Remote sensing semantic segmentation encounters several challenges, including scale variation, the coexistence of class similarity and intra-class diversity, difficulties in modeling long-range dependencies, and shadow occlusions. Slender structures and complex boundaries present particular segmentation difficulties, especially in high-resolution imagery acquired by satellite and aerial cameras, UAV-borne optical sensors, and other imaging payloads. These sensing systems deliver large-area coverage with fine ground sampling distance, which magnifies domain shifts between different sensors and acquisition conditions. This work builds upon DeepLabV3+ and proposes complementary improvements at three stages: input, context, and decoder fusion. First, to mitigate the interference of complex and heterogeneous data distributions on network optimization, a feature-mapping network is introduced to project raw images into a simpler distribution before they are fed into the segmentation backbone. This approach facilitates training and enhances feature separability. Second, although the Atrous Spatial Pyramid Pooling (ASPP) aggregates multi-scale context, it remains insufficient for modeling long-range dependencies. Therefore, a routing-style global modeling module is incorporated after ASPP to strengthen global relation modeling and ensure cross-region semantic consistency. Third, considering that the fusion between shallow details and deep semantics in the decoder is limited and prone to boundary blurring, a fusion module is designed to facilitate deep interaction and joint learning through cross-layer feature alignment and coupling. The proposed model improves the mean Intersection over Union (mIoU) by 8.83% on the LoveDA dataset and by 6.72% on the ISPRS Potsdam dataset compared to the baseline. Qualitative results further demonstrate clearer boundaries and more stable region annotations, while the modifications to the baseline are minimal and easy to integrate into camera-based remote sensing pipelines and other imaging-sensor systems.