Submitted:
20 January 2026
Posted:
20 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Data and Sample Selection
2.1. Data
2.2. Sample Selection
- 1.
- Spectral screening. Each spectrum was visually inspected to assess the continuum shape and the presence of diagnostic absorption lines. Only spectra showing clear hydrogen (Balmer) or helium features were retained, because our spectral fitting used the DA and DB atmospheric model grids of Koester [23]. White dwarfs of the DZ type—dominated by metal lines and incompatible with the adopted grids—were excluded (29 objects). In addition, six misclassified sources whose spectral morphologies were inconsistent with those of typical white dwarfs were rejected.
- 2.
- Assessment of metal-line quality. During the same inspection, particular attention was given to the Ca II K line at and other metallic absorption features. Only spectra with sufficiently high signal-to-noise ratios () and well-defined line profiles were retained, ensuring reliable determinations of radial velocity and equivalent width () in the subsequent analysis.
3. Sample Analysis
3.1. Atmospheric Parameter and Radial Velocity Determination
3.2. Measurement of Ca Line Velocity and Equivalent Width
3.3. Calculation of White Dwarf Cooling Age
3.4. Calculation of Galactic Space Velocities and Orbital Parameters
4. Results and Discussion
4.1. Origin of the Ca Line
4.2. Characteristics of the Ca line
4.3. Kinematic Characteristics of the Milky Way
5. Conclusions
- 1.
- We utilize the relationship between and derived from the sdB sample by Li et al. [27]. Our analysis shows that most of the targets lie above the pure-ISM expectation, indicating that for the majority of these objects, the Ca II K line does not originate from the ISM, which does not play a dominant role in the observed metal pollution of white dwarfs. By comparing the radial velocities (RV) of the white dwarf photospheric lines (H Balmer for DA-type and He I for DB-type) with the RV of the Ca II K line, we find that the Ca II K line is photospheric for 10 objects, while for 17 objects it originates externally, likely from circumstellar material (CSM).
- 2.
- In our sample of 27 metal-polluted white dwarfs, the versus effective temperature () diagram shows that DA-type white dwarfs exhibit relatively larger values in the temperature range –, while the line strength decreases markedly with increasing effective temperature, particularly for . This result is consistent with previous studies. The DB-type white dwarfs are mainly distributed in the region . At , helium lines disappear; therefore, a comprehensive investigation of the evolution of metal abundances in helium-dominated atmospheres requires the inclusion of DZ white dwarfs and larger samples. In the versus cooling age () diagram, DA white dwarfs span a wide range of cooling ages, from nearly zero up to about 4.0 Gyr. Relatively large values are mainly found in the cooling-age interval –1.4 Gyr, whereas fewer objects are present at other cooling ages. This distribution is likely influenced by sample selection effects. The DB white dwarfs in our sample are concentrated at Gyr, and their values show a trend of first increasing and then decreasing with cooling age. Notably, no statistically significant difference in the distributions between DA and DB white dwarfs is found in the overlapping cooling-age range of 0.0–0.5 Gyr. These behaviours can be explained by the interplay of convection zone evolution, metal settling (diffusion), and ongoing accretion of planetary debris [7,39,40].
- 3.
- Kinematic analysis of the distribution shows no significant differences between the Galactic populations of DA and DB white dwarfs. This suggests that the strength of surface metal pollution in white dwarfs is primarily determined by the accretion history of their local planetary or minor-body systems, with only a weak connection to the large-scale Galactic dynamical environment. Consequently, metal pollution is found to be common across different disk components of the Galaxy, indicating ongoing or recurrent evolution of white dwarf planetary systems within various Galactic structures.
Acknowledgments
Conflicts of Interest
Appendix A. Parameter Measurement Results
| No. | Gaia EDR3 ID | LAMOST obsID | Cooling | Total | |||||
|---|---|---|---|---|---|---|---|---|---|
| (K) | (cgs) | (km/s) | (km/s) | (Å) | (Gyr) | (Gyr) | |||
| Hydrogen-rich white dwarfs | |||||||||
| 1 | 1565012935076040832 | 564901178 | 7103±63 | 7.74±0.09 | 20.33±4.66 | – | |||
| 2 | 200924312484080256 | 302715031 | 21631±525 | 7.69±0.05 | – | ||||
| 3 | 2564020159166337024 | 472002174 | 6493±35 | 7.41±0.03 | – | ||||
| 4 | 2564945432560219008 | 354812027 | 7329±64 | 7.75±0.11 | – | ||||
| 5 | 2759588063311504768 | 355001148 | 6512±42 | 7.64±0.09 | – | ||||
| 6 | 333392060349558784 | 778504097 | 28989±405 | 8.20±0.07 | |||||
| 7 | 3360183783038606336 | 422409198 | 7850±44 | 7.31±0.07 | – | ||||
| 8 | 340886198462842112 | 854612056 | 6066±33 | 7.58±0.03 | – | ||||
| 9 | 3440707857129932672 | 185908034 | 7808±38 | 7.89±0.06 | |||||
| 10 | 3669065354086975872 | 812815099 | 7648±23 | 7.81±0.04 | |||||
| 11 | 480570075502703488 | 613507047 | 6617±42 | 8.27±0.08 | |||||
| 12 | 642549544391197440 | 713109166 | 11374±115 | 8.19±0.05 | |||||
| 13 | 716504796716020352 | 483112174 | 7374±20 | 7.96±0.03 | |||||
| 14 | 762684864901596928 | 620008163 | 26361±364 | 7.51±0.06 | – | ||||
| 15 | 917141857485288704 | 793608149 | 6820±23 | 7.43±0.07 | – | ||||
| 16 | 95297185335797120 | 378505204 | 7683±114 | 8.71±0.09 | |||||
| 17 | 994846611963848704 | 853011165 | 13018±582 | 7.99±0.12 | |||||
| Helium-rich white dwarfs | |||||||||
| 1 | 1032748903780398592 | 604516136 | 13662±171 | 8.06±0.11 | |||||
| 2 | 1196531988354226560 | 558410149 | 16121±120 | 7.95±0.06 | |||||
| 3 | 1527809271227078272 | 342506137 | 16323±110 | 7.90±0.06 | |||||
| 4 | 203931163247581184 | 295304028 | 18468±63 | 8.29±0.02 | |||||
| 5 | 3351139990665573120 | 387301118 | 16362±193 | 8.13±0.09 | |||||
| 6 | 3878793490528218752 | 868302211 | 21404±201 | 8.15±0.03 | |||||
| 7 | 4002914643768684288 | 629804063 | 14832±81 | 8.49±0.04 | |||||
| 8 | 5187830356195791488 | 837313013 | 15759±67 | 8.14±0.03 | |||||
| 9 | 689352219629097856 | 601709080 | 23046±134 | 7.87±0.02 | |||||
| 10 | 972551088836290816 | 632707021 | 14481±102 | 7.98±0.07 | |||||
| No. | Gaia EDR3 ID | LAMOST obsID | U | V | W | e | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| (km/s) | (km/s) | (km/s) | kpc | kpc | kpc | km/s kpc | ||||
| Hydrogen-rich white dwarfs | ||||||||||
| 1 | 1565012935076040832 | 564901178 | -0.01 | -21.25 | 12.09 | 8.60 | 8.11 | 0.03 | 0.22 | 1.80 |
| 2 | 200924312484080256 | 302715031 | 33.91 | -9.24 | 6.55 | 10.67 | 8.06 | 0.14 | 0.21 | 1.22 |
| 3 | 2564020159166337024 | 472002174 | -21.68 | -4.98 | -3.05 | 9.81 | 8.37 | 0.08 | 0.15 | 0.66 |
| 4 | 2564945432560219008 | 354812027 | 0.18 | -68.74 | -56.77 | 8.48 | 5.35 | 0.23 | 0.65 | 13.21 |
| 5 | 2759588063311504768 | 355001148 | 56.72 | -53.07 | 7.97 | 9.39 | 5.64 | 0.25 | 0.28 | 2.37 |
| 6 | 333392060349558784 | 778504097 | -70.12 | -11.40 | -26.16 | 11.20 | 7.45 | 0.20 | 0.34 | 2.65 |
| 7 | 3360183783038606336 | 422409198 | -53.97 | -28.97 | 4.58 | 9.57 | 7.00 | 0.15 | 0.17 | 1.01 |
| 8 | 340886198462842112 | 854612056 | 5.04 | -70.87 | 9.36 | 8.67 | 5.39 | 0.23 | 0.24 | 2.11 |
| 9 | 3440707857129932672 | 185908034 | -12.57 | -35.75 | -4.23 | 8.48 | 7.38 | 0.07 | 0.04 | 0.05 |
| 10 | 3669065354086975872 | 812815099 | 19.90 | -10.72 | 15.64 | 9.76 | 8.04 | 0.01 | 0.33 | 3.15 |
| 11 | 480570075502703488 | 613507047 | 31.49 | -68.36 | -37.00 | 9.14 | 5.92 | 0.21 | 0.56 | 8.50 |
| 12 | 642549544391197440 | 713109166 | 5.09 | -33.96 | 2.98 | 8.60 | 7.40 | 0.07 | 0.15 | 0.84 |
| 13 | 716504796716020352 | 483112174 | -6.02 | -5.72 | -16.38 | 9.68 | 8.42 | 0.07 | 0.12 | 0.49 |
| 14 | 762684864901596928 | 620008163 | -86.49 | -7.18 | 19.56 | 12.08 | 7.48 | 0.24 | 0.68 | 8.59 |
| 15 | 917141857485288704 | 793608149 | -36.13 | 2.96 | 15.75 | 11.03 | 8.34 | 0.14 | 0.38 | 3.55 |
| 16 | 95297185335797120 | 378505204 | 59.76 | -126.12 | 94.56 | 9.25 | 3.55 | 0.45 | 3.02 | 163.06 |
| 17 | 994846611963848704 | 853011165 | -35.43 | -65.12 | -26.45 | 8.70 | 5.64 | 0.21 | 0.31 | 3.21 |
| Helium-rich white dwarfs | ||||||||||
| 1 | 1032748903780398592 | 604516136 | 49.09 | -27.13 | -66.61 | 10.47 | 7.16 | 0.19 | 1.41 | 34.40 |
| 2 | 1196531988354226560 | 558410149 | 29.09 | -6.13 | -28.37 | 10.28 | 8.06 | 0.12 | 0.38 | 3.74 |
| 3 | 1527809271227078272 | 342506137 | -58.32 | -66.08 | -33.68 | 8.93 | 5.40 | 0.25 | 0.45 | 6.40 |
| 4 | 203931163247581184 | 295304028 | -3.20 | -29.93 | -17.06 | 8.50 | 7.71 | 0.05 | 0.14 | 0.69 |
| 5 | 3351139990665573120 | 387301118 | 66.69 | 6.60 | -4.91 | 12.15 | 8.57 | 0.17 | 0.06 | 0.10 |
| 6 | 3878793490528218752 | 868302211 | -13.98 | -27.75 | -5.64 | 8.49 | 7.77 | 0.04 | 0.15 | 0.88 |
| 7 | 4002914643768684288 | 629804063 | -40.98 | -25.06 | -49.20 | 9.26 | 7.65 | 0.10 | 0.79 | 15.59 |
| 8 | 5187830356195791488 | 837313013 | 57.47 | 0.73 | 22.23 | 12.08 | 8.44 | 0.18 | 0.52 | 5.65 |
| 9 | 689352219629097856 | 601709080 | -5.97 | -41.20 | -6.03 | 8.51 | 7.12 | 0.09 | 0.08 | 0.27 |
| 10 | 972551088836290816 | 632707021 | -47.83 | -56.27 | -6.75 | 8.93 | 5.96 | 0.20 | 0.06 | 0.13 |
Appendix B. Fitting Diagram







| 1 | |
| 2 |
References
- Badenas-Agusti, M.; Vanderburg, A.; Blouin, S.; et al. MNRAS 2024, 527, 4515. [CrossRef]
- Podsiadlowski, P.; Han, Z.; Eggleton, P. P. AAS Meeting Abstracts 1993, 183, 101.05.
- Althaus, L. G.; Córsico, A. H.; Isern, J.; et al. A&ARv 2010, 18, 471. [CrossRef]
- Ferrario, L.; Wickramasinghe, D. T.; Liebert, J.; Williams, K. A. PASP 2001, 113, 409.
- Zuckerman, B.; Koester, D.; Reid, I. N.; et al. ApJ 2003, 596, 477. [CrossRef]
- Zuckerman, B.; Koester, D.; Melis, C.; et al. ApJ 2007, 671, 872. [CrossRef]
- Koester, D.; Gänsicke, B. T.; Farihi, J. A&A 2014, 566, A34. [CrossRef]
- Paquette, C.; Pelletier, C.; Fontaine, G.; et al. ApJS 1986, 61, 197. [CrossRef]
- Koester, D. 2009, A&A 498, 517. [CrossRef]
- Aannestad, P. A.; Sion, E. M. AJ 1985, 90, 1832. [CrossRef]
- Alcock, C.; Illarionov, A. ApJ 1980, 235, 534. [CrossRef]
- Jura, M.; Young, E. D. Annual Review of Earth and Planetary Sciences 2014, 42, 45. [CrossRef]
- Zuckerman, B.; Becklin, E. E. Nature 1987, 330, 138. [CrossRef]
- Jura, M. ApJL 2003, 584, L91. [CrossRef]
- Gänsicke, B. T.; Marsh, T. R.; Southworth, J.; et al. Science 2006, 314, 1908. [CrossRef] [PubMed]
- Cunningham, T.; Wheatley, P. J.; Tremblay, P.-E.; et al. Nature 2022, 602, 219. [CrossRef] [PubMed]
- Mullally, S. E.; Debes, J.; Cracraft, M.; et al. ApJL 2024, 962, L32. [CrossRef]
- Malamud, U. Encyclopedia of Astrophysics 2026, 1, 553. [CrossRef]
- Zhao, G.; Zhao, Y.-H.; Chu, Y.-Q.; et al. Research in Astronomy and Astrophysics 2012, 12, 723. [CrossRef]
- Yan, H.; Li, H.; Wang, S.; et al. The Innovation 2022, 3, 100224. [CrossRef]
- Prusti, T.; de Bruijne, J. H. J. Gaia Collaboration. A&A 2016, 595, A1. [Google Scholar] [CrossRef]
- Brown, A. G. A.; Vallenari, A. Gaia Collaboration; A&A, 2021; Volume 649, p. A1. [Google Scholar] [CrossRef]
- Koester, D. Memorie della Societa Astronomica Italiana 2010, 81, 921.
- Tremblay, P.-E.; Ludwig, H.-G.; Steffen, M.; et al. A&A 2013, 552, A13. [CrossRef]
- Cukanovaite, E.; Tremblay, P.-E.; Bergeron, P.; et al. MNRAS 2021, 501, 5274. [CrossRef]
- Cui, X.-Q.; Zhao, Y.-H.; Chu, Y.-Q.; et al. Research in Astronomy and Astrophysics 2012, 12, 1197. [CrossRef]
- Li, J.; Wolf, C.; Li, J.; et al. MNRAS 2025, 537, 1950. [CrossRef]
- Liu, C.; Cui, W.-Y.; Zhang, B.; et al. Research in Astronomy and Astrophysics 2015, 15, 1137. [CrossRef]
- Kiman, R.; Xu, S.; Faherty, J. K.; et al. AJ 2022, 164, 62. [CrossRef]
- Bédard, A.; Bergeron, P.; Brassard, P.; et al. ApJ 2020, 901, 93. [CrossRef]
- Lallement, R.; Vergely, J.-L.; Valette, B.; et al. A&A 2014, 561, A91. [CrossRef]
- Schönrich, R.; Binney, J.; Dehnen, W. MNRAS 2010, 403, 1829. [CrossRef]
- Bovy, J. ApJS 2015, 216, 29. [CrossRef]
- Green, G. M.; Schlafly, E.; Zucker, C.; et al. ApJ 2019, 887, 93. [CrossRef]
- Schlafly, E. F.; Finkbeiner, D. P. ApJ 2011, 737, 103. [CrossRef]
- Megier, A.; Strobel, A.; Galazutdinov, G. A.; et al. A&A 2009, 507, 833. [CrossRef]
- Zuckerman, B.; Melis, C.; Klein, B.; et al. ApJ 2010, 722, 725. [CrossRef]
- Coutu, S.; Dufour, P.; Bergeron, P.; et al. ApJ 2019, 885, 74. [CrossRef]
- Dupuis, J.; Fontaine, G.; Wesemael, F. ApJS 1993, 87, 345. [CrossRef]
- Zhu, C.; Liu, H.; Wang, Z.; et al. A&A 2021, 654, A57. [CrossRef]
- Blouin, S.; Xu, S. MNRAS 2022, 510, 1059. [CrossRef]
- Farihi, J. New Astronomy Reviews 2016, 71, 9. [CrossRef]
- Bonsor, A.; Mustill, A. J.; Wyatt, M. C. MNRAS 2011, 414, 930. [CrossRef]
- Bédard, A. Ap&SS 2024, 369, 43. [CrossRef]
- Williams, J. T.; Gänsicke, B. T.; Swan, A.; et al. A&A 2024, 691, A352. [CrossRef]
- Cunningham, T.; Tremblay, P.-E.; O’Brien, M.; et al. MNRAS 2025, 539. [CrossRef]
- Torres, S.; Cantero, C.; Rebassa-Mansergas, A.; et al. MNRAS 2019, 485, 5573. [CrossRef]
- Robitaille, T. P.; Tollerud, E. J. Astropy Collaboration; A&A, 2013; Volume 558, p. A33. [Google Scholar] [CrossRef]
- Price-Whelan, A. M.; Sipocz, B. M. Astropy Collaboration. AJ 2018, 156, 123. [Google Scholar] [CrossRef]
- Price-Whelan, A. M.; Lim, P. L. Astropy Collaboration. ApJ 2022, 935, 167. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
