar] [CrossRef]
- Ruan, L.; Wang, L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol. 2025, 15, 1530541. [Google Scholar] [CrossRef]
- Sánchez-Herrero, E.; Serna-Blasco, R.; Robado de Lope, L.; González-Rumayor, V.; Romero, A.; Provencio, M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That may Impact on ctDNA Analysis. Front Oncol. 2022, 12, 943253. [Google Scholar] [CrossRef]
- Seluanov, A.; Hine, C.; Azpurua, J.; Feigenson, M.; Bozella, M.; Mao, Z.; Catania, K.C.; Gorbunova, V. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America 2009, 106, 19352–19357. [Google Scholar] [CrossRef] [PubMed]
- Sim, M. J.W.; Sun, P.D. T Cell recognition of tumor neoantigens and insights into T cell immunotherapy. Frontiers in Immunology 2022, 13, 833017. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019, 20(3), 175–193. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Park, C.; Cabanting, F.E.B.; Jun, Y.W. Therapeutic upregulation of DNA repair pathways: strategies and small molecule activators. RSC Med Chem. 2024, 56 15, 3970–3977. [Google Scholar] [CrossRef]
- Stenger, T.D.; Miller, J.S. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front. Immunol. 2024, 15, 1356666. [Google Scholar] [CrossRef]
- Toledo, F.; Wahl, G.M. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007, 39, 1476–1482. [Google Scholar] [CrossRef]
- Troitskaya, S.; Novak, D.D.; Richter, V.A.; Koval, O.A. Immunogenic Cell Death in Cancer Therapy. Acta Naturae 2022, 14(1), 40–53. [Google Scholar] [CrossRef]
- Wu, Y.; Sexton, W.; Yang, B.; Xiao, S. Genetic approaches to dissect plant nonhost resistance mechanisms. Mol Plant Pathol. 2023, 24(3), 272–283. [Google Scholar] [CrossRef]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C. Neoantigens: promising targets for cancer therapy. Sig Transduct Target Ther 2023, 8, 9. [Google Scholar] [CrossRef]
- Yu, C-P.; Fu, S-F.; Chen, X.; Ye, J.; Ye, Y.; Kong, L-D.; Zhu, Z. The Clinicopathological and Prognostic Significance of IDO1 Expression in Human Solid Tumors: Evidence from a Systematic Review and Meta-Analysis. Cellular Physiology and Biochemistry 2018, 49, 134–143. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
