Submitted:
20 January 2026
Posted:
21 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Geomorphological Data
- Slope
- Elevation (above sea level) - Altitude.
- Terrain roughness
- Solar radiation exposure- Aspect
2.1.2. Bioclimatic Data
- Winkler Index (WI)
- Huglin Index (HI)
- Cool Night Index (CNI)
- Hydrothermal Coefficient (HTC)
- Growing Season Precipitation (GSP)
- Mean Growing Season Temperature (GST)
- Number of Very Hot Days (VHD)
- Heatwave Period (HP)
- Number of Very Cold Days (VCD)
- Frost Days (FD)
2.2. Methodology
- Maps were initially created for all parameters, with each parameter classified by a score from 1 to 5. The score value of 1 is assigned to adverse conditions of the parameter/index in relation to grapevine cultivation, and the score 5 is assigned to the optimal conditions of this parameter/index. Also, in some parameters (e.g., terrain roughness, elevation above sea level, etc.), a score of zero (0) may also be assigned, given that knowledge driven from the present data or the literature indicates that some values are unsuitable for viticulture. Thus, if the conditions are unsuitable for grapevine cultivation, the score is 0; otherwise, it ranges from 1 (least suitable) to 5 (most suitable). In the final map, regions with at least one value of 0 remain unsuitable, regardless of the scores for the remaining parameters/indexes. The scoring classification for each parameter/index is presented in the supplementary material.
- Subsequently, each categorized map was assigned a specific statistical weight according to the extent to which each parameter affects grapevine cultivation. This procedure was carried out because each parameter does not affect grapevine growth and cultivation to the same extent. Consequently, parameters that have a greater impact on grapevine cultivation were given higher statistical weights (e.g., 0.1) compared to those with lower influence (e.g., 0.05; 0.07; 0.03). Through this process, two final rasters were produced, representing the overall geomorphological and climatic suitability for grapevine cultivation in the study area for the 1970–2000 time period. The weights and the scoring are based on bibliographic knowledge, professional experience, and empirical observations of Greek viticulture. The assigned weights are presented in Supplementary Material Table S15.
- Finally, the geomorphological and climatic score rasters were combined to produce a final suitability score map. Geomorphology accounts for 30% of the final score, and climate for the remaining 70% in this version of the model. This ratio is based on the total number of parameters/indexes used in the coding-based model employed and on how each statistical weight contributes to it. The final viticulture suitability score map for Greece ranges from 2 to 4.5 for suitable areas. Cases with at least one 0 score have been removed from the final suitability map as they imply restrictiveness for viticulture cultivation. Furthermore, an additional map has been developed illustrating only the areas with high geomorphological and climatic suitability scores (values 4 to 4.5).
3. Results and Discussion
3.1. Classification of Geomorphological Parameters
- i)
- Slope of the terrain
- ii)
- Elevation above sea level- Altitude
- iii)
- Terrain roughness
- iv)
- Aspect of the vineyard
3.2. Classification of Climatic/ Bioclimatic Parameters and Indices
- i)
- Winkler Index (WI)
- ii)
- Huglin index (HΙ)
- iii)
- Hydrothermal coefficient (HTC)
- iv)
- Mean growing season temperature (GST)
- v)
- Cool night index (CNI)
- vi)
- Growing season precipitation index (GSP)
- vii)
- Average hot days (≥ 35°C) (HD)
- viii)
- Heatwave period (HP)
- ix)
- Very Cold Days (VCD)
- x)
- Frost Days (FD)
3.3. Total Climatic and Geomorphological Viticultural Suitability
3.4. Focused Results and Evaluation of the Model
4. Conclusions
- The application of a bioclimatic modeling framework provides valuable insights into adaptive viticultural practices, offering accurate, spatially explicit projections of future grape-growing potential under evolving climate conditions.
- The model and its structure are easy to understand for all stakeholders; thus the community can update and improve it quickly and effectively.
- The model is expandable, and we will add layers on soil structure and fertility, climatic risks, and pathogens in the next version.
- Overall, climatic and geomorphological suitability for grapevine cultivation is relatively high across most of Greece.
- Excluding areas omitted from the final model due to complete unsuitability (i.e., at least one parameter scored 0), approximately 80% of the Greek territory exhibits moderate suitability for hosting and cultivating grapevines (score 2.5–4). In contrast, the remaining 18% demonstrates high suitability (score ≥ 4).
- The model and the mapping material may be important tools for policymakers, agricultural insurance agencies, wine companies, and investors.
- The model's accuracy is high, as evidenced by its comparison with a reliable CLC dataset.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ Sci Pollut Res 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Brooks, N.; Grist, N.; Brown, K. Development Futures in the Context of Climate Change: Challenging the Present and Learning from the Past. Development Policy Review 2009, 27, 741–765. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture. Atmosphere 2022, 13, 837. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC, 2014; ISBN 92-9169-143-7. [Google Scholar]
- Alrteimei, H.A.; Ash’aari, Z.H.; Muharram, F.M. Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region. Agriculture 2022, 12, 1787. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Jones, P.D. Assessment of Climate Extremes in the Eastern Mediterranean. Meteorol. Atmos. Phys. 2005, 89, 69–85. [Google Scholar] [CrossRef]
- Lazoglou, G.; Papadopoulos-Zachos, A.; Georgiades, P.; Zittis, G.; Velikou, K.; Manios, E.M.; Anagnostopoulou, C. Identification of Climate Change Hotspots in the Mediterranean. Sci Rep 2024, 14, 29817. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, M.; Toreti, A.; Ceglar, A.; Naumann, G.; Turco, M.; Tebaldi, C. Climate Resilience of the Top Ten Wheat Producers in the Mediterranean and the Middle East. Reg Environ Change 2020, 20, 41. [Google Scholar] [CrossRef]
- Guo, H.; Xia, Y.; Jin, J.; Pan, C. The Impact of Climate Change on the Efficiency of Agricultural Production in the World’s Main Agricultural Regions. Environmental Impact Assessment Review 2022, 97, 106891. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of Climate Change on Agricultural Production; Issues, Challenges, and Opportunities in Asia. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Mall, R.K.; Gupta, A.; Sonkar, G. Effect of Climate Change on Agricultural Crops. In Current developments in biotechnology and bioengineering; Elsevier, 2017; pp. 23–46. [Google Scholar]
- Camps, J.O.; Ramos, M.C. Grape Harvest and Yield Responses to Inter-Annual Changes in Temperature and Precipitation in an Area of North-East Spain with a Mediterranean Climate. Int. J. Biometeorol 2012, 56, 853–864. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Laget, F.; Tondut, J.-L.; Deloire, A.; Kelly, M.T. Climate Trends in a Specific Mediterranean Viticultural Area between 1950 and 2006. J. Int. Sci. Vigne Vin 2008, 42, 113–123. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A Regional Comparison of the Effects of Climate Change on Agricultural Crops in Europe. Climatic Change 2012, 112, 29–46. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.K.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Anastasiou, E.; Templalexis, C.; Lentzou, D.; Biniari, K.; Xanthopoulos, G.; Fountas, S. Do Soil and Climatic Parameters Affect Yield and Quality on Table Grapes? Smart Agricultural Technology 2023, 3, 100088. [Google Scholar] [CrossRef]
- Daskalakis, I.; Biniari, K. A New Measurement Model to Estimate the Intensity of Acrotony on the Latent Buds of Grapevine Canes (Vitis Vinifera L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2019, 47, 1001–1004. [Google Scholar] [CrossRef]
- Jones, G.; Duchêne, E.; Tomasi, D.; Yuste, J.; Braslavska, O.; Schultz, H.; Martinez, C.; Boso, S.; Langellier, F.; Perruchot, C. Changes in European Winegrape Phenology and Relationships with Climate. 2005. [Google Scholar]
- Baltazar, M.; Castro, I.; Gonçalves, B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review. Plants 2025, 14, 104. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The Challenge of Adapting Grapevine Varieties to Climate Change. Clim. Res 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An Overview of Climate Change Impacts on European Viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Schultz, H.R.; Stoll, M. Some Critical Issues in Environmental Physiology of Grapevines: Future Challenges and Current Limitations. Aust. J. Grape Wine Res 2010, 16, 4–24. [Google Scholar] [CrossRef]
- Urhausen, S.; Brienen, S.; Kapala, A.; Simmer, C. Climatic Conditions and Their Impact on Viticulture in the Upper Moselle Region. Clim Change 2011. [Google Scholar] [CrossRef]
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate Change Impacts Assessment on Wine-Growing Bioclimatic Transition Areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. A Summary of the PRUDENCE Model Projections of Changes in European Climate by the End of This Century. Climatic Change 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Guiot, J.; Bernigaud, N.; Bondeau, A.; Bouby, L.; Cramer, W. Viticulture Extension in Response to Global Climate Change Drivers – Lessons from the Past and Future Projections. Climate of the Past 2023, 19, 1219–1244. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Petitjean, T.; Tissot, C.; Santesteban, L.G.; Neethling, E.; Foss, C.; Le Roux, R.; Quénol, H. Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change. Horticulturae 2024, 10, 413. [Google Scholar] [CrossRef]
- Adão, F.; Campos, J.C.; Santos, J.A.; Malheiro, A.C.; Fraga, H. Relocation of Bioclimatic Suitability of Portuguese Grapevine Varieties under Climate Change Scenarios. Frontiers in Plant Science 2023, 14. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-Linear Loss of Suitable Wine Regions over Europe in Response to Increasing Global Warming. Glob. Chang. Biol. 2023, 29, 808–826. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences 2020, 10, 3092. [Google Scholar] [CrossRef]
- Alikadic, A.; Pertot, I.; Eccel, E.; Dolci, C.; Zarbo, C.; Caffarra, A.; De Filippi, R.; Furlanello, C. The Impact of Climate Change on Grapevine Phenology and the Influence of Altitude: A Regional Study. Agricultural and Forest Meteorology 2019, 271, 73–82. [Google Scholar] [CrossRef]
- Vigl, L.E.; Schmid, A.; Moser, F.; Balotti, A.; Gartner, E.; Katz, H.; Quendler, S.; Ventura, S.; Raifer, B. Upward Shifts in Elevation – a Winning Strategy for Mountain Viticulture in the Context of Climate Change? E3S Web Conf. 2018, 50, 02006. [Google Scholar] [CrossRef]
- Karagiannis, D.; Metaxas, T. Sustainable Wine Tourism Development: Case Studies from the Greek Region of Peloponnese. Sustainability 2020, 12, 5223. [Google Scholar] [CrossRef]
- Lazoglou, G.; Anagnostopoulou, C.; Koundouras, S. Climate Change Projections for Greek Viticulture as Simulated by a Regional Climate Model. Theoretical and Applied Climatology 2018, 133, 551–567. [Google Scholar] [CrossRef]
- Vlachos, V.A. A Macroeconomic Estimation of Wine Production in Greece. Wine Economics and Policy 2017, 6, 3–13. [Google Scholar] [CrossRef]
- Ruck, C. Entheogens in Ancient Times: Wine and the Rituals of Dionysus. In Toxicology in Antiquity; Academic Press, 2019; pp. 343–352. [Google Scholar]
- Pagnoux, C.; Bouby, L.; Valamoti, S.M.; Bonhomme, V.; Ivorra, S.; Gkatzogia, E.; Karathanou, A.; Kotsachristou, D.; Kroll, H.; Terral, J.-F. Local Domestication or Diffusion? Insights into Viticulture in Greece from Neolithic to Archaic Times, Using Geometric Morphometric Analyses of Archaeological Grape Seeds. Journal of Archaeological Science 2021, 125, 105263. [Google Scholar] [CrossRef]
- Valamoti, S.M.; Pagnoux, C.; Ntinou, M.; Bouby, L.; Bonhomme, V.; Terral, J.-F. More than Meets the Eye: New Archaeobotanical Evidence on Bronze Age Viticulture and Wine Making in the Peloponnese, Greece. Veget Hist Archaeobot 2020, 29, 35–50. [Google Scholar] [CrossRef]
- Pagnoux, C.; Bouby, L.; Valamoti, S.M.; Bonhomme, V.; Ivorra, S.; Gkatzogia, E.; Karathanou, A.; Kotsachristou, D.; Kroll, H.; Terral, J.-F. Local Domestication or Diffusion? Insights into Viticulture in Greece from Neolithic to Archaic Times, Using Geometric Morphometric Analyses of Archaeological Grape Seeds. Journal of Archaeological Science 2021, 125, 105263. [Google Scholar] [CrossRef]
- Ruck, C.A. Entheogens in Ancient Times: Wine and the Rituals of Dionysus. In Toxicology in antiquity; Elsevier, 2019; pp. 343–352. [Google Scholar]
- Valamoti, S.M.; Pagnoux, C.; Ntinou, M.; Bouby, L.; Bonhomme, V.; Terral, J.-F. More than Meets the Eye: New Archaeobotanical Evidence on Bronze Age Viticulture and Wine Making in the Peloponnese, Greece. Veget Hist Archaeobot 2020, 29, 35–50. [Google Scholar] [CrossRef]
- Kontaxakis, E.; Lydakis, D.; Fisarakis, I. Enhancing Red Table Grape Coloration Using Tsikoudia: A Novel and Sustainable Approach. Plants 2024, 13, 2689. [Google Scholar] [CrossRef]
- Vasilopoulou, E.; Trichopoulou, A. Greek Raisins: A Traditional Nutritious Delicacy. Journal of Berry Research 2014, 4, 117–125. [Google Scholar] [CrossRef]
- Xyrafis, E.G.; Gambetta, G.A.; Biniari, K. A Comparative Study on Training Systems and Vine Density in Santorini Island: Physiological, Microclimate, Yield and Quality Attributes. OENO One 2023, 57, 141–152. [Google Scholar] [CrossRef]
- Anastasiou, E.; Templalexis, C.; Lentzou, D.; Biniari, K.; Xanthopoulos, G.; Fountas, S. Do Soil and Climatic Parameters Affect Yield and Quality on Table Grapes? Smart Agricultural Technology 2023, 3, 100088. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Jones, G.V. Viticulture–Climate Relationships in Greece: The Impacts of Recent Climate Trends on Harvest Date Variation. International Journal of Climatology 2014, 34, 1445–1459. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M. Viticulture: Climate Relationships in Greece and Impacts of Recent Climate Trends: Sensitivity to “Effective” Growing Season Definitions. In Proceedings of the Advances in Meteorology, Climatology and Atmospheric Physics; Helmis, C.G., Nastos, P.T., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 555–561. [Google Scholar]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Theocharis, S.; Jones, G.V. Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water 2022, 14, 573. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Jones, G.V. Viticulture-Climate Relationships in Greece: The Impacts of Recent Climate Trends on Harvest Date Variation. International Journal of Climatology 2014, 34, 1445–1459. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Theocharis, S.; Jones, G.V. Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water 2022, 14, 573. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of Viticulture-Related Climatic Indices and Zoning to Historical and Future Climate Conditions in Greece. International Journal of Climatology 2018, 38, 2097–2111. [Google Scholar] [CrossRef]
- Alsafadi, K.; Mohammed, S.; Habib, H.; Kiwan, S.; Hennawi, S.; Sharaf, M. An Integration of Bioclimatic, Soil, and Topographic Indicators for Viticulture Suitability Using Multi-Criteria Evaluation: A Case Study in the Western Slopes of Jabal Al Arab—Syria. Geocarto International 2020, 35, 1466–1488. [Google Scholar] [CrossRef]
- Keller, M. Managing Grapevines to Optimise Fruit Development in a Challenging Environment: A Climate Change Primer for Viticulturists. Aust. J. Grape Wine Res 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Sánchez, Y.; Martínez-Graña, A.M.; Santos-Francés, F.; Yenes, M. Index for the Calculation of Future Wine Areas According to Climate Change Application to the Protected Designation of Origin “Sierra de Salamanca” (Spain). Ecol. Indic. 2019, 107, 105646. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Lovett, A. A Suitability Model for Viticulture in England and Wales: Opportunities for Investment, Sector Growth and Increased Climate Resilience. Journal of Land Use Science 2018, 13, 414–438. [Google Scholar] [CrossRef]
- Polidori, L.; El Hage, M. Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sensing 2020, 12, 3522. [Google Scholar] [CrossRef]
- Townsend, C.G. Viticulture and the Role of Geomorphology: General Principles and Case Studies. Geography Compass 2011, 5, 750–766. [Google Scholar] [CrossRef]
- Pichon, L.; Ducanchez, A.; Fonta, H.; Tisseyre, B. Quality of Digital Elevation Models Obtained from Unmanned Aerial Vehicles for Precision Viticulture. OENO One 2016, 50. [Google Scholar] [CrossRef]
- Badr, G.; Hoogenboom, G.; Moyer, M.; Keller, M.; Rupp, R.; Davenport, J. Spatial Suitability Assessment for Vineyard Site Selection Based on Fuzzy Logic. Precision Agric 2018, 19, 1027–1048. [Google Scholar] [CrossRef]
- Wanyama, D.; Bunting, E.L.; Goodwin, R.; Weil, N.; Sabbatini, P.; Andresen, J.A. Modeling Land Suitability for Vitis Vinifera in Michigan Using Advanced Geospatial Data and Methods. Atmosphere 2020, 11, 339. [Google Scholar] [CrossRef]
- Strack, T.; Schmidt, D.; Stoll, M. Impact of Steep Slope Management System and Row Orientation on Canopy Microclimate. Comparing Terraces to Downslope Vineyards. Agricultural and Forest Meteorology 2021, 307, 108515. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Roșca, B. Climate Change Impact on Climate Suitability for Wine Production in Romania. Theor Appl Climatol 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Townsend, C.G. Viticulture and the Role of Geomorphology: General Principles and Case Studies. Geography Compass 2011, 5, 750–766. [Google Scholar] [CrossRef]
- Alfieri, J.G.; Kustas, W.P.; Nieto, H.; Prueger, J.H.; Hipps, L.E.; McKee, L.G.; Gao, F.; Los, S. Influence of Wind Direction on the Surface Roughness of Vineyards. Irrig Sci 2019, 37, 359–373. [Google Scholar] [CrossRef]
- Darboux, F.; Davy, Ph.; Gascuel-Odoux, C.; Huang, C. Evolution of Soil Surface Roughness and Flowpath Connectivity in Overland Flow Experiments. CATENA 2002, 46, 125–139. [Google Scholar] [CrossRef]
- Matranga, G.; Palazzi, F.; Leanza, A.; Milella, A.; Reina, G.; Cavallo, E.; Biddoccu, M. Estimating Soil Surface Roughness by Proximal Sensing for Soil Erosion Modeling Implementation at Field Scale. Environmental Research 2023, 238, 117191. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; et al. Raster: Geographic Data Analysis and Modeling. Available online: https://CRAN.R-project.org/package=raster (accessed on 7 July 2022).
- Alganci, U.; Kuru, G.N.; Yay Algan, I.; Sertel, E. Vineyard Site Suitability Analysis by Use of Multicriteria Approach Applied on Geo-Spatial Data. Geocarto International 2019, 34, 1286–1299. [Google Scholar] [CrossRef]
- Nowlin, J.W.; Bunch, R.L.; Jones, G.V. Viticultural Site Selection: Testing the Effectiveness of North Carolina’s Commercial Vineyards. Applied Geography 2019, 106, 22–39. [Google Scholar] [CrossRef]
- Nowlin, J.W.; Bunch, R.L.; Jones, G.V. Viticultural Site Selection: Testing the Effectiveness of North Carolina’s Commercial Vineyards. Applied Geography 2019, 106, 22–39. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The Concept of Terroir in Viticulture. Journal of Wine Research 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Dimitri, G.M.; Trambusti, A. Precision Agriculture for Wine Production: A Machine Learning Approach to Link Weather Conditions and Wine Quality. Heliyon 2024, 10, e31648. [Google Scholar] [CrossRef]
- Lorenzo, M.N.; Taboada, J.J.; Lorenzo, J.F.; Ramos, A.M. Influence of Climate on Grape Production and Wine Quality in the Rías Baixas, North-Western Spain. Reg. Environ. Change 2013, 13, 887–896. [Google Scholar] [CrossRef]
- Crupi, P.; Alba, V.; Gentilesco, G.; Gasparro, M.; Ferrara, G.; Mazzeo, A.; Coletta, A. Viticultural Climate Indexes and Their Role in The Prediction of Anthocyanins and Other Flavonoids Content in Seedless Table Grapes. Horticulturae 2024, 10, 28. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A Multicriteria Climatic Classification System for Grape-Growing Regions Worldwide. Agric. For. Meteorol 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Vyshkvarkova, E.; Rybalko, E.; Marchukova, O.; Baranova, N. Assessment of the Current and Projected Conditions of Water Availability in the Sevastopol Region for Grape Growing. Agronomy 2021, 11, 1665. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef] [PubMed]
- Ferrandino, A.; Lovisolo, C. Abiotic Stress Effects on Grapevine (Vitis Vinifera L.): Focus on Abscisic Acid-Mediated Consequences on Secondary Metabolism and Berry Quality. Environmental and Experimental Botany 2014, 103, 138–147. [Google Scholar] [CrossRef]
- Poni, S.; Sabbatini, P.; Palliotti, A. Facing Spring Frost Damage in Grapevine: Recent Developments and the Role of Delayed Winter Pruning – A Review. Am J Enol Vitic. 2022, 73, 211–226. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Rattayova, V.; Salazar-Galán, S.; Francés, F. Evaluation of ERA5 and ERA5-Land Reanalysis Precipitation Datasets over Spain (1951–2020). Atmospheric Research 2023, 284, 106606. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth System Science Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Yilmaz, M. Accuracy Assessment of Temperature Trends from ERA5 and ERA5-Land. Science of The Total Environment 2023, 856, 159182. [Google Scholar] [CrossRef]
- Garcia-Prats, A.; Carricondo-Antón, J.M.; Ippolito, M.; De Caro, D.; Jiménez-Bello, M.A.; Manzano-Juárez, J.; Pulido-Velazquez, M. High-Resolution Spatially Interpolated FAO Penman-Monteith Crop Reference Evapotranspiration Maps of Sicily Island (Italy) and Jucar River System (Spain) Using AgERA5 and ERA5-Land Reanalysis Datasets. Journal of Hydrology: Regional Studies 2025, 60, 102531. [Google Scholar] [CrossRef]
- Gourgouletis, N.; Gkavrou, M.; Baltas, E. Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece. Geographies 2023, 3, 499–521. [Google Scholar] [CrossRef]
- Ouassanouan, Y.; Simonneaux, V.; Kharrou, M.H.; Fakir, Y.; Baba, M.W.; Hssaine, B.A.; Hachimi, C.E.; Sourp, L.; Chehbouni, A. Downscaled ERA5 Land Addresses Agrometeorological Data Scarcity in North African Basins. Sci Rep 2025, 15, 38533. [Google Scholar] [CrossRef]
- Vanella, D.; Longo-Minnolo, G.; Belfiore, O.R.; Ramírez-Cuesta, J.M.; Pappalardo, S.; Consoli, S.; D’Urso, G.; Chirico, G.B.; Coppola, A.; Comegna, A.; et al. Comparing the Use of ERA5 Reanalysis Dataset and Ground-Based Agrometeorological Data under Different Climates and Topography in Italy. Journal of Hydrology: Regional Studies 2022, 42, 101182. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 5 June 2025).
- Charalampopoulos, I. The R Language as a Tool for Biometeorological Research. Atmosphere 2020, 11, 682. [Google Scholar] [CrossRef]
- Guimarães, N.; Vehkalahti, K.; Campos, P.; Engel, J. Exploring Climate Change Data with R. In Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens; Ridgway, J., Ed.; Springer International Publishing: Cham, 2022; pp. 267–296. ISBN 978-3-031-20748-8. [Google Scholar]
- Hijmans, R.J.; Bivand, R.; Forner, K.; Ooms, J.; Pebesma, E.; Sumner, M.D. Terra: Spatial Data Analysis. Available online: https://CRAN.R-project.org/package=terra (accessed on 7 July 2022).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data (accessed on 5 January 2026).
- Wickham, H. The Tidyverse. Available online: https://www.tidyverse.org/ (accessed on 15 April 2023).
- Charalampopoulos, I.; Droulia, F.; Mavridi, A.; Roussos, P.A. Mapping the Climatic Suitability for Olive Groves in Greece. Agronomy 2025, 15, 2604. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, Z.Q.; Lee, K.W. Photosynthetic and Physiological Responses to High Temperature in Grapevine (Vitis Vinifera L.) Leaves during the Seedling Stage. The Journal of Horticultural Science and Biotechnology 2017, 92, 2–10. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.-T.; Machado, N.; Moutinho-Pereira, J. Grapevine Abiotic Stress Assessment and Search for Sustainable Adaptation Strategies in Mediterranean-like Climates. A Review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe; Remote Sensing and Digital Image Processing; Manakos, I., Braun, M., Eds.; Springer Netherlands, 2014; pp. 55–74. ISBN 978-94-007-7968-6. [Google Scholar]






















| Climatic Suitability Score | Area Covered (%) |
|---|---|
| 0 | 1.6 |
| 1.5-2.0 | 0.3 |
| 2.0-2.5 | 3.7 |
| 2.5-3.0 | 8.2 |
| 3.0-3.5 | 18.2 |
| 3.5-4.0 | 55.1 |
| 4.0-4.5 | 12.9 |
| Total Suitability Score | Total Greece Area (%) | Over CLC Areas (%) |
|---|---|---|
| 0 | 16.1 | 1.5 |
| 1.5-2.0 | 0.0 | 0.0 |
| 2.0-2.5 | 1.5 | 0.0 |
| 2.5-3.0 | 5.4 | 0.7 |
| 3.0-3.5 | 13.2 | 9.9 |
| 3.5-4.0 | 50.9 | 68.4 |
| 4.0-4.5 | 12.9 | 19.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
