Polymer-based insulation materials are widely used to enhance the energy efficiency of buildings; however, their growing application raises concerns related to resource use and end-of-life management. Rigid polyurethane (PUR) foams are key core materials in structural insulated panels due to their favorable thermal and mechanical performance, yet their life cycle environmental im-pacts—particularly at end-of-life—remain insufficiently quantified. In this study, a cradle-to-grave life cycle assessment (LCA) of PUR-based insulation used in structural insulated panel systems is conducted in accordance with ISO 14040/44 and EN 15804 standards. The assessment is performed using Sphera LCA software and the CML 2016 impact assessment method. Formulation-level variations of rigid PUR foams, including changes in methylene diphenyl diisocyanate content and pentane blowing agent ratio, are explicitly incorporated to evaluate their influence on key environmental impact categories. The results indicate that increasing pentane content leads to higher global warming potential, while this effect may be mitigated or intensified by concurrent changes in diisocyanate content and foam density in fully formulated systems. Three end-of-life scenari-os—landfilling, incineration with energy recovery, and mechanical recycling—are analyzed. The findings provide material-level, decision-relevant insights that support environmentally informed formulation strategies and contribute to the development of more circular polymer-based insulation solutions for the built environment.