Preprint
Article

This version is not peer-reviewed.

Emergence of Quantum Correlations as Macro-Time Correlations Derived from Underlying Micro-Time Correlations

Submitted:

22 January 2026

Posted:

23 January 2026

You are already at the latest version

Abstract
This work introduces a rigorous mathematical approach for producing entangled quantum states from classical stochastic dynamics. We show that any density matrix ρAB describing a composite quantum system can be reconstructed from the correlations of two foundational stochastic processes, X(t) and Y(t), which model the random behavior of the individual subsystems. The framework employs a dual temporal scale—micro and macro time—where quantum correlations naturally arise as emergent macro-level correlations derived from fine-grained micro-level interactions. We formulate the Double Covariance Model (DCM), which captures the essential features of quantum mechanics by interpreting the quantum state as a fourth-order statistical structure within an underlying classical probabilistic model.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated