Submitted:
08 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Treatment
2.2.1. Chemotherapy
2.2.2. Radiotherapy
2.3. Assessment of Metabolic and Inflammatory Indices
2.4. Evaluation of the Treatment Response
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics and Treatment Efficacy
3.2. Survival Analysis
3.3. Toxicity
3.4. Subsequent Treatment After Chemoradiotherapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALI | Advanced Lung Cancer Inflammation Index |
| BMI | body mass index |
| CCRT | concurrent chemoradiotherapy |
| CI | confidence interval |
| CRP | C-reactive protein |
| CT | computed tomography |
| GPS | Glasgow Prognostic Score |
| JCOG | Japan Clinical Oncology Group |
| NLR | neutrophil-to-lymphocyte ratio |
| NSCLC | non-small cell lung cancer |
| ORR | overall response rate |
| OS | overall survival |
| PLR | platelet-to-lymphocyte ratio |
| PS | performance status |
| SIR | systemic inflammatory response |
| TKIs | tyrosine kinase inhibitors |
| TNM | tumor-node-metastasis |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74(3), 229–263. [CrossRef]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Boards, and Participating Institutions; International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee Advisory Boards and Participating Institutions. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2016, 11(1), 39–51. [CrossRef]
- Venuta, F.; Diso, D.; Onorati, I.; Anile, M.; Mantovani, S.; Rendina, E.A. Lung cancer in elderly patients. J. Thorac. Dis. 2016, 8 (Suppl. 11), S908–S914. [CrossRef]
- Presley, C.J.; Reynolds, C.H.; Langer, C.J. Caring for the older population with advanced lung cancer. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 587–596. [CrossRef]
- Hanna, N.; Neubauer, M.; Yiannoutsos, C.; McGarry, R.; Arseneau, J.; Ansari, R.; Reynolds, C.; Govindan, R.; Melnyk, A.; Fisher, W.; Richards, D.; Bruetman, D.; Anderson, T.; Chowhan, N.; Nattam, S.; Mantravadi, P.; Johnson, C.; Breen, T.; White, A.; Einhorn, L.; Hoosier Oncology Group; US Oncology. Phase III study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage III non-small-cell lung cancer: the Hoosier Oncology Group and U.S. Oncology. J. Clin. Oncol. 2008, 26(35), 5755–5760. [CrossRef]
- Atagi, S.; Kawahara, M.; Yokoyama, A.; Okamoto, H.; Yamamoto, N.; Ohe, Y.; Sawa, T.; Ishikura, S.; Shibata, T.; Fukuda, H.; Saijo, N.; Tamura, T.; Japan Clinical Oncology Group Lung Cancer Study Group. Thoracic radiotherapy with or without daily low-dose carboplatin in elderly patients with non-small-cell lung cancer: a randomised, controlled, phase 3 trial by the Japan Clinical Oncology Group (JCOG0301). Lancet Oncol. 2012, 13(7), 671–678. [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; Cho, B.C.; Bourhaba, M.; Quantin, X.; Tokito, T.; Mekhail, T.; Planchard, D.; Kim, Y.C.; Karapetis, C.S.; Hiret, S.; Ostoros, G.; Kubota, K.; Gray, J.E.; Paz-Ares, L.; de Castro Carpeño, J.; Wadsworth, C.; Melillo, G.; Jiang, H.; Huang, Y.; Dennis, P.A.; Özgüroğlu, M.; PACIFIC Investigators. Durvalumab after chemoradiotherapy in Stage III non-small-cell lung cancer. N. Engl. J. Med. 2017, 377(20), 1919–1929. [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; Cho, B.C.; Bourhaba, M.; Quantin, X.; Tokito, T.; Mekhail, T.; Planchard, D.; Kim, Y.C.; Karapetis, C.S.; Hiret, S.; Ostoros, G.; Kubota, K.; Gray, J.E.; Paz-Ares, L.; de Castro Carpeño, J.; Faivre-Finn, C.; Reck, M.; Vansteenkiste, J.; Spigel, D.R.; Wadsworth, C.; Melillo, G.; Taboada, M.; Dennis, P.A.; Özgüroğlu, M.; PACIFIC Investigators. Overall survival with durvalumab after chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379(24), 2342–2350. [CrossRef]
- McMillan, D.C. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc. Nutr. Soc. 2008, 67(3), 257–262. [CrossRef]
- Proctor, M.J.; Talwar, D.; Balmar, S.M.; O’Reilly, D.S.; Foulis, A.K.; Horgan, P.G.; Morrison, D.S.; McMillan, D.C. The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study. Br. J. Cancer 2010, 103(6), 870–876. [CrossRef]
- Forrest, L.M.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Dunlop, D.J. Comparison of an inflammation-based prognostic score (GPS) with performance status (ECOG) in patients receiving platinum-based chemotherapy for inoperable non-small-cell lung cancer. Br. J. Cancer 2004, 90(9), 1704–1706. [CrossRef]
- Gioulbasanis, I.; Pallis, A.; Vlachostergios, P.J.; Xyrafas, A.; Giannousi, Z.; Perdikouri, I.E.; Makridou, M.; Kakalou, D.; Georgoulias, V. The Glasgow Prognostic Score (GPS) predicts toxicity and efficacy in platinum-based treated patients with metastatic lung cancer. Lung Cancer 2012, 77(2), 383–388. [CrossRef]
- Leung, E.Y.; Scott, H.R.; McMillan, D.C. Clinical utility of the pretreatment Glasgow prognostic score in patients with advanced inoperable non-small cell lung cancer. J. Thorac. Oncol. 2012, 7(4), 655–662. [CrossRef]
- Jiang, A.G.; Chen, H.L.; Lu, H.Y. Comparison of Glasgow prognostic score and prognostic index in patients with advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2015, 141(3), 563–568. [CrossRef]
- Takamori, S.; Takada, K.; Shimokawa, M.; Matsubara, T.; Fujishita, T.; Ito, K.; Toyozawa, R.; Yamaguchi, M.; Okamoto, T.; Yoneshima, Y.; Tanaka, K.; Okamoto, I.; Tagawa, T.; Mori, M. Clinical utility of pretreatment Glasgow prognostic score in non-small-cell lung cancer patients treated with immune checkpoint inhibitors. Lung Cancer 2021, 152, 27–33. [CrossRef]
- Imai, H.; Kishikawa, T.; Minemura, H.; Yamada, Y.; Ibe, T.; Yamaguchi, O.; Mouri, A.; Hamamoto, Y.; Kanazawa, K.; Kasai, T.; Kaira, K.; Kaburagi, T.; Minato, K.; Kobayashi, K.; Kagamu, H. Pretreatment Glasgow prognostic score predicts survival among patients with high PD-L1 expression administered first-line pembrolizumab monotherapy for non-small cell lung cancer. Cancer Med. 2021, 10(20), 6971–6984. [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; Tannock, I.F.; Amir, E. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106(6), dju124. [CrossRef]
- Liu, Z.L.; Zeng, T.T.; Zhou, X.J.; Ren, Y.N.; Zhang, L.; Zhang, X.X.; Ding, Z.Y. Neutrophil–lymphocyte ratio as a prognostic marker for chemotherapy in advanced lung cancer. Int. J. Biol. Markers 2016, 31(4), e395–e401. [CrossRef]
- Liu, D.; Jin, J.; Zhang, L.; Li, L.; Song, J.; Li, W. The neutrophil to lymphocyte ratio may predict benefit from chemotherapy in lung cancer. Cell. Physiol. Biochem. 2018, 46(4), 1595–1605. [CrossRef]
- Platini, H.; Ferdinand, E.; Kohar, K.; Prayogo, S.A.; Amirah, S.; Komariah, M.; Maulana, S. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as prognostic markers for advanced non-small-cell lung cancer treated with immunotherapy: A systematic review and meta-analysis. Medicina (Kaunas) 2022, 58(8), 1069. [CrossRef]
- Ding, N.; Pang, Z.; Shen, H.; Ni, Y.; Du, J.; Liu, Q. The prognostic value of PLR in lung cancer, a meta-analysis based on results from a large consecutive cohort. Sci. Rep. 2016, 6, 34823. [CrossRef]
- Kinoshita, A.; Onoda, H.; Imai, N.; Iwaku, A.; Oishi, M.; Fushiya, N.; Koike, K.; Nishino, H.; Tajiri, H. Comparison of the prognostic value of inflammation-based prognostic scores in patients with hepatocellular carcinoma. Br. J. Cancer 2012, 107(6), 988–993. [CrossRef]
- Hua, X.; Chen, J.; Wu, Y.; Sha, J.; Han, S.; Zhu, X. Prognostic role of the advanced lung cancer inflammation index in cancer patients: a meta-analysis. World J. Surg. Oncol. 2019, 17(1), 177. [CrossRef]
- Jafri, S.H.; Shi, R.; Mills, G. Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. B.M.C. Cancer 2013, 13, 158. [CrossRef]
- Ichihara, E.; Harada, D.; Inoue, K.; Sato, K.; Hosokawa, S.; Kishino, D.; Watanabe, K.; Ochi, N.; Oda, N.; Hara, N.; Hotta, K.; Maeda, Y.; Kiura, K. The impact of body mass index on the efficacy of anti-PD-1/PD-L1 antibodies in patients with non-small cell lung cancer. Lung Cancer 2020, 139, 140–145. [CrossRef]
- Imai, H.; Naito, E.; Yamaguchi, O.; Hashimoto, K.; Iemura, H.; Miura, Y.; Shiono, A.; Mouri, A.; Kaira, K.; Kobayashi, K.; Kagamu, H. Pretreatment body mass index predicts survival among patients administered nivolumab monotherapy for pretreated non-small cell lung cancer. Thorac. Cancer 2022, 13(10), 1479–1489. [CrossRef]
- Tokunaga, K.; Matsuzawa, Y.; Kotani, K.; Keno, Y.; Kobatake, T.; Fujioka, S.; Tarui, S. Ideal body weight estimated from the body mass index with the lowest morbidity. Int. J. Obes. 1991, 15(1), 1–5.
- Bagley, S.J.; Kothari, S.; Aggarwal, C.; Bauml, J.M.; Alley, E.W.; Evans, T.L.; Kosteva, J.A.; Ciunci, C.A.; Gabriel, P.E.; Thompson, J.C.; Stonehouse-Lee, S.; Sherry, V.E.; Gilbert, E.; Eaby-Sandy, B.; Mutale, F.; DiLullo, G.; Cohen, R.B.; Vachani, A.; Langer, C.J. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 2017, 106, 1–7. [CrossRef]
- Suh, K.J.; Kim, S.H.; Kim, Y.J.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.W.; Heo, D.S.; Lee, J.S. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunol. Immunother. 2018, 67(3), 459–470. [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; Rubinstein, L.; Shankar, L.; Dodd, L.; Kaplan, R.; Lacombe, D.; Verweij, J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45(2), 228–247. [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; Shah, R.; Cobo, M.; Lee, K.H.; Cheema, P.; Tiseo, M.; John, T.; Lin, M.C.; Imamura, F.; Kurata, T.; Todd, A.; Hodge, R.; Saggese, M.; Rukazenkov, Y.; Soria, J.C.; FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 2020, 382(1), 41–50. [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; Zeaiter, A.; Mitry, E.; Golding, S.; Balas, B.; Noe, J.; Morcos, P.N.; Mok, T.; ALEX Trial Investigators. Alectinib versus crizotinib in Untreated ALK-Positive non-small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377(9), 829–838. [CrossRef]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.W.; Mok, T.; Polli, A.; Thurm, H.; Calella, A.M.; Peltz, G.; Solomon, B.J.; CROWN Trial Investigators. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N. Engl. J. Med. 2020, 383(21), 2018–2029. [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Lee, J.S.; Hochmair, M.J.; Li, J.Y.C.; Chang, G.C.; Lee, K.H.; Gridelli, C.; Delmonte, A.; Garcia Campelo, R.; Kim, D.W.; Bearz, A.; Griesinger, F.; Morabito, A.; Felip, E.; Califano, R.; Ghosh, S.; Spira, A.; Gettinger, S.N.; Tiseo, M.; Gupta, N.; Haney, J.; Kerstein, D.; Popat, S. Brigatinib versus crizotinib in ALK-Positive non-small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379(21), 2027–2039. [CrossRef]
- Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; Butts, C.; Wójcik-Tomaszewska, J.; Coudert, B.; Garassino, M.C.; Ready, N.; Felip, E.; García, M.A.; Waterhouse, D.; Domine, M.; Barlesi, F.; Antonia, S.; Wohlleber, M.; Gerber, D.E.; Czyzewicz, G.; Spigel, D.R.; Crino, L.; Eberhardt, W.E.E.; Li, A.; Marimuthu, S.; Brahmer, J. Five-year outcomes from the randomized, Phase III trials CheckMate 017 and 057: nivolumab versus docetaxel in previously treated non-small-cell lung cancer. J. Clin. Oncol. 2021, 39(7), 723–733. [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G.; Garrido, M.; Lubiniecki, G.M.; Shentu, Y.; Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016, 387(10027), 1540–1550. [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; Rimner, A.; Wu, Y.L.; Özgüroğlu, M.; Lee, K.H.; Kato, T.; de Wit, M.; Kurata, T.; Reck, M.; Cho, B.C.; Senan, S.; Naidoo, J.; Mann, H.; Newton, M.; Thiyagarajah, P.; Antonia, S.J. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in Stage III non-small-cell lung cancer. J. Clin. Oncol. 2022, 40(12), 1301–1311. [CrossRef]
- Girard, N.; Bar, J.; Garrido, P.; Garassino, M.C.; McDonald, F.; Mornex, F.; Filippi, A.R.; Smit, H.J.M.; Peters, S.; Field, J.K.; Christoph, D.C.; Sibille, A.; Fietkau, R.; Haakensen, V.D.; Chouaid, C.; Markman, B.; Hiltermann, T.J.N.; Taus, A.; Sawyer, W.; Allen, A.; Chander, P.; Licour, M.; Solomon, B. Treatment characteristics and real-world progression-free survival in patients with unresectable Stage III NSCLC who received durvalumab after chemoradiotherapy: findings from the PACIFIC-R study. J. Thorac. Oncol. 2023, 18(2), 181–193. [CrossRef]
- Mouri, A.; Kisohara, A.; Morita, R.; Ko, R.; Nakagawa, T.; Makiguchi, T.; Isobe, K.; Ishikawa, N.; Kondo, T.; Akiyama, M.; Bessho, A.; Honda, R.; Yoshimura, K.; Kagamu, H.; Kato, S.; Kobayashi, K.; Kaira, K.; Maemondo, M. A phase II study of daily carboplatin plus irradiation followed by durvalumab therapy for older adults (≥75 years) with unresectable III non-small-cell lung cancer and performance status of 2: NEJ039A. E.S.M.O. Open 2024, 9(10), 103939. [CrossRef]
- Yamauchi, K.; Komuta, R.; Tanabe, H.; Yokoyama, M.; Takata, S.O.; Yanase, T.; Hosono, Y.; Satoh, S.; Morishita, N.; Suzuki, H. Real-world outcomes of durvalumab consolidation in elderly patients with unresectable NSCLC following CCRT with daily low-dose carboplatin. Anticancer Res. 2025, 45(1), 369–378. [CrossRef]
- Brown, D.J.; Milroy, R.; Preston, T.; McMillan, D.C. The relationship between an inflammation-based prognostic score (Glasgow Prognostic Score) and changes in serum biochemical variables in patients with advanced lung and gastrointestinal cancer. J. Clin. Pathol. 2007, 60(6), 705–708. [CrossRef]
- Kerem, M.; Ferahkose, Z.; Yilmaz, U.T.; Pasaoglu, H.; Ofluoglu, E.; Bedirli, A.; Salman, B.; Sahin, T.T.; Akin, M. Adipokines and ghrelin in gastric cancer cachexia. World J. Gastroenterol. 2008, 14(23), 3633–3641. [CrossRef]
- Giannousi, Z.; Gioulbasanis, I.; Pallis, A.G.; Xyrafas, A.; Dalliani, D.; Kalbakis, K.; Papadopoulos, V.; Mavroudis, D.; Georgoulias, V.; Papandreou, C.N. Nutritional status, acute phase response and depression in metastatic lung cancer patients: correlations and association prognosis. Support. Care Cancer 2012, 20(8), 1823–1829. [CrossRef]
- Naito, T.; Tashiro, M.; Yamamoto, K.; Ohnishi, K.; Kagawa, Y.; Kawakami, J. Impact of cachexia on pharmacokinetic disposition of and clinical responses to oxycodone in cancer patients. Eur. J. Clin. Pharmacol. 2012, 68(10), 1411–1418. [CrossRef]
- McMillan, D.C. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat. Rev. 2013, 39(5), 534–540. [CrossRef]
- Kim, S.J.; Ryu, K.J.; Hong, M.; Ko, Y.H.; Kim, W.S. The serum CXCL13 level is associated with the Glasgow Prognostic Score in extranodal NK/T-cell lymphoma patients. J. Hematol. Oncol. 2015, 8, 49. [CrossRef]
- Dajczman, E.; Kasymjanova, G.; Kreisman, H.; Swinton, N.; Pepe, C.; Small, D. Should patient-rated performance status affect treatment decisions in advanced lung cancer? J. Thorac. Oncol. 2008, 3(10), 1133–1136. [CrossRef]


| Characteristic | Total (n=52) | (%) |
With Durvalumab (n=20) |
(%) |
Without Durvalumab (n=32) |
(%) | p-Value |
| Sex | |||||||
| Men | 41 | 78.8 | 17 | 85.0 | 24 | 75.0 | 0.49 |
| Women | 11 | 21.2 | 3 | 15.0 | 8 | 25.0 | |
| Age (years) | |||||||
| Median | 76 | 76 | 76 | 0.23** | |||
| Range | 71–86 | 71–80 | 71–86 | ||||
| Performance status (ECOG-PS) | |||||||
| 0 | 29 | 55.8 | 9 | 45.0 | 20 | 62.5 | 0.28*** |
| 1 | 22 | 42.3 | 11 | 55.0 | 11 | 34.4 | |
| 2 | 1 | 1.9 | 0 | 0 | 1 | 3.1 | |
| Smoking status | |||||||
| Current or former | 43 | 82.7 | 17 | 85.0 | 26 | 81.3 | >0.99 |
| Never | 9 | 17.3 | 3 | 15.0 | 6 | 18.7 | |
| Histology | |||||||
| Adenocarcinoma | 23 | 44.2 | 8 | 40.0 | 15 | 46.9 | 0.31*** |
| Squamous cell carcinoma | 23 | 44.2 | 8 | 40.0 | 15 | 46.9 | |
| Others | 6 | 11.6 | 4 | 20.0 | 2 | 6.2 | |
| Driver mutations/translocations (EGFR, ALK, ROS-1) | |||||||
| Positive | 7 | 13.5 | 1 | 5.0 | 6 | 18.7 | - |
| Wild type or negative | 37 | 71.1 | 15 | 75.0 | 22 | 68.8 | |
| Others | 0 | 0 | 0 | 0 | 0 | 0 | |
| Not tested | 8 | 15.4 | 4 | 20.0 | 4 | 12.5 | |
| PD-L1 TPS (%) | |||||||
| <1 | 11 | 21.2 | 6 | 30.0 | 5 | 15.6 | - |
| 1–49 | 13 | 25.0 | 7 | 35.0 | 6 | 18.7 | |
| ≥50 | 9 | 17.3 | 3 | 15.0 | 6 | 18.7 | |
| Unknown | 19 | 36.5 | 4 | 20.0 | 15 | 46.9 | |
| Disease stage | |||||||
| II | 4 | 7.7 | 3 | 15.0 | 1 | 3.1 | 0.27*** |
| III | 41 | 78.8 | 15 | 75.0 | 26 | 81.3 | |
| Postoperative recurrence | 7 | 13.5 | 2 | 10.0 | 5 | 15.6 | |
| History of postoperative adjuvant chemotherapy | |||||||
| Yes | 0 | 0 | 0 | 0 | 0 | 0 | >0.99 |
| No | 52 | 100 | 20 | 100 | 32 | 100 | |
| BMI (kg/m2) | |||||||
| Median | 22.2 | 20.6 | 23.3 | 0.017** | |||
| Range | 16.1–27.6 | 16.1–26.8 | 18.2–27.6 | ||||
| Radiotherapy planned dose completion | |||||||
| Yes | 50 | 96.2 | 20 | 100 | 30 | 93.8 | 0.51 |
| No | 2 | 3.8 | 0 | 0 | 2 | 6.2 | |
| Irradiation dose (Gy) | |||||||
| Median | 60 | 60 | 60 | 0.51** | |||
| Range | 45–66 | 60 | 45–66 | ||||
| Administration of CBDCA planned dose completion | |||||||
| Yes | 40 | 76.9 | 14 | 70.0 | 26 | 81.3 | 0.5 |
| No | 12 | 23.1 | 6 | 30.0 | 6 | 18.7 | |
| Number of cycles CBDCA administered | |||||||
| Median | 20 | 20 | 20 | 0.37** | |||
| Range | 4–20 | 6–20 | 4–20 | ||||
| Reason for discontinuation of CBDCA administration | |||||||
| Progressive disease | 0 | 0 | 0 | 0 | 0 | 0 | - |
| Adverse events | 11 | 21.2 | 6 | 30.0 | 5 | 15.6 | |
| Worsening of PS | 0 | 0 | 0 | 0 | 0 | 0 | |
| Others | 1 | 1.9 | 0 | 0 | 1 | 3.1 | |
| Laboratory data, median [range] | |||||||
| CRP (mg/dL) | 0.3 (0.0–10.1) |
0.2 (0.0–10.1) |
0.3 (0.0–6.3) |
0.56** | |||
| Albumin (g/dL) | 3.7 (2.0–4.5) |
3.8 (2.0–4.4) |
3.7 (2.3–4.5) |
0.93** | |||
| Neutrophil (cells/mm3) | 4274 (2103–8116) |
4371 (2103–8116) |
4274 (2188–7200) |
0.39** | |||
| Lymphocyte (cells/mm3) | 1279 (530–10150) |
1203 (729–10150) |
1371 (530–2160) |
0.38** | |||
| Platelets (cells/mm3) | 246000 (116000–514000) |
256000 (131000–514000) |
234000 (116000–336000) |
0.23** | |||
| GPS | |||||||
| 0, 1 | 43 | 82.7 | 17 | 85.0 | 26 | 81.3 | >0.99 |
| 2 | 9 | 17.3 | 3 | 15.0 | 6 | 18.7 | |
| NLR | |||||||
| Low (<5) | 44 | 84.6 | 15 | 75.0 | 29 | 90.6 | 0.23 |
| High (≥5) | 8 | 15.4 | 5 | 25.0 | 3 | 9.4 | |
| PLR | |||||||
| Low (<185) | 23 | 44.2 | 6 | 30.0 | 17 | 53.1 | 0.15 |
| High (≥185) | 29 | 55.8 | 14 | 70.0 | 15 | 46.9 | |
| ALI | |||||||
| Low (<24) | 26 | 50.0 | 14 | 70.0 | 12 | 37.5 | 0.004 |
| High (≥24) | 26 | 50.0 | 6 | 30.0 | 20 | 62.5 | |
| Relapse at data cutoff | |||||||
| Yes | 44 | 84.6 | 15 | 75.0 | 29 | 90.6 | 0.23 |
| No | 8 | 15.4 | 5 | 25.0 | 3 | 9.4 | |
| Alive at data cutoff | |||||||
| Alive | 16 | 30.8 | 8 | 40.0 | 8 | 25.0 | 0.35 |
| Death | 36 | 69.2 | 12 | 60.0 | 24 | 75.0 |
| Response | n=52 | (%) | With Durvalumab (n=20) | Without Durvalumab (n=32) | p-Value |
| Complete response | 0 | 0 | 0 | 0 | |
| Partial response | 27 | 51.9 | 10 | 17 | |
| Stable disease | 22 | 42.3 | 10 | 12 | |
| Progressive disease | 3 | 5.8 | 0 | 3 | |
| Not evaluated | 0 | 0 | 0 | 0 | |
| Response rate (%) (95% CI) | 51.9 | 38.6–64.8 | 50.0 (28.0–71.9) | 53.1 (35.8–70.4) | >0.99 |
| Disease control rate (%) (95% CI) | 94.2 | 83.7–98.6 | 100 | 90.6 (80.5–100.7) | 0.27 |
| Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||||||||
| PFS | PFS | OS | OS | |||||||||||
| Factors | Median PFS (months) | HR | 95% CI | p-value | HR | 95% CI | p-value | Median OS (months) | HR | 95% CI | p-value | HR | 95% CI | p-value |
| Sex | ||||||||||||||
| Men/women | 10.6 / 24.5 | 1.1 | 0.55–2.37 | 0.78 | 35.7 / 44.1 | 0.91 | 0.44–2.07 | 0.82 | ||||||
| Age (years) at the start of chemoradiotherapy | ||||||||||||||
| 71–74/≥75 | 8.8 / 11.8 | 1.12 | 0.54–2.17 | 0.73 | 16.7 / 45.6 | 1.79 | 0.80–3.69 | 0.14 | ||||||
| Smoking status | ||||||||||||||
| Current or former/never | 11.3 / 13.7 | 1.05 | 0.51–2.46 | 0.88 | 27.9 / 50.6 | 1.42 | 0.63–3.78 | 0.41 | ||||||
| Histology | ||||||||||||||
| Adenocarcinoma/non-adenocarcinoma | 13.7 / 8.8 | 0.84 | 0.46–1.53 | 0.58 | 59.4 / 16.6 | 0.48 | 0.24–0.95 | 0.0353 | ||||||
| Driver mutations/translocations | ||||||||||||||
| Positive/negative or unknown | 11.3 / 11.8 | 1.37 | 0.55–2.93 | 0.46 | 51.8 / 31.5 | 0.89 | 0.33–2.01 | 0.80 | ||||||
| Disease stage at diagnosis | ||||||||||||||
| II–III/postoperative recurrence | 12.6 / 8.5 | 0.74 | 0.31–2.18 | 0.55 | 41.8 / 27.5 | 1.48 | 0.45–4.86 | 0.51 | ||||||
| BMI (kg/m2) | ||||||||||||||
| Low (<22.0)/high (≥22.0) | 10.4 / 11.5 | 1.04 | 0.57–1.89 | 0.88 | 40.1 / 41.8 | 1.24 | 0.64–2.41 | 0.50 | ||||||
| GPS | ||||||||||||||
| 0, 1/2 | 13.7 / 5.6 | 0.41 | 0.20–0.92 | 0.0329 | 0.36 | 0.16–0.89 | 0.0294 | 45.6 / 13.0 | 0.34 | 0.15–0.84 | 0.0218 | 0.42 | 0.16–1.18 | 0.09 |
| NLR | ||||||||||||||
| Low (<5)/high (≥5) | 12.6 / 7.3 | 0.58 | 0.27–1.45 | 0.23 | 0.55 | 0.20–1.60 | 0.26 | 44.1 / 13.3 | 0.42 | 0.17–1.17 | 0.09 | 0.66 | 0.22–2.13 | 0.47 |
| PLR | ||||||||||||||
| Low (<185)/high (≥185) | 11.3 / 12.6 | 1.05 | 0.56–1.93 | 0.85 | 0.98 | 0.47–2.08 | 0.96 | 45.6 / 31.5 | 0.83 | 0.42–1.61 | 0.59 | 1.13 | 0.50–2.55 | 0.76 |
| ALI | ||||||||||||||
| Low (<24)/high (≥24) | 10.4 / 11.5 | 0.74 | 0.40–1.34 | 0.32 | 0.49 | 0.21–1.07 | 0.07 | 13.3 / 45.6 | 1.53 | 0.78–2.98 | 0.20 | 1.2 | 0.50–2.78 | 0.66 |
| Durvalumab maintenance therapy | ||||||||||||||
| Yes/no | 24.3 / 10.6 | 0.61 | 0.31–1.12 | 0.11 | 40.1 / 41.8 | 1.02 | 0.48–2.04 | 0.95 | ||||||
| Adverse Event | Any Grade | % | Grade≥3 | % |
| Led to discontinuation | 12 | 23.1 | 10 | 19.2 |
| Led to death | - | - | 0 | 0 |
| Treatment-related adverse events | ||||
| White blood cell decreased | - | - | 13 | 25.0 |
| Neutrophil count decreased | - | - | 12 | 23.1 |
| Platelet count decreased | - | - | 9 | 17.3 |
| Febrile neutropenia | - | - | 1 | 1.9 |
| Skin rash | - | - | 2 | 3.8 |
| Liver dysfunction | - | - | 1 | 1.9 |
| Infection | - | - | 1 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
