Submitted:
21 January 2026
Posted:
21 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Study Area and Datasets
4. Method
4.1. Measuring Bike-Sharing Usage Efficiency
4.2. Exploring Influences on Usage Efficiency
5. Results
5.1. Usage Efficiency
5.2. Influencing Factors

6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
References
- Otero, I.; Nieuwenhuijsen, M.J.; Rojas-Rueda, D. Health Impacts of Bike Sharing Systems in Europe. Environ. Int. 2018, 115, 387–394. [CrossRef]
- Zhang, Y.; Mi, Z. Environmental Benefits of Bike Sharing: A Big Data-Based Analysis. Appl. Energy 2018, 220, 296–301. [CrossRef]
- Mooney, S.J.; Hosford, K.; Howe, B.; Yan, A.; Winters, M.; Bassok, A.; Hirsch, J.A. Freedom from the Station: Spatial Equity in Access to Dockless Bike Share. J. Transp. Geogr. 2019, 74, 91–96. [CrossRef]
- Xu, C.; Ji, J.; Liu, P. The Station-Free Sharing Bike Demand Forecasting with a Deep Learning Approach and Large-Scale Datasets. Transp. Res. Part C Emerg. Technol. 2018, 95, 47–60. [CrossRef]
- Chen, Z.; Van Lierop, D.; Ettema, D. Dockless Bike-Sharing Systems: What Are the Implications? Transp. Rev. 2020, 40, 333–353. [CrossRef]
- Ma, Y.; Rong, K.; Mangalagiu, D.; Thornton, T.F.; Zhu, D. Co-Evolution between Urban Sustainability and Business Ecosystem Innovation: Evidence from the Sharing Mobility Sector in Shanghai. J. Clean. Prod. 2018, 188, 942–953. [CrossRef]
- Tao, J.; Zhou, Z. Evaluation of Potential Contribution of Dockless Bike-Sharing Service to Sustainable and Efficient Urban Mobility in China. Sustain. Prod. Consum. 2021, 27, 921–932. [CrossRef]
- Zhang, L.; Zhang, J.; Duan, Z.; Bryde, D. Sustainable Bike-Sharing Systems: Characteristics and Commonalities across Cases in Urban China. J. Clean. Prod. 2015, 97, 124–133. [CrossRef]
- Rixey, R.A. Station-Level Forecasting of Bike Sharing Ridership: Station Network Effects in Three U.S. Systems. 2013.
- El-Assi, W.; Salah Mahmoud, M.; Nurul Habib, K. Effects of Built Environment and Weather on Bike Sharing Demand: A Station Level Analysis of Commercial Bike Sharing in Toronto. Transportation 2017, 44, 589–613. [CrossRef]
- Guo, Y.; He, S.Y. Built Environment Effects on the Integration of Dockless Bike-Sharing and the Metro. Transp. Res. Part Transp. Environ. 2020, 83, 102335. [CrossRef]
- Barbour, N.; Zhang, Y.; Mannering, F. A Statistical Analysis of Bike Sharing Usage and Its Potential as an Auto-Trip Substitute. J. Transp. Health 2019, 12, 253–262. [CrossRef]
- Li, A.; Zhao, P.; Huang, Y.; Gao, K.; Axhausen, K.W. An Empirical Analysis of Dockless Bike-Sharing Utilization and Its Explanatory Factors: Case Study from Shanghai, China. J. Transp. Geogr. 2020, 88, 102828. [CrossRef]
- Zhao, P.; Li, A.; Pilesjö, P.; Mansourian, A. A Machine Learning Based Approach for Predicting Usage Efficiency of Shared E-Scooters Using Vehicle Availability Data. AGILE GIScience Ser. 2022, 3, 20. [CrossRef]
- Du, Y.; Deng, F.; Liao, F. A Model Framework for Discovering the Spatio-Temporal Usage Patterns of Public Free-Floating Bike-Sharing System. Transp. Res. Part C Emerg. Technol. 2019, 103, 39–55. [CrossRef]
- Jiao, J.; Lee, H.K.; Choi, S.J. Impacts of COVID-19 on Bike-Sharing Usages in Seoul, South Korea. Cities 2022, 130, 103849. [CrossRef]
- Shen, Y.; Zhang, X.; Zhao, J. Understanding the Usage of Dockless Bike Sharing in Singapore. Int. J. Sustain. Transp. 2018, 12, 686–700. [CrossRef]
- Zheng, L.; Meng, F.; Ding, T.; Yang, Q.; Xie, Z.; Jiang, Z. The Effect of Traffic Status on Dockless Bicycle-Sharing: Evidence from Shanghai, China. J. Clean. Prod. 2022, 381, 135207. [CrossRef]
- Chen, E.; Ye, Z. Identifying the Nonlinear Relationship between Free-Floating Bike Sharing Usage and Built Environment. J. Clean. Prod. 2021, 280, 124281. [CrossRef]
- Gao, K.; Yang, Y.; Li, A.; Qu, X. Spatial Heterogeneity in Distance Decay of Using Bike Sharing: An Empirical Large-Scale Analysis in Shanghai. Transp. Res. Part Transp. Environ. 2021, 94, 102814.
- Xu, X.; Wang, J.; Poslad, S.; Rui, X.; Zhang, G.; Fan, Y. Exploring Intra-Urban Human Mobility and Daily Activity Patterns from the Lens of Dockless Bike-Sharing: A Case Study of Beijing, China. Int. J. Appl. Earth Obs. Geoinformation 2023, 122, 103442. [CrossRef]
- Chen, W.; Chen, X.; Cheng, L.; Chen, J.; Tao, S. Locating New Docked Bike Sharing Stations Considering Demand Suitability and Spatial Accessibility. Travel Behav. Soc. 2024, 34, 100675. [CrossRef]
- Wang, Y.; Li, J.; Su, D.; Zhou, H. Spatial-Temporal Heterogeneity and Built Environment Nonlinearity in Inconsiderate Parking of Dockless Bike-Sharing. Transp. Res. Part Policy Pract. 2023, 175, 103789. [CrossRef]
- Zhou, X.; Dong, Q.; Huang, Z.; Yin, G.; Zhou, G.; Liu, Y. The Spatially Varying Effects of Built Environment Characteristics on the Integrated Usage of Dockless Bike-Sharing and Public Transport. Sustain. Cities Soc. 2023, 89, 104348. [CrossRef]
- Lin, D.; Zhang, Y.; Zhu, R.; Meng, L. The Analysis of Catchment Areas of Metro Stations Using Trajectory Data Generated by Dockless Shared Bikes. Sustain. Cities Soc. 2019, 49, 101598. [CrossRef]
- Guo, Y.; Yang, L.; Lu, Y.; Zhao, R. Dockless Bike-Sharing as a Feeder Mode of Metro Commute? The Role of the Feeder-Related Built Environment: Analytical Framework and Empirical Evidence. Sustain. Cities Soc. 2021, 65, 102594. [CrossRef]
- Li, W.; Chen, S.; Dong, J.; Wu, J. Exploring the Spatial Variations of Transfer Distances between Dockless Bike-Sharing Systems and Metros. J. Transp. Geogr. 2021, 92, 103032. [CrossRef]
- Wu, X.; Lu, Y.; Lin, Y.; Yang, Y. Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach. Int. J. Environ. Res. Public. Health 2019, 16, 2641. [CrossRef]
- Schimohr, K.; Doebler, P.; Scheiner, J. Prediction of Bike-sharing Trip Counts: Comparing Parametric Spatial Regression Models to a Geographically Weighted XGBoost Algorithm. Geogr. Anal. 2023, 55, 651–684. [CrossRef]
- Ngeni, F.; Kutela, B.; Chengula, T.J.; Ruseruka, C.; Musau, H.; Novat, N.; Indah, D.A.; Kasomi, S. Prediction of Bike-Sharing Station Demand Using Explainable Artificial Intelligence. Mach. Learn. Appl. 2024, 17, 100582. [CrossRef]
- Pan, L.; Cai, Q.; Fang, Z.; Tang, P.; Huang, L. A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems. In Proceedings of the Proceedings of the AAAI conference on artificial intelligence; 2019; Vol. 33, pp. 1393–1400. [CrossRef]
- Gu, Z.; Zhu, Y.; Zhang, Y.; Zhou, W.; Chen, Y. Heuristic Bike Optimization Algorithm to Improve Usage Efficiency of the Station-Free Bike Sharing System in Shenzhen, China. ISPRS Int. J. Geo-Inf. 2019, 8, 239.
- Faghih-Imani, A.; Hampshire, R.; Marla, L.; Eluru, N. An Empirical Analysis of Bike Sharing Usage and Rebalancing: Evidence from Barcelona and Seville. Transp. Res. Part Policy Pract. 2017, 97, 177–191. [CrossRef]
- Hua, M.; Chen, X.; Zheng, S.; Cheng, L.; Chen, J. Estimating the Parking Demand of Free-Floating Bike Sharing: A Journey-Data-Based Study of Nanjing, China. J. Clean. Prod. 2020, 244, 118764. [CrossRef]
- Wang, J.; Wang, Y. A Two-Stage Incentive Mechanism for Rebalancing Free-Floating Bike Sharing Systems: Considering User Preference. Transp. Res. Part F Traffic Psychol. Behav. 2021, 82, 54–69. [CrossRef]
- Wei, Z.; Ma, H.; Li, Y. A Multiscale Approach for Free-Float Bike-Sharing Electronic Fence Location Planning: A Case Study of Shenzhen City. J. Adv. Transp. 2024, 2024, 1783038. [CrossRef]
- Fu, C.; Yen, B.T.; Yeh, C.-J. The Analysis of the Shared Bike Usage Pattern: Application of Survival Model to Taiwan YouBike. Asian Transp. Stud. 2024, 10, 100125. [CrossRef]
- Shi, Z.; Wang, J.; Liu, K.; Liu, Y.; He, M. Exploring the Usage Efficiency of Electric Bike-Sharing from a Spatial–Temporal Perspective. Transp. Res. Part Transp. Environ. 2024, 129, 104139. [CrossRef]
- Cheng, L.; Huang, J.; Jin, T.; Chen, W.; Li, A.; Witlox, F. Comparison of Station-Based and Free-Floating Bikeshare Systems as Feeder Modes to the Metro. J. Transp. Geogr. 2023, 107, 103545. [CrossRef]
- Guidon, S.; Becker, H.; Axhausen, K. Avoiding Stranded Bicycles in Free-Floating Bicycle-Sharing Systems: Using Survival Analysis to Derive Operational Rules for Rebalancing. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC); IEEE, 2019; pp. 1703–1708.
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]
- Zhao, P.; Xu, Y.; Liu, X.; Kwan, M.-P. Space-Time Dynamics of Cab Drivers’ Stay Behaviors and Their Relationships with Built Environment Characteristics. Cities 2020, 101, 102689. [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Meta-Analysis. J. Am. Plann. Assoc. 2010, 76, 265–294. [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. Mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [CrossRef]





| District | Bike ID | Start Date | Start Time | Start Lon. | Start Lat. | End Date | End Time | End Lon. | End Lat. |
|---|---|---|---|---|---|---|---|---|---|
| Haidian | 8641958202 | 2022-07-04 | 07:46:58 | 116.345 | 39.96733 | 2022-07-04 | 07:53:51 | 116.361 | 39.96711 |
| Fengtai | 8650407056 | 2022-07-02 | 12:35:11 | 116.2922 | 39.80814 | 2022-07-02 | 12:39:13 | 116.2858 | 39.80281 |
| Chaoyang | 8651782342 | 2022-07-03 | 10:28:37 | 116.46 | 39.87633 | 2022-07-03 | 10:35:07 | 116.4461 | 39.87773 |
| Category | Count | Ratio (%) |
|---|---|---|
| Transport Facilities | 69570 | 10.24 |
| Leisure & Entertainment | 13609 | 2.00 |
| Companies | 75574 | 11.12 |
| Medical Care | 24563 | 3.62 |
| Business & Residential | 30440 | 4.48 |
| Tourist Attractions | 10286 | 1.51 |
| Automotive Services | 22898 | 3.37 |
| Life Services | 97163 | 14.3 |
| Science, Education & Culture | 43524 | 6.41 |
| Shopping & Consumption | 149225 | 21.96 |
| Sports & Fitness | 12732 | 1.87 |
| Hotel & Accommodation | 17713 | 2.61 |
| Financial Institutions | 12195 | 1.79 |
| Dining & Food | 99921 | 14.71 |
| Category | Variable | Meaning (Description) | Unit |
|---|---|---|---|
| density | meanPop | Population Density | person |
| diversity | poiEntropy | POI Mixing Entropy | - |
| industrialRatio | Ratio of Industrial POIs | % | |
| design | mainRoadLength | Length of Trunk Roads | m |
| bikePathLength | Length of Bike Lanes | m | |
| destination accessibility | numMedicalFacilities | No. of Medical Facilities | count |
| numParksPlazas | No. of Parks and Plazas | count | |
| numShoppingCenters | No. of Shopping Centers | count | |
| numTransportFacilities | No. of Transport Facilities | count | |
| distance to transit | numBusStations | No. of Bus Stops | count |
| numSubwayStations | No. of Metro Stations | count | |
| nearestSubwayDist | Distance to Nearest Metro Station | m |
| Variable | OLS Model | GWR Model | |||||
|---|---|---|---|---|---|---|---|
| Coef. | t-value | Mean | Std. | Min | Median | Max | |
| (Constant) | -0.000 | -0.000 | -0.008 | 0.274 | -0.486 | 0.014 | 0.760 |
| Population Density | -0.180** | -4.509 | -0.166 | 0.193 | -0.669 | -0.174 | 0.259 |
| POI Mixing Entropy | 0.060 | 1.463 | 0.119 | 0.165 | -0.260 | 0.125 | 0.435 |
| Ratio of Industrial POIs | -0.062 | -1.600 | -0.084 | 0.130 | -0.461 | -0.082 | 0.252 |
| Length of Trunk Roads | -0.078* | -2.102 | -0.081 | 0.111 | -0.346 | -0.091 | 0.196 |
| Length of Bike Lanes | -0.074* | -2.141 | 0.013 | 0.163 | -0.293 | -0.022 | 0.794 |
| No. of Medical Facilities | -0.094* | -2.324 | -0.087 | 0.083 | -0.290 | -0.079 | 0.106 |
| No. of Parks and Plazas | -0.028 | -0.849 | -0.032 | 0.067 | -0.206 | -0.026 | 0.136 |
| No. of Shopping Centers | -0.089* | -2.345 | -0.060 | 0.113 | -0.303 | -0.059 | 0.194 |
| No. of Transport Facilities | -0.234** | -5.157 | -0.286 | 0.143 | -0.571 | -0.273 | -0.003 |
| No. of Bus Stops | 0.045 | 1.125 | 0.063 | 0.124 | -0.195 | 0.040 | 0.337 |
| No. of Metro Stations | 0.084* | 1.992 | 0.039 | 0.092 | -0.179 | 0.039 | 0.242 |
| Distance to Nearest Metro Station | 0.254** | 5.922 | 0.195 | 0.111 | -0.115 | 0.197 | 0.410 |
| Model Performance | |||||||
| Adjusted R² | 0.317 | 0.444 | |||||
| AICc | 1613 | 1553 | |||||
| Residual Sum of Squares | 433.459 | 261.229 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
