Submitted:
22 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Part A: Bait Preference Trial
2.2.1. Study Design
2.2.2. Baits and Vaccine Containers
2.3. Study Part B: Immunogenicity Trial
2.3.1. Study Design
2.3.2. Sample Processing: Non-Invasive Sampling
2.3.3. Sample Processing: Blood, Serum, and Organ Samples
2.3.4. DNA Extraction and qPCR
2.3.5. Serology
2.3.6. Hemadsorption Test and Virus Isolation
2.3.7. Stability Assessment of Vaccine Virus
3. Results
3.1. Study Part A: Bait Preference Trial
3.2. Stability Assessment of Vaccine Virus “ASFV-G-∆I177L”
3.3. Environmental Sampling
3.4. Clinical Observations
3.5. Assessment of Humoral Responses in Wild Boar After Dual Oral Vaccination
3.6. Assessment of ”ASFV-G-ΔI177L” Dissemination in Organs of Wild Boar
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asfivirus Haemorrhagiae;
- Jori, F.; Vial, L.; Penrith, M.L.; Pérez-Sánchez, R.; Etter, E.; Albina, E.; Michaud, V.; Roger, F. Review of the Sylvatic Cycle of African Swine Fever in Sub-Saharan Africa and the Indian Ocean. Virus Research 2013, 173, 212–227. [Google Scholar] [CrossRef]
- Obanda, V.; Akinyi, M.; King’ori, E.; Nyakundi, R.; Ochola, G.; Oreng, P.; Mugambi, K.; Waiguchu, G.M.; Chege, M.; Rosenbaum, W.; et al. Epidemiology and Ecology of the Sylvatic Cycle of African Swine Fever Virus in Kenya. Virus Research 2024, 348, 199434. [Google Scholar] [CrossRef] [PubMed]
- Jori, F.; Bastos, A.; Boinas, F.; Van Heerden, J.V.; Heath, L.; Jourdan-Pineau, H.; Martinez-Lopez, B.; Pereira De Oliveira, R.P.D.; Pollet, T.; Quembo, C.; et al. An Updated Review of Ornithodoros Ticks as Reservoirs of African Swine Fever in Sub-Saharan Africa and Madagascar. Pathogens 2023, 12, 469. [Google Scholar] [CrossRef]
- Anderson, E.C.; Hutchings, G.H.; Mukarati, N.; Wilkinson, P.J. African Swine Fever Virus Infection of the Bushpig (Potamochoerus Porcus) and Its Significance in the Epidemiology of the Disease. Veterinary Microbiology 1998, 62, 1–15. [Google Scholar] [CrossRef]
- Luther, N.J.; Majiyagbe, K.A.; Shamaki, D.; Lombin, L.H.; Antiagbong, J.F.; Bitrus, Y.; Owolodun, O. Detection of African Swine Fever Virus Genomic DNA in a Nigerian Red River Hog ( Potamochoerus Porcus ). Veterinary Record 2007, 160, 58–59. [Google Scholar] [CrossRef]
- G.R. Thomson; M.D. Gainaru; A.F. Van Dellen EXPERIMENTAL INFECTION OF WARTHOG (PHACOCHOERUS AETHIOPICUS) WITH AFRICAN SWINE FEVER VIRUS 1980.
- Heuschele, W.P.; Coggins, L. Isolation of African Swine Fever Virus from a Giant Forest Hog. Bull Epizoot Dis Afr 1965, 13, 255–256. [Google Scholar]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African Swine Fever in Domestic Pigs and European Wild Boar. Virus Research 2013, 173, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African Swine Fever Virus Isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health African Swine Fever (ASF) Situation Report 69 2025.
- Morelle, K.; Bubnicki, J.; Churski, M.; Gryz, J.; Podgórski, T.; Kuijper, D.P.J. Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak. Front. Vet. Sci. 2020, 7, 378. [Google Scholar] [CrossRef]
- Luskin, M.S.; Moore, J.H.; Mendes, C.P.; Nasardin, M.B.; Onuma, M.; Davies, S.J. The Mass Mortality of Asia’s Native Pigs Induced by African Swine Fever. Wildlife Letters 2023, 1, 8–14. [Google Scholar] [CrossRef]
- Barrios-Garcia, M.N.; Ballari, S.A. Impact of Wild Boar (Sus Scrofa) in Its Introduced and Native Range: A Review. Biol Invasions 2012, 14, 2283–2300. [Google Scholar] [CrossRef]
- Heinken, T.; Schmidt, M.; Von Oheimb, G.; Kriebitzsch, W.-U.; Ellenberg, H. Soil Seed Banks near Rubbing Trees Indicate Dispersal of Plant Species into Forests by Wild Boar. Basic and Applied Ecology 2006, 7, 31–44. [Google Scholar] [CrossRef]
- Van Leeuwen, B.O.; Tuinder, Q.; Fartmann, T.; Scherer, G.; Klamm, A.; Schellenberg, M.; Vergeer, P.; Jansen, P.A. Effects of Wild Boar (Sus Scrofa) Rooting on Abandoned Calcareous Grassland in Hainich National Park, Germany. Global Ecology and Conservation 2025, 59, e03535. [Google Scholar] [CrossRef]
- Scherer, G.; Streanga, B.; Fartmann, T. Rare Butterfly Species Vitally Depend on Soil Disturbance by an Ecosystem Engineer in Abandoned Calcareous Grasslands. Global Ecology and Conservation 2025, 58, e03451. [Google Scholar] [CrossRef]
- Mori, E.; Benatti, L.; Lovari, S.; Ferretti, F. What Does the Wild Boar Mean to the Wolf? Eur J Wildl Res 2017, 63, 9. [Google Scholar] [CrossRef]
- Müller, J.; Rietz, J.; Von Hoermann, C.; Conraths, F.J.; Benbow, M.E.; Mitesser, O.; Schlüter, J.; Lackner, T.; Reckel, F.; Heurich, M. Season, Decay Stage, Habitat, Temperature and Carrion Beetles Allow Estimating the Post-mortem Interval of Wild Boar Carcasses. Ecol Sol and Evidence 2024, 5, e12305. [Google Scholar] [CrossRef]
- Melleti, M.; Meijaard, E. Ecology, Conservation and Management of Wild Pigs and Peccaries; Cambridge university press: Cambridge, 2018; ISBN 978-1-107-18731-3. [Google Scholar]
- Law, Y. Where Are All The Sabah Pigs? Macaranga 2022.
- Von Rüden, S.; Staubach, C.; Kaden, V.; Hess, R.G.; Blicke, J.; Kühne, S.; Sonnenburg, J.; Fröhlich, A.; Teuffert, J.; Moennig, V. Retrospective Analysis of the Oral Immunisation of Wild Boar Populations against Classical Swine Fever Virus (CSFV) in Region Eifel of Rhineland-Palatinate. Veterinary Microbiology 2008, 132, 29–38. [Google Scholar] [CrossRef]
- Moennig, V. The Control of Classical Swine Fever in Wild Boar. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gonzalvo, F.; Rodríguez, F.; Escribano, J.M. Functional and Immunological Properties of the Baculovirus-Expressed Hemagglutinin of African Swine Fever Virus. Virology 1996, 218, 285–289. [Google Scholar] [CrossRef]
- Yuan, F.; Cui, J.; Wang, T.; Qin, J.; Jeon, J.H.; Ding, H.; Whittaker, C.A.; Xu, R.; Cao, H.; Chen, J. Selection, Design and Immunogenicity Studies of ASFV Antigens for Subunit mRNA Cocktail Vaccines with Specific Immune Response Profiles 2024.
- Pikalo, J.; Porfiri, L.; Akimkin, V.; Roszyk, H.; Pannhorst, K.; Kangethe, R.T.; Wijewardana, V.; Sehl-Ewert, J.; Beer, M.; Cattoli, G.; et al. Vaccination With a Gamma Irradiation-Inactivated African Swine Fever Virus Is Safe But Does Not Protect Against a Challenge. Front. Immunol. 2022, 13, 832264. [Google Scholar] [CrossRef]
- Goatley, L.C.; Reis, A.L.; Portugal, R.; Goldswain, H.; Shimmon, G.L.; Hargreaves, Z.; Ho, C.-S.; Montoya, M.; Sánchez-Cordón, P.J.; Taylor, G.; et al. A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs against Fatal Disease. Vaccines 2020, 8, 234. [Google Scholar] [CrossRef]
- Ravilov, R.Kh.; Rizvanov, A.A.; Mingaleev, D.N.; Galeeva, A.G.; Zakirova, E.Yu.; Shuralev, E.A.; Rutland, C.S.; Khammadov, N.I.; Efimova, M.A. Viral Vector Vaccines Against ASF: Problems and Prospectives. Front. Vet. Sci. 2022, 9, 830244. [Google Scholar] [CrossRef]
- Barasona, J.A.; Cadenas-Fernández, E.; Kosowska, A.; Barroso-Arévalo, S.; Rivera, B.; Sánchez, R.; Porras, N.; Gallardo, C.; Sánchez-Vizcaíno, J.M. Safety of African Swine Fever Vaccine Candidate Lv17/WB/Rie1 in Wild Boar: Overdose and Repeated Doses. Front. Immunol. 2021, 12, 761753. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; Gallardo, C.; Cadenas-Fernández, E.; Jurado, C.; Rivera, B.; Rodríguez-Bertos, A.; Arias, M.; Sánchez-Vizcaíno, J.M. First Oral Vaccination of Eurasian Wild Boar Against African Swine Fever Virus Genotype II. Front. Vet. Sci. 2019, 6, 137. [Google Scholar] [CrossRef]
- Deutschmann, P.; Carrau, T.; Sehl-Ewert, J.; Forth, J.H.; Viaplana, E.; Mancera, J.C.; Urniza, A.; Beer, M.; Blome, S. Taking a Promising Vaccine Candidate Further: Efficacy of ASFV-G-ΔMGF after Intramuscular Vaccination of Domestic Pigs and Oral Vaccination of Wild Boar. Pathogens 2022, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Espinoza, N.; Velazquez-Salinas, L.; Gay, C.G.; Gladue, D.P. ASFV-G-∆I177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses 2021, 13, 765. [Google Scholar] [CrossRef]
- Ballesteros, C.; Sage, M.; Fisher, P.; Massei, G.; Mateo, R.; De La Fuente, J.; Rossi, S.; Gortázar, C. Iophenoxic Acid as a Bait Marker for Wild Mammals: Efficacy and Safety Considerations. Mammal Review 2013, 43, 156–166. [Google Scholar] [CrossRef]
- Attreed, S.E.; Silva, C.; Abbott, S.; Ramirez-Medina, E.; Espinoza, N.; Borca, M.V.; Gladue, D.P.; Diaz-San Segundo, F. A Highly Effective African Swine Fever Virus Vaccine Elicits a Memory T Cell Response in Vaccinated Swine. Pathogens 2022, 11, 1438. [Google Scholar] [CrossRef]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Rai, A.; Espinoza, N.; Velazquez-Salinas, L.; Gladue, D.P. ASF Vaccine Candidate ASFV-G-∆I177L Does Not Exhibit Residual Virulence in Long-Term Clinical Studies. Pathogens 2023, 12, 805. [Google Scholar] [CrossRef]
- Tran, X.H.; Phuong, L.T.T.; Huy, N.Q.; Thuy, D.T.; Nguyen, V.D.; Quang, P.H.; Ngôn, Q.V.; Rai, A.; Gay, C.G.; Gladue, D.P.; et al. Evaluation of the Safety Profile of the ASFV Vaccine Candidate ASFV-G-ΔI177L. Viruses 2022, 14, 896. [Google Scholar] [CrossRef]
- Tran, X.H.; Le, T.T.P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African Swine Fever Virus Vaccine Candidate ASFV-G- Δ I177L Efficiently Protects European and Native Pig Breeds against Circulating Vietnamese Field Strain. Transbounding Emerging Dis 2022, 69. [Google Scholar] [CrossRef]
- Ortmann, S.; Lindner, T.; Meyer, D.; Wiedemann, A.; Postel, A.; Becher, P.; Vos, A. Comparison of the Serological Responses in Pigs after Oral Vaccination against Classical Swine Fever Using Two Different Types of Bait. Veterinary Immunology and Immunopathology 2025, 284, 110937. [Google Scholar] [CrossRef] [PubMed]
- Relimpio, D.; Serna Moreno, M.D.C.; Horta Muñoz, S.; Viaplana, E.; Mancera, J.C.; Urniza, A.; De La Fuente, J.; Gortázar, C. Improved Stability and Specificity of Baits for Oral Administration of Substances to Wild Boar. Preventive Veterinary Medicine 2024, 229, 106241. [Google Scholar] [CrossRef]
- Van Den Born, E.; Olasz, F.; Mészáros, I.; Göltl, E.; Oláh, B.; Joshi, J.; Van Kilsdonk, E.; Segers, R.; Zádori, Z. African Swine Fever Virus Vaccine Strain Asfv-G-∆I177l Reverts to Virulence and Negatively Affects Reproductive Performance. npj Vaccines 2025, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Mittelholzer, C.; Moser, C.; Tratschin, J.-D.; Hofmann, M.A. Analysis of Classical Swine Fever Virus Replication Kinetics Allows Differentiation of Highly Virulent from Avirulent Strains. Veterinary Microbiology 2000, 74, 293–308. [Google Scholar] [CrossRef]
- Ballesteros, C.; Vicente, J.; Carrasco-García, R.; Mateo, R.; De La Fuente, J.; Gortázar, C. Specificity and Success of Oral-Bait Delivery to Eurasian Wild Boar in Mediterranean Woodland Habitats. Eur J Wildl Res 2011, 57, 749–757. [Google Scholar] [CrossRef]
- Pachauri, R.; Martínez-Guijosa, J.; Ferreras-Colino, E.; Ferreres, J.; Relimpio, D. Optimizing the Baiting Strategy for Oral Vaccine Delivery to Wild Boar. Eur J Wildl Res 2024, 70, 18. [Google Scholar] [CrossRef]
- Leus, K.; Goodall, G.P.; Macdonald, A.A. Anatomy and Histology of the Babirusa(Babyrousa Babyrussa) Stomach. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie 1999, 322, 1081–1092. [Google Scholar] [CrossRef]
- Ballesteros, C.; Vicente, J.; Morriss, G.; Jockney, I.; Rodríguez, O.; Gortázar, C.; De La Fuente, J. Acceptance and Palatability for Domestic and Wildlife Hosts of Baits Designed to Deliver a Tuberculosis Vaccine to Wild Boar Piglets. Preventive Veterinary Medicine 2011, 98, 198–203. [Google Scholar] [CrossRef]
- Snow, N.P.; Glow, M.P.; Lavelle, M.J.; Fischer, J.W.; Cook, S.M.; Lutman, M.W.; Foster, J.A.; VerCauteren, K.C. Dry and Unwary Are Best Conditions for Baiting Wild Pigs (Sus Scrofa). Applied Animal Behaviour Science 2022, 257, 105777. [Google Scholar] [CrossRef]
- Beltrán-Beck, B.; Romero, B.; Sevilla, I.A.; Barasona, J.A.; Garrido, J.M.; González-Barrio, D.; Díez-Delgado, I.; Minguijón, E.; Casal, C.; Vicente, J.; et al. Assessment of an Oral Mycobacterium Bovis BCG Vaccine and an Inactivated M. Bovis Preparation for Wild Boar in Terms of Adverse Reactions, Vaccine Strain Survival, and Uptake by Nontarget Species. Clin. Vaccine Immunol. 2014, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Shieh, Y.C.; Wang, R.R. Features of Material Surfaces Affecting Virus Adhesion as Determined by Nanoscopic Quantification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 602, 125109. [Google Scholar] [CrossRef]
- Richter, Ł.; Księżarczyk, K.; Paszkowska, K.; Janczuk-Richter, M.; Niedziółka-Jönsson, J.; Gapiński, J.; Łoś, M.; Hołyst, R.; Paczesny, J. Adsorption of Bacteriophages on Polypropylene Labware Affects the Reproducibility of Phage Research. Sci Rep 2021, 11, 7387. [Google Scholar] [CrossRef]
- Vijaya Bhaskar, T.B.; Roch, T.; Romero, O.; Ma, N.; Kratz, K.; Lendlein, A. Single and Competitive Protein Adsorption on Polymeric Surfaces. Polymers for Advanced Techs 2015, 26, 1387–1393. [Google Scholar] [CrossRef]
- Zimmermann, L.; Bartosova, Z.; Braun, K.; Oehlmann, J.; Völker, C.; Wagner, M. Plastic Products Leach Chemicals That Induce In Vitro Toxicity under Realistic Use Conditions. Environ. Sci. Technol. 2021, 55, 11814–11823. [Google Scholar] [CrossRef]
- Hemmink, J.D.; Shroff, S.; Chege, N.; Haapakoski, M.; Dixon, L.K.; Marjomäki, V. A Rosin-Functionalized Plastic Surface Inactivates African Swine Fever Virus. Front. Vet. Sci. 2024, 11, 1441697. [Google Scholar] [CrossRef]
- Feliziani, F.; Blome, S.; Petrini, S.; Giammarioli, M.; Iscaro, C.; Severi, G.; Convito, L.; Pietschmann, J.; Beer, M.; De Mia, G.M. First Assessment of Classical Swine Fever Marker Vaccine Candidate CP7_E2alf for Oral Immunization of Wild Boar under Field Conditions. Vaccine 2014, 32, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Staubach, C.; Blome, S.; Guberti, V.; Thulke, H.-H.; Vos, A.; Koenen, F.; Le Potier, M.-F. Controlling of CSFV in European Wild Boar Using Oral Vaccination: A Review. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef]
- Asma, S.T.; Bobiş, O.; Bonta, V.; Acaroz, U.; Shah, S.R.A.; Istanbullugil, F.R.; Arslan-Acaroz, D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022, 14, 3579. [Google Scholar] [CrossRef]
- Ballesteros, C.; Gortázar, C.; Canales, M.; Vicente, J.; Lasagna, A.; Gamarra, J.A.; Carrasco-García, R.; Fuente, J.D.L. Evaluation of Baits for Oral Vaccination of European Wild Boar Piglets. Research in Veterinary Science 2009, 86, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Garrido, J.M.; Sevilla, I.A.; Beltrán-Beck, B.; Minguijón, E.; Ballesteros, C.; Galindo, R.C.; Boadella, M.; Lyashchenko, K.P.; Romero, B.; Geijo, M.V.; et al. Protection against Tuberculosis in Eurasian Wild Boar Vaccinated with Heat-Inactivated Mycobacterium Bovis. PLoS ONE 2011, 6, e24905. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; AlKhamis, M.; Carlsson, U.; Brito, B.; Carrasco-Medanic, R.; Whedbee, Z.; Willeberg, P. Global Animal Disease Surveillance. Spatial and Spatio-temporal Epidemiology 2011, 2, 135–145. [Google Scholar] [CrossRef]
- Artois, M.; Bengis, R.; Delahay, R.J.; Duchêne, M.-J.; Duff, J.P.; Ferroglio, E.; Gortazar, C.; Hutchings, M.R.; Kock, R.A.; Leighton, F.A.; et al. Wildlife Disease Surveillance and Monitoring. In Management of Disease in Wild Mammals; Delahay, R.J., Smith, G.C., Hutchings, M.R., Eds.; Springer Japan: Tokyo, 2009; pp. 187–213. ISBN 978-4-431-77133-3. [Google Scholar]
- Pikalo, J.; Deutschmann, P.; Fischer, M.; Roszyk, H.; Beer, M.; Blome, S. African Swine Fever Laboratory Diagnosis—Lessons Learned from Recent Animal Trials. Pathogens 2021, 10, 177. [Google Scholar] [CrossRef]
- Kosowska, A.; Barasona, J.A.; Barroso-Arévalo, S.; Rivera, B.; Domínguez, L.; Sánchez-Vizcaíno, J.M. A New Method for Sampling African Swine Fever Virus Genome and Its Inactivation in Environmental Samples. Sci Rep 2021, 11, 21560. [Google Scholar] [CrossRef]
- Grau, F.R.; Schroeder, M.E.; Mulhern, E.L.; McIntosh, M.T.; Bounpheng, M.A. Detection of African Swine Fever, Classical Swine Fever, and Foot-and-Mouth Disease Viruses in Swine Oral Fluids by Multiplex Reverse Transcription Real-Time Polymerase Chain Reaction. J VET Diagn Invest 2015, 27, 140–149. [Google Scholar] [CrossRef]
- De Carvalho Ferreira, H.C.; Weesendorp, E.; Quak, S.; Stegeman, J.A.; Loeffen, W.L.A. Suitability of Faeces and Tissue Samples as a Basis for Non-Invasive Sampling for African Swine Fever in Wild Boar. Veterinary Microbiology 2014, 172, 449–454. [Google Scholar] [CrossRef]
- Barasona, J.A.; Gallardo, C.; Cadenas-Fernández, E.; Jurado, C.; Rivera, B.; Rodríguez-Bertos, A.; Arias, M.; Sánchez-Vizcaíno, J.M. First Oral Vaccination of Eurasian Wild Boar Against African Swine Fever Virus Genotype II. Front. Vet. Sci. 2019, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Kosowska, A.; Cadenas-Fernández, E.; Barroso, S.; Sánchez-Vizcaíno, J.M.; Barasona, J.A. Distinct African Swine Fever Virus Shedding in Wild Boar Infected with Virulent and Attenuated Isolates. Vaccines 2020, 8, 767. [Google Scholar] [CrossRef]
- Tran, X.H.; Phuong, L.T.T.; Huy, N.Q.; Thuy, D.T.; Nguyen, V.D.; Quang, P.H.; Ngôn, Q.V.; Rai, A.; Gay, C.G.; Gladue, D.P.; et al. Evaluation of the Safety Profile of the ASFV Vaccine Candidate ASFV-G-ΔI177L. Viruses 2022, 14, 896. [Google Scholar] [CrossRef]





| Wild boar | ||||
| Group | Sex and age | origin | rearing |
Bait used for immunization |
| 1 | 1 adult female | FLI | parent | Ceva |
| 2 | 1 adult male, 1 adult female | FLI | parent | IREC |
| 3 | 1 juvenile male, 1 juvenile female | found orphaned | hand | IREC |
| 4 | 3 juvenile females, 1 juvenile male | wildlife park | parent | IREC |
| 5 | 3 juvenile females, 2 juvenile males | wildlife park | parent | Ceva |
| 6 | 2 juvenile females, 2 juvenile males | wildlife park | parent | Ceva |
| 7 | 1 subadult male, 1 adult female | wildlife park | parent | IREC |
| Zoo-housed Suiformes | ||||
| Group | Sex and age | origin | rearing |
Bait used for immunization |
| Sulawesi babirusa |
1 adult male, 2 adult females | zoo | parent | not immunized |
| Visayan warty pig |
1 adult male, 2 adult females, 1 juvenile female | zoo | parent | not immunized |
| Chacoan peccary |
1 adult male, 2 adult females, 3 juveniles |
zoo | parent | not immunized |
| Bait and matrix properties | ||||
| Manufacturer | Ceva | IREC | ||
| Type | Pestiporc oral (CPP) | Rabitec (CRT) | Classic (IBC) | Classic with crushed walnut shells (IBW) |
| Size | 40 x 40 x 15 mm | 65 x 35 x 20 mm | 45 - 50 x 25 mm | 45 - 50 x 25 mm |
| Weight | 15 g | ~25 g | ~ 20 g | ~ 20 g |
| Bait matrix | corn, fat | gelatine, egg powder, apple pomace | piglet feed, corn, sucrose, honey | piglet feed, corn, sucrose, honey, crushed walnut shells |
| Consistency | solid, crumbly | flexible, rubbery | solid, tough-elastic, crumbly | solid, tough-elastic, crumbly |
| Color | corn | corn | dark green | dark green |
| Melting point | 30 °C | 60 °C | none | none |
| Vaccine container properties | ||||
| Manufacturer | Ceva (sachet) | IREC (tube) | ||
| Type | Pestiporc oral (CPP) | Rabitec (CRT) | Classic (IBC) | Classic with crushed walnut shells (IBW) |
| Size | 30 x 30 x 7 mm | 80 x 30 x 8 mm | 41 x 10.7 mm | 41 x 10.7 mm |
| Material | polyvinyl chloride (PVC) capsule sealed with aluminum foil | sachet with 3 laminated layers incl. aluminum foil | polypropylen (PP) | polypropylen (PP) |
| Consistency | rigid, inflexible (blister) | soft, flexible (sachet) | rigid, tough-elastic (tube) | rigid, tough-elastic (tube) |
| Manufacturer | Ceva | IREC | Daily total Score | ||
|---|---|---|---|---|---|
| Type | Pestiporc oral (CPP) | Rabitec (CRT) | Classic (IBC) | Classic with crushed walnut shells (IBW) | |
| Day 1 | 17 | 13 | 17 | 19 | 66 |
| Day 2 | 11 | 9 | 16 | 16 | 52 |
| Day 3 | 18 | 18 | 20 | 20 | 76 |
| Day 4 | 15 | 17 | 19 | 19 | 70 |
| Day 5 | 17 | 18 | 20 | 20 | 75 |
| Bait score | 78 | 75 | 92 | 94 | |
| Manufacturer | Ceva | IREC | ||
|---|---|---|---|---|
| Type | Pestiporc oral (CPP) | Rabitec (CRT) | Classic (IBC) | Classic with crushed walnut shells (IBW) |
| Sulawesi babirusa male | 2 | 0 | 1 | 1 |
| Sulawesi babirusa female 1 | 2 | 1 | 2 | 2 |
| Sulawesi babirusa female 2 | 2 | 1 | 1 | 1 |
| Species score | 6 | 2 | 4 | 4 |
| Visayan warty pig male | 2 | 1 | 1 | 1 |
| Visayan warty pig female 1 | 1 | 2 | 2 | 2 |
| Visayan warty pig female 2 | 2 | 2 | 2 | 2 |
| Species score | 5 | 5 | 5 | 5 |
| Chacoan peccary* | 2 | 0 | 1 | 1 |
| Species score | 2 | 0 | 1 | 1 |
| Pen no. | Animal ID | 0 dpv | 44/45 dpv |
|---|---|---|---|
| 1 (Ceva) | 12 | neg | neg |
| 2 (IREC) | 13 | neg | neg |
| 14 | neg | neg | |
| 3 (IREC) | 99 | neg | neg |
| 100 | neg | neg | |
| 4 (IREC) | 76 | neg | neg |
| 77 | neg | 1/10,240 | |
| 78 | neg | neg | |
| 79 | neg | neg | |
| 5 (Ceva) | 84 | neg | 1/5,120 |
| 85 | neg | 1/5,120 | |
| 86 | neg | 1/5,120 | |
| 87 | neg | 1/5,120 | |
| 88 | neg | 1/5120 | |
| 6 (Ceva) | 80 | neg | 1/10,240 |
| 81 | neg | 1/5,120 | |
| 172a | neg | neg | |
| 172b | neg | neg | |
| 7 (IREC) | 20 | neg | 1/20,480 |
| 21 | neg | neg |
| Organ | ||||||||
|---|---|---|---|---|---|---|---|---|
| Animal ID | Tonsil | Liver | tra LN | mand LN | gh LN | ing LN | spleen | medret LN |
| 77 | / | / | / | pos | / | / | / | neg |
| 84 | / | / | / | / | pos | / | / | / |
| 86 | neg | / | neg | pos | pos | neg | / | / |
| 87 | / | pos | / | pos | pos | / | neg | neg |
| 88 | / | / | / | / | neg | / | / | / |
| 80 | / | / | / | pos | pos | / | / | / |
| 81 | / | / | / | neg | neg | / | / | / |
| 20 | neg | / | / | neg | pos | / | / | pos |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
