The accurate monitoring and dynamic analysis of metal ions are of considerable practical significance in environmental toxicology and life sciences. Colorimetric analysis and surface-enhanced Raman scattering (SERS) sensing technologies, utilizing the aggregation effect of gold and silver nanoparticles (Au/Ag NPs), have emerged as prominent methods for rapid metal ion detection, serving as effective complements to conventional bulky instrumental analysis techniques. This is propelled by their distinctive localized surface plasmon resonance (LSPR) response and electromagnetic field enhancement mechanisms. This article evaluates contemporary optical sensing methodologies utilizing aggregation effects and their advancements in the detection of diverse metal ions. It comprehensively outlines methodological advancements from nanomaterial fabrication to signal transduction, encompassing approaches such as biomass-mediated green synthesis and functionalization, targeted surface ligand engineering, digital readout systems utilizing intelligent algorithms, and multimodal synergistic sensing. Recent studies demonstrate that these techniques have attained trace-level identification of target ions regarding analytical efficacy, with detection limits generally conforming to or beyond applicable environmental and health safety regulations. Moreover, pertinent research has enhanced detection linear ranges, anti-interference properties, and adaptability for point-of-care testing (POCT), validating the usefulness and developmental prospects of this technology for analysis in complicated matrices.