Preprint
Article

This version is not peer-reviewed.

Effect of Electronic and Optical Properties on the Kinetic Pho-tocatalytic Model of the Methyl Blue Degradation

Submitted:

21 January 2026

Posted:

22 January 2026

You are already at the latest version

Abstract
In this study the photocatalytic activity as a function of effective irradiance, photocatalytic quantum yield and reactant coverage was thoroughly assessed for the proper photoreactor (PhR) selection. PhR selection is a preponderant stage for photocatalytic processes, which has been an aspect not studied in detail in various scientific investigations. The emitted wavelength and effective irradiance of several PhRs, equipped with fluorescent and light emitting diodes (LEDs) lamps, were tested in the photodegradation of methylene blue (MB) in solid phase using AgTiC. Among all tested PhRs the one equipped with the low-pressure Hg lamp enhanced the photodegradation of MB. The above is due to the Hg lamp emitted UV-type radiation, which promotes the simultaneous photoactivation of the TiO2 and the surface plasmon resonance phenomenon of the Ag nanoparticles. Based on this study, it was determined that high values of effective irradiance promoted photocata-lytic activity because of the greater amount of photogenerated species [e-/h+]. Also, the ef-fective irradiance on the proper photocatalytic material slows down the recombination rate of the [e-/h+]. A kinetic photocatalytic model (KPM) was proposed to the description of photocatalytic reactions as a function of the effective irradiance, photocatalytic quantum yield and reactant coverage considering photocatalytic pseudo steady state according to the reactant equilibrium coverage (Langmuir isotherm) and the transfer processes of the photoinduced charge carrier species.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated