Submitted:
20 January 2026
Posted:
22 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theoretical Framework
2.1. Neoclassical Approach and Capital Deepening
2.2. Internal Growth and Knowledge Dissemination
2.3. General Purpose Technology (GPT) and Energy as a Complementary Asset
2.4. Task-Based Approach and the Jevons Paradox
2.5. Temporal Inconsistency in the Relationship Between AI and Energy Demand: The EKC Hypothesis and Scale Effect
2.6. The Leveraging Effect on Growth: Sustainable Energy as a Regulatory Variable
3. Literature
3.1. The Relationship Between Artificial Intelligence and Growth
3.2. The Relationship Between Digitalisation, AI and Energy Demand
3.3. Energy Consumption, Sustainable Energy and Growth
4. Materials and Methods
4.1. Data Description and Sources
| Variable | Proxy | Source | Time Range | Missing Years1 | Data Completion Procedures |
| Economic Growth | GDP per capita (constant 2015 US$) | World Bank | 2010-2025 | 2025 | Growth Rate Extrapolation (Trend Rate Method) |
| AI Investment (for model B) |
Stanford - Total AI Private Investment2 | The Global AI Vibrancy Tool of Stanford University via [36] | 2017-20243 | - | - |
|
AI Investment (for model A) |
AI Composite Index [(0.5.(ICT Goods Exports (% of total goods exports))+(0.5.(ICT Service Exports (% of service exports, BoP))] |
World Bank |
2010-2024 |
2025 |
Growth Rate Extrapolation (Trend Rate Method) |
| Sustainable Energy Capacity | Renewable electricity capacity share (%) | IRENASTAT Online Data Query Tool via [37] | 2010-2025 | 2025 | Growth Rate Extrapolation (Trend Rate Method) |
| Energy Demand | Energy use per capita (kg oil equivalent per person) | World Bank | 2010-2025 | 2024-2025 | Growth Rate Extrapolation (Trend Rate Method) |
| Trade openness |
Trade (% of GDP) | World Bank | 2010-2025 | 2025 | Growth Rate Extrapolation (Trend Rate Method) |
| Capital Deeping | Gross Fixed Capital Formation (% of GDP) | World Bank | 2010-2025 | 2025 | Growth Rate Extrapolation (Trend Rate Method) |
| CO2 emission | Carbon dioxide (CO2) emissions excluding LULUCF per capita (t CO2e/capita) | World Bank | 2010-2025 | 2025 | Growth Rate Extrapolation (Trend Rate Method) |
| R&D | R&D Expenditure (% of GDP) | World Bank | 2010-2025 | 2024-2025 | Growth Rate Extrapolation (Trend Rate Method) |
| Financial Development | IMF Financial Development Index | International Monetary Fund | 2010-2025 | 2021-2022-2023-2024-2025 | Hibrit Method4 |
| Energy Prices | Energy Price Level PPP Index | World Bank (WDI) | 2010-2025 | 2025 | Growth Rate Extrapolation (Trend Rate Method) |
4.2. Data Completion Procedures
4.2.1. Growth Rate Extrapolation Method
4.2.2. Hybrid Method (Kalman-Like Smoothing + Growth Rate Extrapolation)
4.3. Data Transformations
4.4. Model Framework and Specification
4.5. Econometric Specification
4.6. Estimation Techniques
4.7. Diagnostic and Robustness Tests
5. Results
5.1. For Model A1 and A2
5.2. For Model B1 and B2
6. Discussion
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| G7 | Multidisciplinary Digital Publishing Institute |
| AI | Artificial Intelligence |
| FE | Fixed Effect |
| R&D | Research & Development |
| GPT | General Purpose Technologies |
| EKC | Environmental Kuznets Curve |
| TFP | Total Factor Productivity |
| DT | Direct Technological |
| GDP | Gross Domestic Product |
| EU | European Union |
| US | United States |
| ICT | Information and Communication Technology |
| SMEs | Small and Medium Enterprise |
| OLS | Ordinary Least Square |
| GMM | Generalized Method of Moments |
| OECD | Generalized Method of Moments |
| ARDL | Autoregressive Distributed Lag Model |
| NARDL | Autoregressive Distributed Lag Model |
| VECM | Nonlinear Autoregressive Distributed Lag Model |
| FMOLS | Vector Error Correction Model |
| DOLS | Dynamic Ordinary Least Squares |
| GPUs | Dynamic Ordinary Least Squares |
| M&A | Merger & Acquisition |
| IPO | Total AI Public Offering |
| WDI | World Development Indicators |
| PPP | Purchasing Power Parity |
| GFCF | Gross Fixed Capital Formation |
| IMF | International Monetary Fund |
| FDI | Financial Development Index |
| CIPS | Cross-Sectionally Augmented IPS Test |
| RE | Renewable Energy share of Electricity Capacity |
| EPL | Energy Price Level |
Appendix A
Appendix A.1
| lnGDPpc | AIproxy | RE | AIproxyxRE | lnEnergyDemand | Trade | lnCO2 | R_D | FDI | lnEPL | GFCF | |
| lnGDPpc | 1.0000 | -0.6939 | 0.1044 | -0.5368 | 0.5112 | 0.1345 | 0.1779 | 0.1816 | 0.7663 | 0.4934 | -0.8649 |
| AIproxy | -0.6939 | 1.0000 | -0.2279 | 0.6279 | -0.0733 | -0.0463 | 0.2204 | 0.4001 | -0.4590 | -0.3077 | 0.8797 |
| RE | 0.1044 | -0.2279 | 1.0000 | 0.5479 | -0.0259 | 0.2078 | -0.1430 | -0.4535 | -0.2280 | 0.3994 | -0.1734 |
| AIproxyxRE | -0.5368 | 0.6279 | 0.5479 | 1.0000 | -0.1514 | -0.0639 | 0.0430 | -0.0831 | -0.5403 | -0.0089 | 0.6040 |
| lnEnergyDemand | 0.5112 | -0.0733 | -0.0259 | -0.1514 | 1.0000 | 0.0176 | 0.8357 | 0.2467 | 0.3466 | 0.4960 | -0.1702 |
| Trade | 0.1345 | -0.0463 | 0.2078 | -0.0639 | 0.0176 | 1.0000 | -0.1744 | 0.1268 | -0.1502 | 0.2823 | -0.1539 |
| lnCO2 | 0.1779 | 0.2204 | -0.1430 | 0.0430 | 0.8357 | -0.1744 | 1.0000 | 0.3032 | 0.1516 | 0.5080 | 0.1536 |
| R_D | 0.1816 | 0.4001 | -0.4535 | -0.0831 | 0.2467 | 0.1268 | 0.3032 | 1.0000 | 0.3433 | 0.0887 | 0.1858 |
| FDI | 0.7663 | -0.4590 | -0.2280 | -0.5403 | 0.3466 | -0.1502 | 0.1516 | 0.3433 | 1.0000 | 0.1513 | -0.5735 |
| lnEPL | 0.4934 | -0.3077 | 0.3994 | -0.0089 | 0.4960 | 0.2823 | 0.5080 | 0.0887 | 0.1513 | 1.0000 | -0.3712 |
| GFCF | -0.8649 | 0.8797 | -0.1734 | 0.6040 | -0.1702 | -0.1539 | 0.1536 | 0.1858 | -0.5735 | -0.3712 | 1.0000 |
| lnEnergyDemand | AIproxy | AIProxy2 | lnGDPpc | RE | Trade | lnCO2 | R_D | FDI | lnEPL | GFCF | |
| lnEnergyDemand | 1.0000 | -0.0733 | -0.1299 | 0.5112 | -0.0259 | 0.0176 | 0.8357 | 0.2467 | 0.3466 | 0.4960 | -0.1702 |
| AIproxy | -0.0733 | 1.0000 | 0.9908 | -0.6939 | -0.2279 | -0.0463 | 0.2204 | 0.4001 | -0.4590 | -0.3077 | 0.8797 |
| AIProxy2 | -0.1299 | 0.9908 | 1.0000 | -0.7194 | -0.2016 | -0.0643 | 0.1585 | 0.3477 | -0.4880 | -0.3597 | 0.8759 |
| lnGDPpc | 0.5112 | -0.6939 | -0.7194 | 1.0000 | 0.1044 | 0.1345 | 0.1779 | 0.1816 | 0.7663 | 0.4934 | -0.8649 |
| RE | -0.0259 | -0.2279 | -0.2016 | 0.1044 | 1.0000 | 0.2078 | -0.1430 | -0.4535 | -0.2280 | 0.3994 | -0.1734 |
| Trade | 0.0176 | -0.0463 | -0.0643 | 0.1345 | 0.2078 | 1.0000 | -0.1744 | 0.1268 | -0.1502 | 0.2823 | -0.1539 |
| lnCO2 | 0.8357 | 0.2204 | 0.1585 | 0.1779 | -0.1430 | -0.1744 | 1.0000 | 0.3032 | 0.1516 | 0.5080 | 0.1536 |
| R_D | 0.2467 | 0.4001 | 0.3477 | 0.1816 | -0.4535 | 0.1268 | 0.3032 | 1.0000 | 0.3433 | 0.0887 | 0.1858 |
| FDI | 0.3466 | -0.4590 | -0.4880 | 0.7663 | -0.2280 | -0.1502 | 0.1516 | 0.3433 | 1.0000 | 0.1513 | -0.5735 |
| lnEPL | 0.4960 | -0.3077 | -0.3597 | 0.4934 | 0.3994 | 0.2823 | 0.5080 | 0.0887 | 0.1513 | 1.0000 | -0.3712 |
| GFCF | -0.1702 | 0.8797 | 0.8759 | -0.8649 | -0.1734 | -0.1539 | 0.1536 | 0.1858 | -0.5735 | -0.3712 | 1.0000 |
Appendix A.2
| lnGDPpc | lnAIInvest | RE | AIInvestxRE | lnEnergyDemand | Trade | lnCO2 | R_D | FDI | lnEPL | GFCF | |
| lnGDPpc | 1.0000 | 0.0127 | 0.0290 | 0.0124 | 0.4300 | 0.1997 | 0.1120 | 0.1739 | 0.6823 | 0.5002 | -0.8582 |
| lnAIInvest | 0.0127 | 1.0000 | -0.0519 | 0.1785 | 0.2518 | -0.4825 | 0.3299 | 0.2415 | 0.0869 | -0.0123 | 0.2765 |
| RE | 0.0290 | -0.0519 | 1.0000 | 0.9709 | -0.1091 | 0.2871 | -0.1788 | -0.6423 | -0.3277 | 0.4507 | -0.2785 |
| AIInvestxRE | 0.0124 | 0.1785 | 0.9709 | 1.0000 | -0.0579 | 0.1893 | -0.1048 | -0.5571 | -0.3067 | 0.4418 | -0.1855 |
| lnEnergyDemand | 0.4300 | 0.2518 | -0.1091 | -0.0579 | 1.0000 | -0.0414 | 0.8512 | 0.2512 | 0.2272 | 0.4579 | -0.0516 |
| Trade | 0.1997 | -0.4825 | 0.2871 | 0.1893 | -0.0414 | 1.0000 | -0.2641 | 0.0894 | -0.2399 | 0.3112 | -0.2682 |
| lnCO2 | 0.1120 | 0.3299 | -0.1788 | -0.1048 | 0.8512 | -0.2641 | 1.0000 | 0.3325 | 0.0796 | 0.4520 | 0.2690 |
| R_D | 0.1739 | 0.2415 | -0.6423 | -0.5571 | 0.2512 | 0.0894 | 0.3325 | 1.0000 | 0.3205 | 0.0743 | 0.2154 |
| FDI | 0.6823 | 0.0869 | -0.3277 | -0.3067 | 0.2272 | -0.2399 | 0.0796 | 0.3205 | 1.0000 | 0.1235 | -0.4945 |
| lnEPL | 0.5002 | -0.0123 | 0.4507 | 0.4418 | 0.4579 | 0.3112 | 0.4520 | 0.0743 | 0.1235 | 1.0000 | -0.3766 |
| GFCF | -0.8582 | 0.2765 | -0.2785 | -0.1855 | -0.0516 | -0.2682 | 0.2690 | 0.2154 | -0.4945 | -0.3766 | 1.0000 |
| lnEnergyDemand | lnAIInvest | lnAIInvest2 | lnGDPpc | RE | Trade | lnCO2 | R_D | FDI | lnEPL | GFCF | |
| lnEnergyDemand | 1.0000 | 0.2518 | 0.2533 | 0.4300 | -0.1091 | -0.0414 | 0.8512 | 0.2512 | 0.2272 | 0.4579 | -0.0516 |
| lnAIInvest | 0.2518 | 1.0000 | 0.9969 | 0.0127 | -0.0519 | -0.4825 | 0.3299 | 0.2415 | 0.0869 | -0.0123 | 0.2765 |
| lnAIInvest2 | 0.2533 | 0.9969 | 1.0000 | 0.0159 | -0.0657 | -0.5158 | 0.3369 | 0.2321 | 0.0891 | -0.0323 | 0.2666 |
| lnGDPpc | 0.4300 | 0.0127 | 0.0159 | 1.0000 | 0.0290 | 0.1997 | 0.1120 | 0.1739 | 0.6823 | 0.5002 | -0.8582 |
| RE | -0.1091 | -0.0519 | -0.0657 | 0.0290 | 1.0000 | 0.2871 | -0.1788 | -0.6423 | -0.3277 | 0.4507 | -0.2785 |
| Trade | -0.0414 | -0.4825 | -0.5158 | 0.1997 | 0.2871 | 1.0000 | -0.2641 | 0.0894 | -0.2399 | 0.3112 | -0.2682 |
| lnCO2 | 0.8512 | 0.3299 | 0.3369 | 0.1120 | -0.1788 | -0.2641 | 1.0000 | 0.3325 | 0.0796 | 0.4520 | 0.2690 |
| R_D | 0.2512 | 0.2415 | 0.2321 | 0.1739 | -0.6423 | 0.0894 | 0.3325 | 1.0000 | 0.3205 | 0.0743 | 0.2154 |
| FDI | 0.2272 | 0.0869 | 0.0891 | 0.6823 | -0.3277 | -0.2399 | 0.0796 | 0.3205 | 1.0000 | 0.1235 | -0.4945 |
| lnEPL | 0.4579 | -0.0123 | -0.0323 | 0.5002 | 0.4507 | 0.3112 | 0.4520 | 0.0743 | 0.1235 | 1.0000 | -0.3766 |
| GFCF | -0.0516 | 0.2765 | 0.2666 | -0.8582 | -0.2785 | -0.2682 | 0.2690 | 0.2154 | -0.4945 | -0.3766 | 1.0000 |
| 1 | In line with studies conducted by [34] and [21] growth rate extrapolation (5-year trend) was used for the gaps in recent years, In line with the studies conducted by [35], Kalman Filter-like smoothing (3-year moving average) and Growth Rate Extrapolation (Trend Rate Method) were used together in the data set with 5 years of missing data (International Monetary Fund Financial Development Index) because there was >4 missing data. The purpose of this method is to reduce noise in the series. This method extends the series while preserving the continuity of the trend, suppresses fluctuations, and keeps long-term forecasts realistically stable. Subsequently, the growth extrapolation rate method was used. This approach preserves domestic dynamics and provides a balanced panel estimate. This enables a forward-looking sustainability analysis for the 2025 horizon. |
| 2 | Total AI Private Investment data has been adjusted to real terms using the US Consumer Price Index for all countries. The Consumer Price Index or All Urban Consumers: All Items, US City Average is sourced from the Federal Reserve Bank. Index 1982-1984=100, Seasonally Adjusted. |
| 4 | The Hybrid Method was used because there was >4 missing data points. The Hybrid Method incorporates Kalman Filter-like smoothing (3-year moving average) and Growth Rate Extrapolation (Trend Rate Method) techniques. |
References
- Graetz, G., & Michaels, G. (2018). Robots at work. The Review of Economics and Statistics, 100(5), 753–768. [CrossRef]
- Venturini, F. (2022). Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution. Research Policy, 51(10), 104332. [CrossRef]
- Crompton, P., & Kwibuka, D. (2020). Artificial intelligence and economic growth. Journal of Economic Structures, 9, Article 39. [CrossRef]
- Lange, S., Pohl, J., & Santarius, T. (2020). Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics, 176, 106760. [CrossRef]
- Moyer, J. D., & Hughes, B. B. (2012). ICTs: Do they contribute to increased carbon emissions? Technological Forecasting and Social Change, 79(5), 919–931. [CrossRef]
- Ramzan, M., Xie, Y., Liu, J., & Fatima, N. (2022). Asymmetric impact of ICT on energy efficiency and carbon emissions: Evidence from OECD countries using Fourier ARDL and NARDL approaches. Energy Economics, 112, 106125. [CrossRef]
- Yi, M., Zhang, Y., Wang, Y., & Sun, P. (2022). Digital economy and energy intensity: Evidence from China. Energy Economics, 107, 105861. [CrossRef]
- Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65–94. [CrossRef]
- Swan, T. W. (1956). Economic growth and capital accumulation. Economic Record, 32(2), 334-361. [CrossRef]
- Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5, Part 2), S71–S102. [CrossRef]
- Aghion, P., & Howitt, P. (1992). A model of growth through creative destruction. Econometrica, 60(2), 323-351. [CrossRef]
- Cockburn, I. M., Henderson, R. M., & Stern, S. (2018). The impact of artificial intelligence on innovation (NBER Working Paper No. 24449). National Bureau of Economic Research. [CrossRef]
- Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies ‘Engines of growth’?. Journal of Econometrics, 65(1), 83-108. [CrossRef]
- Brynjolfsson, E., Rock, D., & Syverson, C. (2018). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. NBER Working Paper Series, No. 24001. National Bureau of Economic Research.
- Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, 108(6), 1488-1542. [CrossRef]
- Jevons, W. S. (1865). The Coal Question: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal-Mines. Macmillan and Co.
- Sorrell, S. (2009). Jevons’ Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, 37(4), 1456-1469. [CrossRef]
- Grossman, G. M., & Krueger, A. B. (1991). Environmental impacts of a North American free trade agreement. NBER Working Paper Series, No. 3914. National Bureau of Economic Research. [CrossRef]
- Dhar, P. (2020). The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8), 423-425. [CrossRef]
- Hu, J., Du, H., & Huang, N. (2023). The impact of different types of technology innovation on energy efficiency: Evidence from China’s high-tech industries. Energy, 268, 126662. [CrossRef]
- Bretschger, L. (2009). Energy prices, growth, and the channels in between: Theory and evidence. Resource and Energy Economics, 31(3), 163–179. [CrossRef]
- Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102(1), 131-166. [CrossRef]
- Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of Political Economy, 128(6), 2188–2244. [CrossRef]
- Damioli, G., Van Roy, V., & Vertesy, D. (2021). The impact of artificial intelligence on labor productivity. Eurasian Business Review, 11(1), 1–25. [CrossRef]
- Murshed, M. (2020). ICT trade and renewable energy transition: Empirical evidence from South Asian economies. Renewable Energy, 155, 1084–1095. [CrossRef]
- Ren, S., Hao, Y., & Wu, H. (2021). Digitalization and energy structure: Is there a structural transformation effect? Energy Economics, 103, 105616. [CrossRef]
- Apergis, N., & Payne, J. E. (2010). Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy, 38(1), 656–660. [CrossRef]
- Tugcu, C. T., Ozturk, I., & Aslan, A. (2012). Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Economics, 34(6), 1942–1950. [CrossRef]
- Bhattacharya, M., Paramati, S. R., Ozturk, I., & Bhattacharya, S. (2016). The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 162, 733–741. [CrossRef]
- Simionescu, M., Strielkowski, W., & Kalyugina, S. (2020). The impact of renewable energy on economic growth: Evidence from Central and Eastern European countries. Energy Reports, 6, 217–223. [CrossRef]
- Bouznit, M., Pablo-Romero, M. P., & Sánchez-Braza, A. (2022a). Economic growth, human capital, and energy consumption in Algeria: Evidence from cointegrating polynomial regression and a simultaneous equations model. Environmental Science and Pollution Research, 30, 23450–23466. [CrossRef]
- Hu, M., Xie, R., & Fang, J. (2023). Renewable energy transition, energy prices, and sustainable economic growth: Evidence from OECD countries. Energy Economics, 120, 106676. [CrossRef]
- Bouznit, M., Pablo-Romero, M. P., & Sánchez-Braza, A. (2022b). Economic growth and energy consumption nexus in MENA countries: A panel data analysis with structural breaks. Energy Economics, 107, 105880. [CrossRef]
- Shahbaz, M., Raghutla, C., Chittedi, K. R., Jiao, Z., & Vo, X. V. (2020). Renewable energy consumption and economic growth nexus: The role of financial development and globalization. Energy Storage, 2(2), e91. [CrossRef]
- Beck, N., & Katz, J. N. (2011). Modeling dynamics in time-series–cross-section political economy data. Annual Review of Political Science, 14(1), 331–352. [CrossRef]
- The Global AI Vibrancy Tool of Stanford University, Stanford - Total AI Private Investment, https://hai.stanford.edu/ai-index/global-vibrancy-tool.
- IRENA (2025), Renewable Energy Statistics 2025, The International Renewable Energy Agency, Abu Dhabi. https://pxweb.irena.org/pxweb/en/IRENASTAT/IRENASTAT__Power%20Capacity%20and%20Generation/RE-SHARE_2025_H2_PX.px?utm_source=chatgpt.com.
- Dogan, E., & Seker, F. (2016). Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renewable Energy, 94, 429–439. [CrossRef]
- Ulku, H. (2004). R&D, innovation, and economic growth: An empirical analysis. IMF Working Paper No. 04/185. International Monetary Fund. [CrossRef]
- Levine, R. (2005). Finance and growth: Theory and evidence. In P. Aghion & S. N. Durlauf (Eds.), Handbook of Economic Growth (Vol. 1A, pp. 865–934). Elsevier. [CrossRef]
- Sassi, S., & Goaied, M. (2013b). Financial development, ICT diffusion and economic growth: Lessons from MENA region. Telecommunications Policy, 37(4–5), 252–261. [CrossRef]
- Sassi, S., & Goaied, M. (2013a). Financial development and energy consumption: Evidence from Tunisia. Energy Policy, 61, 1069–1076. [CrossRef]
- Pesaran, M. H., Shin, Y., & Smith, R. J. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621–634. [CrossRef]
- Stern, D. I. (2004). Economic growth and energy. In C. Cleveland (Ed.), Encyclopedia of Energy (Vol. 2, pp. 35–51). Elsevier. [CrossRef]
- Shaari, M. S., Hussain, N. E., & Ismail, M. S. (2013). Relationship between energy consumption and economic growth: Empirical evidence for Malaysia. Business Systems Review, 2(1), 17–28.
- Dinda, S. (2004). The Environmental Kuznets Curve hypothesis: A survey. Ecological Economics, 49(4), 431–455. [CrossRef]
- Hao, F., Zhang, Y., & Wang, S. (2023). Artificial intelligence, digital transformation, and energy transition: Evidence from global economies. Energy Economics, 124, 106932. [CrossRef]
- Hao, F., Zhang, Y., Song, M., & Zeng, H. (2023). Do digitalization and artificial intelligence reduce energy intensity? Evidence from global panel data. Energy Economics, 122, 106664. [CrossRef]
- Driscoll, J. C., & Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially dependent panel data. Review of Economics and Statistics, 80(4), 549–560.
- Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. Stata Journal, 7(3), 281–312. [CrossRef]
- Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1), 1–24. [CrossRef]
- Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. [CrossRef]
- Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61(S1), 631–652. [CrossRef]
- Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249–272. [CrossRef]
- Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22. [CrossRef]
- Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. [CrossRef]
- Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier test and its applications to model specification in econometrics. Review of Economic Studies, 47(1), 239–253. [CrossRef]
- Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers in Economics, No. 0435, University of Cambridge, Faculty of Economics. [CrossRef]
- Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias-adjusted LM test of error cross-section independence. Econometrics Journal, 11(1), 105–127. [CrossRef]
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312. [CrossRef]
- Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748. [CrossRef]
- Westerlund, J., & Edgerton, D. L. (2008). A simple test for cointegration in dependent panels with structural breaks. Oxford Bulletin of Economics and Statistics, 70(5), 665–704. [CrossRef]
- Breitung, J., & Das, S. (2005). Panel unit root tests under cross-sectional dependence. Statistica Neerlandica, 59(4), 414–433. [CrossRef]
- Carrion-i-Silvestre, J. L., Kim, D., & Perron, P. (2009). GLS-based unit root tests with multiple structural breaks under both the null and the alternative hypotheses. Econometric Theory, 25(6), 1754–1792. [CrossRef]
- Persyn, D., & Westerlund, J. (2008). Error-correction-based cointegration tests for panel data. The Stata Journal, 8(2), 232–241. [CrossRef]
- Baltagi, B. H. (2021). Econometric analysis of panel data (6th ed.). Springer Nature. [CrossRef]

| Author(s) | Method | Sample | AI Indicator | Direction of Effect, Coefficient and Key Findings |
| Graetz & Michaels (2018) | OLS/IV | 17 Countries (OECD) | Industrial Robots | (+) %0.36 - %0.37 Contribution: The increase in robot density has contributed 0.37 percentage points to annual GDP growth and 0.36 percentage points to labour productivity. This effect is historically comparable to that of the steam engine. |
| Acemoglu & Restrepo (2020) | OLS Stacked Difference | USA (Local Workforce) | Robot Exposure | (+) Productivity/(-) Employment: Although automation increases productivity, the displacement effect is dominant; each robot reduces the employment rate by 0.2 percentage points. The increase in productivity has been limited due to so-so tech. |
| Damioli et al. (2021) | GMM system | 6,000 Companies (Global) | Patent Family | (+) 3-4% (Innovation Premium): Companies that apply for AI patents achieve an additional 3-4% labour productivity premium compared to those that do not. The effect is more pronounced in the service sector. |
| Venturini (2022) | Dynamic Panel | G7 & EU | Smart Technology Stock | (+) 0.01 - 0.06 (Elasticity): A 10% increase in AI knowledge stock increases efficiency by between 0.1% and 0.6%. It has been proven that AI is a “General Purpose Technology” (GPT) and that the effect strengthens as the stock increases (Scale Effect). |
| Crompton & Kwibuka (2020) | Fixed Effects | 60 Countries | ICT/Software Investment | (+) 1.2% (Long Term): It is projected that AI investments could contribute 1.2% to global growth in the long term. However, the positive impact depends on countries’ infrastructure and education readiness levels. |
| Author(s) | Method | Sample | AI Indicator | Direction of Effect, Coefficient and Key Findings |
| Ramzan et al. (2022) | Fourier ARDL and NARDL | OECD Countries | ICT Investments and Energy Efficiency | Asymmetric Effect: Short-term effect increases emissions (+), long-term effect reduces emissions (-). A 1% increase in efficiency reduces emissions by 0.37% in the long term. |
| Lange et al. (2020) | Panel Data (Fixed Effects) | 19 EU Countries (2000–2017) | ICT Capital Stock | Positive (+)/Rebound Effect: The increase in ICT capital increases total energy consumption rather than saving energy (Jevons Paradox). |
| Yi et al. (2022) | Panel Threshold Model | China (Province Level) | Digital Economy Index | Non-linear (-): There is an inverse U-shaped relationship between the digital economy and energy intensity. Beyond a certain threshold, it reduces energy intensity. |
| Ren et al. (2021) | GMM and Threshold Regression | China (2011–2017) | Digital Economy Development | Structural Transformation (+/-): It reduces fossil fuel consumption (-) while increasing renewable energy consumption (+). |
| Murshed (2020) | Panel ARDL and NARDL | South Asian Economies | ICT Trade Gap | Positive (+): Trade in ICT goods and technology transfer are accelerating the transition to renewable energy. |
| Moyer & Hughes (2012) | International Futures (IFs) Model | Global Projection-183 countries | ICT Development | Positive (+): Although ICT increases efficiency, it is predicted that the growth effect it creates will increase total energy demand in the long term. |
| Author(s) | Method | Sample | AI Indicator | Direction of Effect, Coefficient and Key Findings |
| Apergis & Payne (2010) | Panel VECM (Error Correction) | 20 OECD Countries (1985–2005) | Renewable Energy | Two-Way Causality (+): Renewable energy consumption and growth mutually reinforce each other (“Feedback Hypothesis”). A 1% increase in consumption positively impacts GDP. |
| Tugcu et al. (2012) | Panel ARDL (Augmented Production) | G7 Countries (1980–2009) | Renewable vs. Fossil | Neutral or Mixed Results: The impact of renewable energy on growth in G7 countries has been found to be weaker than that of fossil fuels or statistically insignificant (which indicates the need for technological transformation). |
| Bhattacharya et al. (2016) | Panel FMOLS/DOLS | The 38 Countries with the Highest Consumption | Renewable Energy | Positive (+): A 1% increase in renewable energy consumption increases GDP by 0.105%. However, this effect is stronger in countries with high GDP. |
| Simionescu et al. (2020) | Panel ARDL and Bayesian | EU Countries | Renewable & Energy Efficiency | Positive (+): Energy efficiency and renewable energy use support economic growth in the long term. |
| Hu, Du & Huang (2023) | Panel Threshold Model | China (High-Tech Industries) | Energy Efficiency | U-Shaped Relationship: Technological innovation increases energy efficiency once it surpasses a certain threshold. |
| Bouznit et al. (2022a) | Cointegration Polynomial Regression | Algeria | Total Energy | Positive (+): There is a strong positive relationship between energy demand and growth, but human capital has a downward effect on energy demand. |
| Variable | Description/Proxy | Symbol | Transformation | Justification |
| Economic Growth | GDP per capita (constant 2015 US$) | lnGDPpc | Logarithmic (ln) | Ensures stationarity and elasticity interpretation |
| AI Investment(for Model B) | Total AI Private Investment (Stanford Index) | lnAIInvest | Logarithmic (ln) | Wide range and exponential scale across countries |
| AI Investment(for Model A) | AI Composite Index [0.5 × (ICT Goods Exports % + ICT Services Exports %)] | AIProxy | Level | Already in ratio form (% of exports); log not meaningful |
| Sustainable Energy Capacity | Renewable electricity capacity share (%) | RE | Level | Percentage ratio (0–100%), logarithmically inapplicable |
| Energy Demand | Energy use per capita (kg oil equivalent per person) | lnEnergyDemand | Logarithmic (ln) | Continuous, positive variable; elasticity interpretation |
| Trade Openness | Trade (% of GDP) | Trade | Level | Ratio variable; bounded within 0–100 |
| Capital Formation | Gross Fixed Capital Formation (% of GDP) | GFCF | Level | Ratio variable, not monetary |
| CO2 Emissions | CO2 emissions per capita (t CO2e/capita) | lnCO2 | Logarithmic (ln) | Continuous, positive, skewed data |
| R&D Expenditure | R&D expenditure (% of GDP) | R&D | Level | Already a ratio; log unnecessary |
| Financial Development | IMF Financial Development Index (0–1 scale) | FDI | Level | Normalised index; log transformation invalid |
| Energy Prices | Energy Price Level (PPP Index, 100 = world avg) | lnEPL | Logarithmic (ln) | Positive index; ln gives elasticity interpretation |
| Model | Dependent Variable | AI Variable | Period | Empirical Hypothesis Code (EH) and Description | Type |
| A1 | ln(GDP per capita) | AIProxy | 2010–2025 | EH1: AI investment increases short-run growth | Short-run |
| A2 | ln(Energy use per capita) | AIProxy | 2010–2025 | EH2: AI investment reduces short-run energy intensity | Short-run |
| B1 | ln(GDP per capita) | AIInvest | 2017–2024 | EH1: AI investment increases short-run growth | Short-run |
| B2 | ln(Energy use per capita) | AIInvest | 2017–2024 | EH2: AI investment reduces short-run energy intensity | Short-run |
| Theoretical Hypothesis | Theoretical Description | Corresponding Model(s) | Empirical Hypothesis (EH) | Empirical Description | Expected Sign |
| H1 | AI investment positively affects economic growth in the short run. | A1, B1 | AI–growth relationship (EH1) | AI investment (via ICT exports and Stanford AI Index) positively influences economic growth. | + |
| H2 | The growth effect of AI investment is stronger in countries with higher renewable energy capacity. | A1, B1 | Interaction term (AI x RE) |
Renewable energy share strengthens the positive effect of AI on growth (moderating effect). | + |
| H3 |
AI development initially increases energy demand, but higher AI intensity enhances efficiency (rebound hypothesis). |
A2, B2 | AI–energy demand (non-linear) (EH2) | AI investment has a non-linear (inverted-U) impact on energy demand, indicating a potential threshold beyond which AI adoption reduces energy intensity. | +/– |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
| lnGDPpc | 144 | 10.43788 | 0.5087724 | 8.659537 | 11.12079 |
| AIProxy | 144 | 8.660539 | 4.948992 | 3.938216 | 22.06608 |
| RE | 144 | 37.02348 | 17.8036 | 3.31 | 71.44731 |
| lnEnergyDemand | 144 | 8.244139 | 0.420266 | 7.549504 | 9.008859 |
| AIProxy x RE | 144 | 300.7002 | 205.5979 | 35.19756 | 1098.519 |
| 144 | 99.32738 | 123.0957 | 15.50955 | 486.9119 | |
| Trade | 144 | 57.20373 | 18.6295 | 23.40156 | 101.6806 |
| GFCF | 144 | 24.57156 | 7.169491 | 16.18113 | 44.07554 |
| lnCO2 | 144 | 2.16736 | 0.4223284 | 1.353915 | 2.88184 |
| R&D | 144 | 2.668515 | 0.9658519 | 1.20155 | 5.84163 |
| FDI | 144 | 0.8050003 | 0.0917837 | 0.511 | 0.9960691 |
| lnEPL | 144 | 4.537153 | .1065964 | 4.356196 | 4.792065 |
| Model | Test | Test Statistics | P value | Decision | Implications |
| A1 | Breusch-Pagan LM | 126.063*** | 0.0000 | Ho reject | Cross Sectional Dependence exist |
| Pesaran Scaled LM | 5.048*** | 0.0000 | Ho reject | Cross Sectional Dependence exist | |
| Pesaran CD | 5.048*** | 0.0000 | Ho reject | Cross Sectional Dependence exist | |
| A2 | Breusch-Pagan LM | 80.191*** | 0.0000 | Ho reject | Cross Sectional Dependence exist |
| Pesaran Scaled LM | 0.189 | 0.8499 | Ho accept | - | |
| Pesaran CD | 0.189 | 0.8499 | Ho accept | - |
| Variable | Levin, Lin & Chu (LLC) | Im, Pesaran & Shin (IPS) |
ADF–Fisher (Maddala-Wu) |
PP–Fisher (Maddala-Wu) |
CIPS (Pesaran) |
Integration Order | |
|
At Level | |||||||
| lnGDPpc | -3.5617*** | -0.7089 | 0.1794 | 2.7302*** | 1.308 | I(1) | |
| AIProxy | -3.7077*** | -0.9016 | 1.8368** | 1.3581* | 0.282 | I(1) | |
| RE | 0.0010 | 1.6912 | -6076 | 3.9689*** | -0.645 | I(1) | |
| lnEnergyDemand | -1.7399** | 0.0884 | 2.6916*** | 4.03547*** | 0.904 | I(1) | |
| AIProxy x RE | -4.7611*** | -1.5712* | 2.5474*** | 1.1419 | -1.561* | I(0) | |
| -3.6260*** | -0.9435 | 1.5542* | 1.4452* | 1.218 | I(1) | ||
| Trade | -4.4887*** | -3.0240*** | 6.4385*** | 1.7469** | 0.778 | I(1) | |
| GFCF | -4.4950*** | -1.2544 | 1.8313** | -1.4145 | -0.134 | I(1) | |
| lnCO2 | -5.2379*** | -2.7502*** | 6.4450*** | 5.0490*** | 0.570 | I(1) | |
| R&D | -2.1063** | 1.0238 | -0.9781 | -0.6486 | -0.619 | I(1) | |
| FDI | -6.0240*** | -3.5713*** | 7.7794*** | 11.9650*** | -5.952*** | I(0) | |
| lnEPL | -3.8186*** | -1.7472** | 2.6627** | 9.9554*** | -1.530* | I(0) | |
|
At First Difference | |||||||
| ΔlnGDPpc | -6.5027*** | -4.6911*** | 8.9534*** | 26.2409*** | -1.842** | I(1) | |
| ΔdAIProxy | -5.3773*** | -3.1907*** | 4.9573*** | 11.7685*** | -3.267*** | I(1) | |
| ΔRE | -7.8542*** | -4.1390*** | 9.0281*** | 4.6528*** | -3.956*** | I(1) | |
| ΔlnEnergyDemand | -7.2805*** | -5.5893*** | 12.7672*** | 30.4791*** | -1.994** | I(1) | |
| ΔAIProxy x RE | -6.7132*** | -4.3857*** | 9.5370*** | 10.5739*** | -4.011*** | I(0) | |
| -5.4736*** | -3.2049*** | 4.9664*** | 12.1844*** | -2.395*** | I(1) | ||
| ΔTrade | -10.0736*** | -6.9646*** | 16.5188*** | 8.4934*** | -1.081 | I(2)Structral break test | |
| ΔGFCF | -4.0751*** | -1.5483* | 1.6736** | 7.9297*** | -.0258 | I(2)Structral break test | |
| ΔlnCO2 | -8.3244*** | -5.6170*** | 12.9348*** | 15.2139*** | -0.195 | I(2)Structral break test | |
| ΔR&D | -4.9805*** | -2.1493** | 2.5657*** | 9.3925*** | -1.639** | I(1) | |
| ΔFDI | -5.6653*** | -5.3726*** | 13.0940*** | 40.6790*** | -4.669*** | I(0) | |
| ΔlnEPL | -8.5482*** | -6.8927*** | 16.7165*** | 41.7421*** | -4.669*** | I(0) | |
| Variable | CIPS (1st difference) | Zivot Andrews Break | Bai–Perron Breaks | Adjusted Integration Order |
| Trade | Non-stationary | 2014,2020, 2021, 2022 | 2015-2016-2019-2020-2021 | I(0) with breaks |
| GFCF | Non-stationary | 2015,2016, 2018, 2023 | 2014,2015,2016, 2020 | I(0) with breaks |
| lnCO2 | Non-stationary | 2014, 2019, 2020, 2021, 2023 | 2020 | I(0) with breaks |
| Statistic | Value | Z-value | P-value | Robust P-value | Decision |
| Model A1.1 | |||||
| Gt | -3.677 | -2.625 | 0.004 | 0.578 | No cointegration (bootstrap) |
| Ga | -0.711 | 5.517 | 1.000 | 0.256 | No cointegration |
| Pt | -8.980 | -1.162 | 0.123 | 0.374 | No cointegration |
| Pa | -0.926 | 4.130 | 1.000 | 0.180 | No cointegration |
| Model A1.2 | |||||
| Gt | -2.091 | 2.325 | 0.990 | 0.606 | No cointegration |
| Ga | -0.723 | 5.513 | 1.000 | 0.237 | No cointegration |
| Pt | -3.657 | 3.783 | 1.000 | 0.508 | No cointegration |
| Pa | -0.919 | 4.132 | 1.000 | 0.193 | No cointegration |
| Model A1.3 | |||||
| Gt | -24.064 | -66.268 | 0.000 | 0.477 | No cointegration (bootstrap) |
| Ga | -0.776 | 5.495 | 1.000 | 0.217 | No cointegration |
| Pt | -3.570 | 3.864 | 1.000 | 0.536 | No cointegration |
| Pa | -0.602 | 4.238 | 1.000 | 0.440 | No cointegration |
| Statistic | Value | Z-value | P-value | Robust P-value | Decision |
| Model A2.1 | |||||
| Gt | -6.274 | -10.732 | 0.000 | 0.564 | No cointegration (bootstrap) |
| Ga | -0.431 | 5.611 | 1.000 | 0.486 | No cointegration |
| Pt | -9.418 | -1.568 | 0.058 | 0.330 | No cointegration |
| Pa | -0.588 | 4.242 | 1.000 | 0.447 | No cointegration |
| Model A2.2 | |||||
| Gt | -23.078 | -63.188 | 0.000 | 0.542 | No cointegration (bootstrap) |
| Ga | -0.251 | 5.672 | 1.000 | 0.656 | No cointegration |
| Pt | -3.309 | 4.106 | 1.000 | 0.559 | No cointegration |
| Pa | -0.259 | 4.352 | 1.000 | 0.712 | No cointegration |
| Model A2.3 | |||||
| Gt | -2.008 | 2.583 | 0.995 | 0.678 | No cointegration |
| Ga | -0.600 | 5.554 | 1.000 | 0.339 | No cointegration |
| Pt | -3.781 | 3.668 | 1.000 | 0.507 | No cointegration |
| Pa | -1.014 | 4.100 | 1.000 | 0.136 | No cointegration |
| Variable | Coef | SE (Drisc-Kraay) | t stat | p-value |
| ΔAIProxy | 0.0008 | 0.0032 | 0.25 | 0.807 |
| ΔRE | 0.0023 | 0.0020 | 1.12 | 0.280 |
| ΔlnEnergyDemand | 0.3994*** | 0.1214 | 3.29 | 0.005 |
| ΔAIProxy x RE | -0.0002* | 0.0001 | -1.81 | 0.092 |
| Trade | 0.0007 | 0.0005 | 1.33 | 0.206 |
| GFCF | 0.0041** | 0.0019 | 2.17 | 0.047 |
| lnCO2 | 0.0172 | 0.0139 | 1.24 | 0.235 |
| ΔR&D | -0.0248 | 0.0378 | -0.66 | 0.522 |
| FDI | -0.0431 | 0.0291 | -1.48 | 0.160 |
| lnEPL | 0.0585 | 0.0639 | 0.92 | 0.375 |
| _cons | 0.3902 | 0.3462 | -1.13 | 0.279 |
| Observations | 135 | |||
| Number of Countries (N) | 9 | |||
| Within | 0.5340 | |||
| F-statistic (10,14) | 82.40 | |||
| Prob>F | 0.0000 | |||
| Maximum lag length | 2 |
| Variable | Coef | SE (Drisc-Kraay) | t stat | p-value |
| ΔAIProxy | -0.0026 | 0.0083 | -0.32 | 0.751 |
| 0.00003 | 0.0002 | 0.13 | 0.898 | |
| ΔlnGDPpc | 0.7614*** | 0.1171 | 6.50 | 0.000 |
| ΔRE | -0.0022 | 0.0022 | -1.00 | 0.333 |
| Trade | -0.0007 | 0.0009 | -0.81 | 0.429 |
| GFCF | -0.0003 | 0.0024 | -0.14 | 0.891 |
| lnCO2 | 0.0550** | 0.0210 | 2.62 | 0.020 |
| ΔR&D | -0.0372 | 0.0340 | -1.10 | 0.292 |
| FDI | 0.1467** | 0.0529 | 2.77 | 0.015 |
| lnEPL | -0.1504* | 0.0821 | -1.83 | 0.089 |
| _cons | 0.4809 | 0.4550 | 1.06 | 0.308 |
| Observations | 135 | |||
| Number of Countries (N) | 9 | |||
| Within | 0.4717 | |||
| F-statistic (10,15) | 128.58 | |||
| Prob>F | 0.0000 | |||
| Maximum lag length | 2 |
| Variable | Obs | Mean | Std. Dev. | Min | Max | |
| lnGDPpc | 81 | 10.493 | 0.4555464 | 9.129295 | 11.12079 | |
| lnAIInvest | 81 | 20.29848 | 1.948427 | 14.07895 | 24.48767 | |
| RE | 81 | 42.97693 | 15.89222 | 9.11 | 71.44731 | |
| lnEnergyDemand | 81 | 8.21518 | 0.4252944 | 7.579608 | 9.008859 | |
| AIInvest x RE | 81 | 870.7795 | 326.8756 | 163.1027 | 1499.28 | |
| 81 | 415.7779 | 78.59134 | 198.2168 | 599.6462 | ||
| Trade | 81 | 57.55373 | 18.51778 | 23.40156 | 90.58515 | |
| GFCF | 81 | 24.95475 | 6.742851 | 17.57946 | 42.38038 | |
| lnCO2 | 81 | 2.108521 | 0.4376658 | 1.353915 | 2.804807 | |
| R&D | 81 | 2.866025 | 1.052828 | 1.37013 | 5.84163 | |
| FDI | 81 | 0.8204327 | 0.0842391 | 0.627 | 0.9960691 | |
| lnEPL | 81 | 4.533998 | 0.1082658 | 4.368054 | 4.761832 |
| Model | Test | Test Statistics | P value | Decision | Implications |
| B1 | Breusch-Pagan LM | 67.417*** | 0.0041 | Ho reject | Cross Sectional Dependence exist |
| Pesaran Scaled LM | 3.045*** | 0.0023 | Ho reject | Cross Sectional Dependence exist | |
| Pesaran CD | 3.045*** | 0.0023 | Ho reject | Cross Sectional Dependence exist | |
| B2 | Breusch-Pagan LM | 58.690*** | 0.0098 | Ho reject | Cross Sectional Dependence exist |
| Pesaran Scaled LM | -0.222 | 0.8243 | Ho accept | - | |
| Pesaran CD | -0.222 | 0.8243 | Ho accept | - |
| Variable | Levin, Lin & Chu (LLC) | Im, Pesaran & Shin (IPS) |
ADF–Fisher (Maddala-Wu) |
PP–Fisher (Maddala-Wu) |
CIPS (Pesaran) |
Integration Order | ||
|
At Level |
||||||||
| lnGDPpc | -6.1524*** | -0.7123 | 1.8336** | 7.0639*** | 1.700 | I(0) | ||
| lnAIInvest | -3.7077*** | -0.0797 | 0.4976 | 4.8101*** | 1.700 | I(0) | ||
| RE | -4.0270*** | 1.4189 | 0.2958 | -2.1138 | 1.700 | I(1) | ||
| lnEnergyDemand | -6.1016*** | -0.6203 | 0.9055 | 7.8384*** | 1.700 | I(0) | ||
| lnAIInvest x RE | -4.2088*** | 0.2398 | -0.2243 | 4.5123*** | 1.700 | I(0) | ||
| -4.8947*** | -0.1680 | 0.5585 | 4.3883*** | 1.700 | I(0) | |||
| Trade | -10.4420*** | -2.3804*** | 4.0723*** | -1.3325 | 1.700 | I(1) | ||
| GFCF | -3.6794*** | 0.9315 | -1.3208 | 4.8929*** | 1.700 | I(0) | ||
| lnCO2 | -9.1412*** | -2.2757** | 5.4211*** | 8.3863*** | 1.700 | I(0) | ||
| R&D | -28.5214*** | -1.1397 | 5.1247*** | 7.5134*** | 1.700 | I(0) | ||
| FDI | -83.1339*** | -19.8437*** | 27.9536*** | 13.2954*** | 1.700 | I(0) | ||
| lnEPL | -9.6366*** | -1.7985** | 7.8732*** | 1.6669** | 1.700 | I(0) | ||
|
At First Difference |
||||||||
| ΔlnGDPpc | -9.0240*** | -1.1032 | 3.1851*** | 9.9710*** | 1.700 | I(0) | ||
| ΔlnAIInvest | -10.4784*** | -1.7168** | 5.0362*** | 6.3014*** | 1.700 | I(0) | ||
| ΔRE | -12.7635*** | -2.6596*** | 9.5938*** | 13.5139*** | 1.700 | I(1) | ||
| ΔlnEnergyDemand | -18.5970*** | -6.0242*** | 19.6333*** | 25.4430*** | 1.700 | I(0) | ||
| ΔlnAIInvest x RE | -6.9317*** | -0.7395 | 1.4038* | 17.4570*** | 1.700 | I(0) | ||
| -10.1641*** | -1.5847* | 4.5023*** | 5.8000*** | 1.700 | I(0) | |||
| ΔTrade | -8.9508*** | -0.7893 | 0.4808 | 8.4934*** | 1.700 | I(1) | ||
| ΔGFCF | -6.1203*** | 0.0439 | -0.3003 | 5.0083*** | 1.700 | I(0) | ||
| ΔlnCO2 | -16.6586*** | -4.6664*** | 16.3110*** | 16.0866*** | 1.700 | I(0) | ||
| ΔR&D | -10.1213*** | -0.8307 | 4.5374*** | 14.7916*** | 1.700 | I(0) | ||
| ΔFDI | -5.6653*** | -5.3726*** | 13.0940*** | 40.6790*** | 1.700 | I(0) | ||
| ΔdlnEPL | -7.6882*** | -1.3950* | 4.5919*** | 10.5217*** | 1.700 | I(0) | ||
| Variable | Coef | SE (Drisc-Kraay) | t stat | p-value |
| lnAIInvest | -0.0134 | 0.0078 | -1.71 | 0.131 |
| ΔRE | 0.0015 | 0.0013 | 1.19 | 0.274 |
| lnAIInvest x RE | 0.0004*** | 0.00004 | 10.19 | 0.000 |
| lnEnergyDemand | 0.1505 | 0.1622 | 0.93 | 0.384 |
| ΔTrade | -0.0002 | 0.0004 | -0.46 | 0.663 |
| GFCF | 0.0111* | 0.0050 | 2.22 | 0.062 |
| lnCO2 | 0.3704 | 0.2259 | 1.64 | 0.145 |
| R&D | 0.0499*** | 0.0107 | 4.65 | 0.002 |
| FDI | 0.0488 | 0.0555 | 0.88 | 0.409 |
| lnEPL | -0.0627 | 0.0807 | -0.78 | 0.463 |
| _cons | 8.1484*** | 0.7006 | 11.63 | 0.000 |
| Observations | 72 | |||
| Number of Countries (N) | 9 | |||
| Within | 0.8746 | |||
| F-statistic (10,15) | 795.50 | |||
| Prob>F | 0.0000 | |||
| Maximum lag length | 2 |
| Variable | Coef | SE (Drisc-Kraay) | t stat | p-value |
| AIProxy | 0.0898** | 0.0314 | 2.86 | 0.024 |
| -0.0021** | 0.0008 | -2.53 | 0.039 | |
| lnGDPpc | -0.0213 | 0.1017 | -0.21 | 0.840 |
| ΔRE | -0.0009 | 0.0031 | -0.31 | 0.766 |
| ΔTrade | -0.0015*** | 0.0004 | -3.72 | 0.007 |
| GFCF | -0.0061*** | 0.0017 | -3.46 | 0.010 |
| lnCO2 | 1.0865*** | 0.0475 | 22.86 | 0.000 |
| R&D | 0.1008*** | 0.0203 | 4.96 | 0.002 |
| FDI | 0.3840** | 0.1541 | 2.49 | 0.042 |
| lnEPL | -0.0390* | 0.0204 | -1.92 | 0.097 |
| _cons | 4.9485*** | 0.7527 | 6.57 | 0.000 |
| Observations | 72 | |||
| Number of Countries (N) | 9 | |||
| Within | 0.9401 | |||
| F-statistic (10,15) | 1567.87 | |||
| Prob>F | 0.0000 | |||
| Maximum lag length | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).