Submitted:
22 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Base Material
2.2. Filler Material
2.3. Welding
2.3.1. Performing of Laser Hybrid Welding
2.3.2. Performing of MIG Welding
2.4. Sample Preparation
2.5. Characterisation
2.6. Sample Surface Cleaning
2.6.1. Chemical Cleaning
2.6.2. Mechanical Cleaning
2.6.3. Cleaning with Air Plasma
2.7. Sample Surface Area Size Determination
2.8. Electrochemical Measurements
3. Results and Discussion
3.1. SEM Imaging and EDX Microchemical Analysis
3.2. Electrochemical Measurements
3.2.1. Open-Circuit Potential Measurement
3.2.2. Potentiodynamic Measurements
3.2.3. Electrochemical Impedance Spectroscopy Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BM | base material |
| BSE | backscattered electron |
| Ecₒᵣᵣ | corrosion potential |
| EDX | energy-dispersive X-ray |
| EIS | electrochemical impedance spectroscopy |
| FSW | friction stir welding |
| HAZ | heat affected area |
| jcₒᵣᵣ | corrosion current density |
| LH | laser hybrid welding |
| MIG | metal inert gas |
| OCP | open circuit potential |
| Rₚ | polarisation resistance |
| SCE | saturated calomel electrode |
| SE | secondary electron SEM -scanning electron microscope |
References
- Sezek, S. Investigating Corrosion, Wear Resistance and Friction of AA5454-O Series after Its Severe Deformation by Rolling. Medžiagotyra 2017, 23 SE-5, 27–31. [Google Scholar] [CrossRef]
- AC, F.; AW, R. JR OBSERVATIONS OF HOT SALINE WATER CORROSION OF ALUMINUM ALLOYS. Corros. (Houston, Tex.) 1971, 27 SE-6, 151–156. [Google Scholar] [CrossRef]
- Engler, O.; Liu, Z.; Kuhnke, K. Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454 – Experiment and simulation. J. Alloys Compd. 2013, 560, 111–122. [Google Scholar] [CrossRef]
- Salej Lah, A.; Vončina, M.; Paulin, I.; Medved, J.; Fajfar, P.; Volšak, D. THE INFLUENCE OF CHEMICAL COMPOSITION AND HEAT TREATMENT ON THE MECHANICAL PROPERTIES AND WORKABILITY OF THE ALUMINIUM ALLOY EN AW 5454. Mater. Tehnol. 2021, 55. [Google Scholar] [CrossRef]
- Volpone, L.M.; Mueller, S. Joints in light alloys today: the boundaries of possibility. Weld. Int. 2008, 22, 597–609. [Google Scholar] [CrossRef]
- Sheng, K.; Lu, L.; Xiang, Y.; Ma, M.; Wu, Z. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion. J. Magnes. Alloy. 2019, 7, 717–724. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A. V; Portnoy, V.K.; Mochugovskiy, A.G.; Zadorozhnyy, M.Y.; Tabachkova, N.Y.; Golovin, I.S. Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al – 3% Mg – TM alloys (TM=Mn, Cr, Zr). Mater. Des. 2016, 109, 197–208. [Google Scholar] [CrossRef]
- Engler, O.; Kuhnke, K.; Hasenclever, J. Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents. J. Alloys Compd. 2017, 728, 669–681. [Google Scholar] [CrossRef]
- Hirsch, J. Aluminium Alloys for Automotive Application. Mater. Sci. Forum - MATER SCI FORUM 1997, 242, 33–50. [Google Scholar] [CrossRef]
- Van Der Hoeven, J.A.; Zhuang, L.; Schepers, B.; De Smet, P.; Baekelandt, J.P. A New 5xxx Series Alloy Developed for Automotive Applications. SAE Tech. Pap. 2002. [Google Scholar] [CrossRef]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Krall, P.; Weißensteiner, I.; Pogatscher, S. Recycling aluminum alloys for the automotive industry: Breaking the source-sink paradigm. Resour. Conserv. Recycl. 2024, 202, 107370. [Google Scholar] [CrossRef]
- García Gutiérrez, I.; Elduque, D.; Pina, C.; Tobajas, R.; Javierre, C. Influence of the Composition on the Environmental Impact of a Casting Magnesium Alloy. Sustainability 2020, 12. [Google Scholar] [CrossRef]
- Casalino, G.; Maso, U.; Angelastro, A.; Campanelli, S.L. Hybrid Laser Welding: A Review. DAAAM Int. Sci. B. 2010, 413–430. [Google Scholar] [CrossRef]
- Paul, C.; Nicolae, J. INDUSTRIAL APPLICATIONS FOR MSG - LASERHYBRID WELDING PROCESS. Rev. Tehnol. Neconv. 2011, 15. [Google Scholar]
- Staufer, H. LaserHybrid welding for industrial applications. In Proceedings of the Proceedings of SPIE - The International Society for Optical Engineering, Let. 6346 PART. 2007. [Google Scholar]
- Welding and allied processes — Guidelines for measurement of welding energies. ISO/TR 18491:2015 (E); 2015.
- EN 1011-1:2009 (E); Welding – Recommendations for welding of metallic materials – Part 1: General guidance for arc welding. 2009.
- Leo, P.; Renna, G.; Casalino, G.; Olabi, A.G. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Opt. Laser Technol. 2015, 73, 118–126. [Google Scholar] [CrossRef]
- Kostrivas, A.; Lippold, J.C. Fusion boundary microstructure evolution in aluminium alloys. Weld. World 2006, 50, 24–34. [Google Scholar] [CrossRef]
- Leo, P.; D’Ostuni, S.; Casalino, G. Hybrid welding of AA5754 annealed alloy: Role of post weld heat treatment on microstructure and mechanical properties. Mater. Des. 2016, 90, 777–786. [Google Scholar] [CrossRef]
- Aleo, V. Effect of Welding on the Width of the Heat -Affected Zone of Aluminum Alloys; ProQuest Dissertations Publishing, 2004. [Google Scholar]
- Katayama, S. Fundamentals and Details of Laser Welding 2020.
- Ma, Y.R.; Cai, C.; Liu, Z.J.; Xie, J.; Yang, C. Plasma Monitoring During Laser-MIG Hybrid Welding Process Based on LabVIEW. CHINESE J. LASERS-ZHONGGUO JIGUANG 2022, 49. [Google Scholar] [CrossRef]
- Wang, H.; Chang, S.; Zhou, Z.; Wang, W. Effect of TIG remelting on the microstructure, mechanical properties, and corrosion behavior of 5052 aluminum alloy joints in MIG welding. J. Mater. Res. Technol. 2024, 32, 2255–2267. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, D.; Cao, L.; Ma, L.; Zeng, H. Comparative Analysis of Mechanical Properties and Microstructure of 7B52 Aluminum Alloy Laser-MIG Hybrid Welding and MIG Welding Joints. Metals (Basel). 2024, 14. [Google Scholar] [CrossRef]
- Jiang, Z.; Hua, X.; Huang, L.; Wu, D.; Li, F.; Zhang, Y. Double-sided hybrid laser-MIG welding plus MIG welding of 30-mm-thick aluminium alloy. Int. J. Adv. Manuf. Technol. 2018, 97, 903–913. [Google Scholar] [CrossRef]
- Conserva, M.; Donzelli, G.; Trippodo, R. Aluminium and Its Applications; Edimet, 1992; ISBN 9788886259019. [Google Scholar]
- Davis, J.R. Alloying: understanding the basics; ASM international, 2001; ISBN 1615030638. [Google Scholar]
- Balant, M.; Vuherer, T.; Majerič, P.; Rudolf, R. The Influence of the Rolling Direction on the Mechanical Properties of the Al-Alloy EN AW-5454-D. J. Manuf. Mater. Process. 2024, 8. [Google Scholar] [CrossRef]
- Kumar, S.; Shahi, A.S.; Sharma, V.; Malhotra, D. Effect of Welding Heat Input and Post-Weld Thermal Aging on the Sensitization and Pitting Corrosion Behavior of AISI 304L Stainless Steel Butt Welds. J. Mater. Eng. Perform. 2021, 30 SE-2, 1619–1640. [Google Scholar] [CrossRef]
- Mohammed, G.R.; Ishak, M.; Aqida, S.N.; Abdulhadi, H.A. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review. Metals (Basel). 2017, 7. [Google Scholar] [CrossRef]
- Da Fonseca, G.S.; Barbosa, L.O.R.; Ferreira, E.A.; Xavier, C.R.; De Castro, J.A. Microstructural, Mechanical, and Electrochemical Analysis of Duplex and Superduplex Stainless Steels Welded with the Autogenous TIG Process Using Different Heat Input. Met. (Basel ) 2017, 7. [Google Scholar] [CrossRef]
- Yang, M.; Lu, J.; Chen, J.; Li, Y.; Liu, Y.; Yang, H. Effect of Welding Speed on Microstructure and Corrosion Resistance of Al–Li Alloy Weld Joint. Mater. Corros. 2020, 71 SE-9, 300–308. [Google Scholar] [CrossRef]
- Chandra, C.K.; Sommer, N.; Heider, B.; Hatzky, M.; Reitz, R.; Böhm, S.; Oechsner, M. Influence of Friction Stir Weld Parameters on the Corrosion Susceptibility of EN AW-7075 Weld Seam and Heat-Affected Zone. Adv. Eng. Mater. 2023, 25 SE-9, 0–9. [Google Scholar] [CrossRef]
- Guzmán, I.; Granda, E.; Cruz, C.; Martínez, D.; Vargas, B.; Acevedo, J.; Cruz, G.; Avila, Y.; Velazquez, R.; Flores, L. Corrosion Performance and Mechanical Strength in Aluminum 6061 Joints by Pulsed Gas Metal Arc Welding. Materials (Basel). 2022, 15. [Google Scholar] [CrossRef]
- Shah, P.H.; Badheka, V. Effect of Various Welding Parameters on Corrosion Behavior of Friction-Stir-Welded AA 7075-T651 Alloys. Metallogr. Microstruct. Anal. 2018, 7 SE-13, 308–320. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Prot. Met. Phys. Chem. surfaces 2018, 54, 976–989. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. Corrosion Behavior of Magnesium in Naturally Aerated Stagnant Seawater and 3.5% Sodium Chloride Solutions. Int. J. Electrochem. Sci. 2012, 7, 4235–4249. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Yin, M.; Xiao, Y.; Wang, X.H.; He, J.X. Comparison of corrosion behavior of Al-Mn and Al-Mg alloys in chloride aqueous solution. Mater. Corros. 2016, 67, 51–59. [Google Scholar] [CrossRef]
- Ma, J.; Wen, J.; Li, Q.; Zhang, Q. Effects of acidity and alkalinity on corrosion behaviour of Al–Zn–Mg based anode alloy. J. Power Sources 2013, 226, 156–161. [Google Scholar] [CrossRef]
- Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 2008, 50, 1841–1847. [Google Scholar] [CrossRef]
- Canto, J.; Rodríguez-Díaz, R.A.; Martinez-de-la-Escalera, L.M.; Neri, A.; Porcayo-Calderon, J. Corrosion Inhibition in CO2-Saturated Brine by Nd3+ Ions. Molecules 2023, 28, 6593. [Google Scholar] [CrossRef] [PubMed]
- Vastag, G.; Majerič, P.; Lazić, V.; Rudolf, R. Electrochemical Behaviour of an Au-Ge Alloy in an Artificial Saliva and Sweat Solution. Metals (Basel). 2024, 14, 668. [Google Scholar] [CrossRef]
- Dutta Chowdhury, N.; Ghosh, K.S. Electrochemical behaviour of dental amalgam in natural, artificial saliva and in 0.90 wt.% NaCl solution. Corros. Sci. 2018, 133, 217–230. [Google Scholar] [CrossRef]
- Shao, P.; Xiao, H.; Liu, K.; Chen, X.; Hou, M.; Zhang, Q.; Qian, C.; Huang, S. Influence of annealing temperature on the mechanical properties and corrosion behavior of Ti-5.5Al-2.0Zr-1.5Sn-0.5Mo-1.5Nb alloy. Arab. J. Chem. 2024, 17, 105790. [Google Scholar] [CrossRef]
- Falodun, O.E.; Oke, S.R.; Solomon, M.M.; Bayode, A. Microstructural evolution and electrochemical corrosion characteristics of Ti–Ni matrix composite in NaCl and HCl solutions. Ceram. Int. 2024, 50, 15124–15133. [Google Scholar] [CrossRef]
- Torbati-Sarraf, H.; Ding, L.; Khakpour, I.; Daviran, G.; Poursaee, A. Unraveling the Corrosion of the Ti–6Al–4V Orthopedic Alloy in Phosphate-Buffered Saline (PBS) Solution: Influence of Frequency and Potential. Corros. Mater. Degrad. 2024, 5, 276–288. [Google Scholar] [CrossRef]
- Matemadombo, F.; Nyokong, T. Characterization of self-assembled monolayers of iron and cobalt octaalkylthiosubstituted phthalocyanines and their use in nitrite electrocatalytic oxidation. Electrochim. Acta 2007, 52, 6856–6864. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Rodríguez-Díaz, R.A.; Porcayo-Palafox, E.; Martinez-Gomez, L. Corrosion Performance of Cu-Based Coins in Artificial Sweat. J. Chem. 2016, 2016, 9542942. [Google Scholar] [CrossRef]












| Thickness [mm] |
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
|---|---|---|---|---|---|---|---|---|---|---|
| 4.0 | 0.18 | 0.32 | 0.05 | 0.76 | 2.85 | 0.05 | 0.04 | 0.02 | 95.73 |
| Cr | Cu | Fe | Mg | Mn | Si | Ti | Zn | Al |
|---|---|---|---|---|---|---|---|---|
| 0.079 | 0.0019 | 0.148 | 2.83 | 0.609 | 0.057 | 0.088 | 0.0018 | Rest |
| Welding parameter | Value | Value |
|---|---|---|
| Welding process | Laser hybrid | MIG-PMC |
| Welding position | PA ̶ Flat position | PA ̶ Flat position |
| Gap Laser-MIG | 2 mm | - |
| Sequence | Laser Master, MIG Slave |
- |
| Stickout | 15 mm | 15 mm |
| Fibre diameter | 0.6 mm | - |
| Spot size | 0.9 mm (no defocus) | - |
| Collimation length | 200 mm | - |
| Focal length | 300 mm. | - |
| Optic | 5° in pulling position | - |
| Shielding gas | 100% Ar 5.0 | 100% Ar 5.0 |
| Gas flow | 15 l/min | 15 l/min |
| Welding speed | 300 cm/min | 96 cm/min |
| Wire feed speed | 10.5 m/min | 5.5 m/min |
| Welding current | 147 A | 181 A |
| Voltage | 18.1 V | 20 V |
| Laser power | 5000 W | - |
| Type of welding current and polarity | DC ̶ Pulse | DC ̶ Pulse |
| AC Balance | +2 | 0 |
| Arc length | -0.2 | 0 |
| Spectrum | C | O | Mg | Al | Cr | Fe | Mo | Total |
|---|---|---|---|---|---|---|---|---|
| Spectrum 1 | 13.29 | 12.69 | 1.64 | 72.38 | - | - | - | 100 |
| Spectrum 2 | - | 11.62 | 1.98 | 86.40 | - | - | - | 100 |
| Spectrum 3 | - | - | 1.22 | 77.37 | - | 21.41 | - | 100 |
| Spectrum 4 | - | 7.72 | 1.53 | 62.72 | 1.73 | 20.05 | 6.25 | 100 |
| Spectrum 5 | - | 14.28 | - | 53.97 | 4.63 | 22.67 | 4.45 | 100 |
| Spectrum 6 | - | 13.59 | - | 44.10 | 2.19 | 19.75 | 20.38 | 100 |
| Mean | 2.22 | 9.98 | 1.06 | 66.16 | 1.43 | 13.98 | 5.18 | 100 |
| Std. Dev. | 5.43 | 5.41 | 0.86 | 15.63 | 1.85 | 10.88 | 7.91 | |
| Max. | 13.29 | 14.28 | 1.98 | 86.40 | 4.63 | 22.67 | 20.38 | |
| Min. | 0 | 0 | 0 | 44.10 | 0 | 0 | 0 |
| Parameter | Value | Unit |
|---|---|---|
| Supply air pressure | 3.6 | bar |
| Voltage | 300 | V |
| Electric current | 11.7 | A |
| Frequency | 21 | kHz |
| Plasma cycle time | 100 | % |
| Nozzle distance from the surface | 4 | mm |
| Nozzle/transition speed | 25 | mm/s |
| Nr. of transitions | 4 | - |
| Spectrum | O | Mg | Al | Si | Mn | Total |
|---|---|---|---|---|---|---|
| Spectrum 1 | 3.28 | 2.93 | 92.83 | - | 0.96 | 100 |
| Spectrum 2 | 2.56 | 2.96 | 93.53 | - | 0.95 | 100 |
| Spectrum 3 | 2.24 | 2.73 | 94.02 | - | 1.01 | 100 |
| Spectrum 4 | 4.85 | 3.63 | 90.13 | 1.39 | - | 100 |
| Spectrum 5 | 4.93 | 3.82 | 90.44 | - | 0.81 | 100 |
| Spectrum 6 | 6.08 | 2.07 | 91.04 | - | 0.81 | 100 |
| Mean | 3.99 | 3.02 | 92.00 | 0.23 | 0.76 | 100 |
| Std. Dev. | 1.52 | 0.63 | 1.67 | 0 | 0.38 | |
| Max. | 6.08 | 3.82 | 94.02 | 1.39 | 1.01 | |
| Min. | 2.24 | 2.07 | 90.13 | 0 | 0 |
| Alloy | 1 hour | 7 days | 30 days | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Ecorr (mV) |
jcorr (µA/cm2) |
Rp (kΩ/cm2) |
Ecorr (mV) |
jcorr (µA/cm2) |
Rp (kΩ/cm2) |
Ecorr (mV) |
jcorr (µA/cm2) |
Rp (kΩ/cm2) |
|
| Base material (BM) | -750 | 3.80 | 4.55 | -795 | 0.70 | 21.43 | -794 | 0.78 | 22.0 |
| LH welded | -743 | 4.63 | 3.05 | -853 | 1.05 | 11.98 | -815 | 1.16 | 14.7 |
| MIG welded | -806 | 18.15 | 1.60 | -761 | 0.88 | 18.10 | -816 | 1.45 | 7.70 |
| Alloy |
Rs (Ωcm2) | R1 (kΩcm2) |
C1 (mF/cm2) |
n1 | R2 (kΩcm2) |
C2 (mF/cm2) |
n2 | W (kΩcm2) |
|---|---|---|---|---|---|---|---|---|
| 1 hour | ||||||||
| Base material | 5 | --- | --- | --- | 5.0 | 10.98 | 0.85 | --- |
| LH welded | 5 | --- | --- | --- | 3.4 | 24.28 | 0.95 | --- |
| MIG welded | 3 | --- | --- | --- | 1.1 | 16.69 | 0.95 | --- |
| 7 days | ||||||||
| Base material | 3 | 10.0 | 670.8 | 0.85 | 31.0 | 17.71 | 0.90 | --- |
| LH welded | 3 | 10.0 | 411.5 | 0.86 | 28.0 | 20.62 | 0.93 | --- |
| MIG welded | 3 | 7.5 | 341.7 | 0.91 | 9.0 | 13.58 | 0.94 | --- |
| 30 days | ||||||||
| Base material | 5 | 5.0 | 197.2 | 0.92 | 25.0 | 5.07 | 0.93 | 0.35 |
| LH welded | 5 | 6.0 | 273.1 | 0.92 | 9.0 | 1.38 | 0.93 | 0.40 |
| MIG welded | 5 | 5.0 | 335.0 | 0.93 | 8.0 | 26.15 | 0.94 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
