Submitted:
16 January 2026
Posted:
19 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Fundamentals of Aggregation-Based Detection
3. Colorimetric Sensors
3.1. Heavy Metal Ions
| Nanostructure | Ligand | Linear Range | LOD | Method | Evaluation | Ion | Ref. |
|---|---|---|---|---|---|---|---|
| AuNPs | 4-MBA | 20–25 μM | 5 μM | Ligand Engineering | — | Cr³⁺ | [47] |
| ZmL-AuNPs | Ziziphus mauritiana extract | 16–283 nM | 0.48 nM | Green synthesis strategies | High-stable | Cr³⁺ | [48] |
| NDC-AuNPs | Cystamine-functionalized NDC | 10–400 nM | 0.236 nM | Ligand Engineering | Ultrasensitive | Cr³⁺ | [49] |
| AuNPs | AMT | — | 1.0 μM | Ligand Engineering | — | Cr³⁺ | [50] |
| AuNPs | ATG | 0–5.0 μM | 57.1 nM | Ligand Engineering | — | Cr³⁺ | [51] |
| AuNPs & CDs | GSH | 2–50 μM | 0.30 μM | Multimodal sensing | Self-calibrated | Cr³⁺ | [52] |
| Metal NPs | MMT ligands | 40–128 nM | 12.4 nM | Smart Readout & Algorithmic Enhancement | Sensitive & Portable | Cr³⁺ | [53] |
| AuNPs | PMMA Microfluidic Chip | 1.00–35.00 μM | 0.33 μM | Solid-Phase Support and Phase Transition | — | Cr³⁺ | [54] |
| Chl-AgNPs | Chlorophyll | 2–100 μM | 0.62 μM | Physical Assistance & Green synthesis strategies | — | Cr⁶⁺ | [55] |
| AuNPs | PVP (Plasma synthesis) | 0.1–3.0 μM | 0.072 μM | Physical Assistance and Post-Treatment | — | Cr⁶⁺ | [56] |
| AuNPs | DPC | — | 0.3 μM | Smart Readout & Special Response Mechanisms | Cr⁶⁺ | [57] | |
| AuNPs/AgNPs | Citrate / Na | 0.96–961 μM (0.05–50 ppm) | 0.44 μM | Special Response Mechanisms | Wide linear range | Cr⁶⁺ | [58] |
| Nanostructure | Ligand | Linear Range | LOD | Method | Evaluation | Ion | Ref. |
|---|---|---|---|---|---|---|---|
| AgNPs | Citrate (Laser Ablation) | — | 1.0 μM (0.2 ppm) | Physical Assistance and Post-Treatment | — | Hg²⁺ | [59] |
| AgNPs | Diospyros kaki extract | 0.5 nM–500 μM (0.1–100,000 ppb) | 0.5 nM (0.1 ppb) | Green synthesis strategies | Wide linear range | Hg²⁺ | [60] |
| AgNPs | CMC (Water hyacinth) | 5–45 μM | 3.14 μM | Green synthesis strategies | — | Hg²⁺ | [61] |
| AgNPs | Salvia tiliifolia extract | 0.1–100 μM | 0.27 nM | Green synthesis strategies | Ultrasensitive | Hg²⁺ | [62] |
| Ps-AgNPs | DNA Aptamer | 2.5–100 μM (0.5–20 ppm) | 2.5 μM (0.5 ppm) | Solid-Phase Support & Multimodal sensing | Sensitive & Portable | Hg²⁺ | [64] |
| AuNPs | DNA (Probe-blocker) | 0.005–1 μM | 2.85 nM | Ligand Engineering & Smart Readout | Sensitive & Portable | Hg²⁺ | [65] |
| Rib-AuNPs | Ribavirin | — | 3.64 nM | Ligand Engineering | — | Hg²⁺ | [66] |
| AuNPs | Andrographis paniculata extract | 0–100 μM | 12.661 μM | Green synthesis strategies | — | Pb²⁺ | [67] |
| AuNPs | Orange peel extract (OPE) | 0.8–9.9 μM | 0.05 μM | Green synthesis strategies & Special Response Mechanisms | — | Pb²⁺ | [68] |
| AuNPs & CDs | DNAzyme | 2.4×10⁻¹⁴–8.0×10⁻¹⁰ M | 0.11 pM | Ligand Engineering & Multimodal sensing | Ultrasensitive | Pb²⁺ | [71] |
| AuNPs | DNAzyme (Mismatch) | 10–300 nM | 8.6 nM | Special Response Mechanisms | — | Pb²⁺ | [72] |
| AuNPs | Unmodified | 0.48–96.5 μM (0.1–20 mg/L) | 48 nM (0.01 mg/L) | Smart Readout and Algorithmic Enhancement | Sensitive & Portable | Pb²⁺ | [73] |
3.2. Transition Metal Ions
| Nanostructure | Ligand | Linear Range | LOD | Method | Evaluation | Ion | Ref. |
|---|---|---|---|---|---|---|---|
| Ag/Au NPs | Saponins | 0–100 μM | 1 μM | Green synthesis strategies & Special Response Mechanisms | — | Fe²⁺/³⁺ | [76] |
| AuNPs | Cyclodextrin (Gel matrix) | 35.8–322 μM (2–18 mg/L) | 3.6 μM (0.20 mg/L) | Solid-Phase Support and Phase Transition | — | Fe³⁺ | [77] |
| AuNPs | Green tea extract | 17 nM–17 μM (0.001–1 mg/L) | 17 nM (0.001 mg/L) | Green synthesis & Smart Readout | Ni²⁺ | [78] | |
| AgNPs | MSA & EDTA | 10–300 μM | 3.57 μM | Ligand Engineering & Smart Readout | Sensitive & Portable | Ni²⁺ | [79] |
| AuNPs | Padina australis polysaccharides | 20–60 μM | 0.43 μM | Green synthesis strategies | — | Cu²⁺ | [80] |
| AuNPs | L-Cysteine (Hydrogel) | 10–70 μM | 0.65 μM | Solid-Phase Support and Phase Transition | — | Cu²⁺ | [82] |
| AuNPs | MBA (Purified) | — | 10 μM | Physical Assistance and Post-Treatment | — | Cu²⁺ | [83] |
3.3. Other Metal Ions
4. SERS Sensors
4.1. Heavy Metal Ions
| Nanostructure | Ligand | Linear Range | LOD | Method | Evaluation | Ion | Ref. |
|---|---|---|---|---|---|---|---|
| AuNPs | Citrate | 0.24–4.8 nM (50–1000 ng/L) | 0.12 nM (25 ng/L) | Molecular Probe Engineering | — | Pb²⁺ | [95] |
| Au@Ag NPs | L-cysteine & 4-ATP | 5 pM–10 nM | 1 pM | Plasmonic nanohybrid design | Ultrasensitive | Pb²⁺ | [96] |
| Au@Ag NRs | GSH & 4-MBA | 2.4 nM–4.8 μM (0.5–1000 µg/L) | 0.1 nM (0.021 µg/L) | Plasmonic nanohybrid design | Wide linear range | Pb²⁺ | [97] |
| Au/AgNPs | DNAzyme | 5.0×10⁻⁸–6.0×10⁻⁷ M | 7 nM | Special Response Mechanisms | — | Pb²⁺ | [98] |
| AgNPs | Aptamer / Spermine | — | 5 nM | Molecular Probe Engineering | — | Hg²⁺ | [100] |
| AgNPs | L-cysteine | — | Cu: 10pM Hg: 1 pM |
Molecular Probe Engineering | Ultrasensitive | Cu²⁺, Hg²⁺ | [108] |
| Nanostructure | Ligand | Linear Range | LOD | Method | Evaluation | Ion | Ref. |
|---|---|---|---|---|---|---|---|
| AuNPs | Alizarin / MPA / PDCA | — | 89 pM (10 ppt) | Molecular Probe Engineering | Ultrasensitive | Cd²⁺ | [102] |
| AuNPs | Dopamine (DA) | 10⁻⁴–10⁻⁸ M | 10 nM | Molecular Probe Engineering | Wide linear range | Cd²⁺ | [103] |
| AuNPs | R6G / GSH | 4.45–178 μM (0.5–20 ppm) | 89 nM (10 ppb) | Special Response Mechanisms | — | Cd²⁺ | [104] |
| AuNPs | Tween 20 / Citrate | 50–200 nM | 50 nM | Molecular Probe Engineering | — | Cr³⁺ | [105] |
| AgNPs | EDTA | — | 0.5 µM | Molecular Probe Engineering | — | Cr³⁺ | [106] |
| Au-core/Ag-shell | 4-MBA / DL-MSA | — | 0.3 nM | Plasmonic nanohybrid design | Ultrasensitive | Cr³⁺ | [107] |
4.2. Transition Metal and Other Metal Ions
| Nanostructure | Ligand | Linear Range | LOD | Method | Evaluation | Ion | Ref. |
|---|---|---|---|---|---|---|---|
| AuNPs | Glycine (GLY) | 0–10 µM | 500 nM | Special Response Mechanisms | — | Cu²⁺ | [109] |
| AgNPs | PVP | 0.01–2 µM | 3 nM | Molecular Probe Engineering | Self-calibrated | Cu²⁺ | [110] |
| AgNPs | L-Cys & 4-MBN | 1 µM–10 mM | 0.055 µM | Molecular Probe Engineering | — | Cu²⁺ | [111] |
| AuNNPs | PNIPAM / MBN | 0–18 mM | 57.4 µM | Molecular Probe Engineering | Self-calibrated | Cu²⁺ | [112] |
| Fe₃O₄@SiO₂-Ag | 4-MBA | 7.9–315 μM (0.5–20 ppm) | 6.6 μM (0.421 ppm) | Plasmonic nanohybrid design | — | Cu²⁺ | [113] |
| Ag-Au (Core-Satellite) | MBA & Mpy | 1 pM–100 µM | 0.6 pM | Plasmonic nanohybrid design | Ultrasensitive & Wide linear range | Cu²⁺ | [114] |
| AuNPs | Peptide (CW) | — | 10 pM | Multimodal sensing & Molecular Probe Engineering | Sensitive & Portable | Cu²⁺ | [115] |
| AuNPs | Ascorbic acid / BSA | 0.025–25 µM | 8 nM | Special Response Mechanisms | — | Cu²⁺ | [117] |
| AgNPs | Phytic acid (IP6) | 200–700 μM (11.2–39.2 ppm) | 5 μM (0.28 ppm) | Green Synthesis Strategies | — | Fe³⁺ | [118] |
| AgNPs | 2,2'-bipyridine (Bpy) | 10⁻¹¹–10⁻⁷ M | 5.73 pM | Molecular Probe Engineering | Fe²⁺ | [119] |
4.3. Multi-Metal Ions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, Z.; Jamal, A.; Hassan, T. Different Approaches for Detecting Heavy Metal Ions. In Remediation of Heavy Metals: Sustainable Technologies and Recent Advances; Selvasembian, R., Thokchom, B., Singh, P., Jawad, A.H., Gwenzi, W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 83–107. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Rajkumar, N.; Chitturi, C. M. K.; Lavanya, K.; Subhashini, V.; Shamshad, S.; Seethamma, G. Consequences of Toxic Heavy Metals on Environment and Human Health: A Review. Uttar Pradesh J. Zool. 2025, 46, 198–207. [Google Scholar] [CrossRef]
- Quintanar, L.; Lim, M. H. Metal Ions and Degenerative Diseases. J. Biol. Inorg. Chem. 2019, 24, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z. Iron and Oxidizing Species in Oxidative Stress and Alzheimer’s Disease. Aging Med. 2019, 2, 82–87. [Google Scholar] [CrossRef]
- Kronzucker, H. J.; Coskun, D.; Schulze, L. M.; Wong, J. R.; Britto, D. T. Sodium as Nutrient and Toxicant. Plant Soil 2013, 369, 1–23. [Google Scholar] [CrossRef]
- Alasfar, R. H.; Isaifan, R. J. Aluminum Environmental Pollution: The Silent Killer. Environ. Sci. Pollut. Res. 2021, 28, 44587–44597. [Google Scholar] [CrossRef]
- Itoh, A.; Yaida, A.; Zhu, Y. Potential Anthropogenic Pollution of High-Technology Metals with a Focus on Rare Earth Elements in Environmental Water. Anal. Sci. 2020, 37, 131–143. [Google Scholar] [CrossRef]
- Clases, D.; Gonzalez de Vega, R. Facets of ICP-MS and Their Potential in the Medical Sciences—Part 1: Fundamentals, Stand-Alone and Hyphenated Techniques. Anal. Bioanal. Chem. 2022, 414, 7337–7361. [Google Scholar] [CrossRef]
- Barik, P.; Mehta, A.; Makhija, R.; Saha, M.; Asati, V. Recent Advancements in Inductively Coupled Plasma Mass Spectrometry in Trace Element Analysis. Curr. Anal. Chem. 2025, 21, 1129–1148. [Google Scholar] [CrossRef]
- Khan, S. R.; Sharma, B.; Chawla, P. A.; Bhatia, R. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): A Powerful Analytical Technique for Elemental Analysis. Food Anal. Methods 2021, 15, 666–688. [Google Scholar] [CrossRef]
- Ogunfowokan, A. O.; Adekunle, A. S.; Oyebode, B. A.; Oyekunle, J. A. O.; Komolafe, A. O.; Omoniyi-Esan, G. O. Determination of Heavy Metals in Urine of Patients and Tissue of Corpses by Atomic Absorption Spectroscopy. Chem. Afr. J. Tunisian Chem. Soc. 2019, 2, 699–712. [Google Scholar] [CrossRef]
- Hu, T.; Lai, Q.; Fan, W.; Zhang, Y.; Liu, Z. Advances in Portable Heavy Metal Ion Sensors. Sensors 2023, 23, 4125. [Google Scholar] [CrossRef]
- Ataş, H. B.; Kenar, A.; Taştekin, M. An Electronic Tongue for Simultaneous Determination of Ca2+, Mg2+, K+ and NH4+ in Water Samples by Multivariate Calibration Methods. Talanta 2020, 217, 121110. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Xu, S.; Li, C.; Dong, B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front. Chem. 2022, 10, 875241. [Google Scholar] [CrossRef]
- Noreldeen, H. A. A.; Zhu, C.-T.; Huang, K.-Y.; Peng, H.-P.; Deng, H.-H.; Chen, W. A Double Probe-Based Fluorescence Sensor Array to Detect Rare Earth Element Ions. Analyst 2025, 150, 612–619. [Google Scholar] [CrossRef]
- Xu, G.; Song, P.; Xia, L. Examples in the Detection of Heavy Metal Ions Based on Surface-Enhanced Raman Scattering Spectroscopy. Nanophotonics 2021, 10, 4419–4445. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W. Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles. Chemosensors 2022, 10, 536. [Google Scholar] [CrossRef]
- Lee, J.-S. Silver Nanomaterials for the Detection of Chemical and Biological Targets. Nanotechnol. Rev. 2014, 3, 499–513. [Google Scholar] [CrossRef]
- Rajkumar, G.; Sundar, R. Sonochemical-Assisted Eco-Friendly Synthesis of Silver Nanoparticles (AgNPs) Using Avocado Seed Extract: Naked-Eye Selective Colorimetric Recognition of Hg2+ Ions in Aqueous Medium. J. Mol. Liq. 2022, 368, 120638. [Google Scholar] [CrossRef]
- Patra, S.; Golder, A. K.; Uppaluri, R. V. S. Mature Green Tea Leaves Derived CDs as Both Reducing Agent and Stabilizer for Synthesis of CD-AgNPs Composite for Hg(II) Ions Detection. Next Nanotechnol. 2025, 8, 100219. [Google Scholar] [CrossRef]
- Issarangkura Na Ayutthaya, P.; Vongboot, M. Two Principles for Colorimetric Detections of Cr6+ Using Polyurethane Foam—Gold Nanoparticles Composite. Univers. J. Green Chem. 2024, 2, 172–186. [Google Scholar] [CrossRef]
- Gholami, M. D.; Alzubaidi, F. M.; Liu, Q.; Izake, E. L.; Sonar, P. Rapidly and Simply Detecting Cr (VI) in Aqueous Media via a Diketopyrrolopyrrole-Based Chemosensor with Both High Selectivity and Low LOD. Anal. Chim. Acta 2024, 1316, 342861. [Google Scholar] [CrossRef]
- Singh, H.; Bamrah, A.; Bhardwaj, S. K.; Deep, A.; Khatri, M.; Brown, R. J. C.; Bhardwaj, N.; Kim, K.-H. Recent Advances in the Application of Noble Metal Nanoparticles in Colorimetric Sensors for Lead Ions. Environ. Sci.-Nano 2021, 8, 863–889. [Google Scholar] [CrossRef]
- Kant, T.; Shrivas, K.; Tejwani, A.; Tandey, K.; Sharma, A.; Gupta, S. Progress in the Design of Portable Colorimetric Chemical Sensing Devices. Nanoscale 2023, 15, 19016–19038. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Ling, S.; Liang, A.; Jiang, Z. A Facile Aptamer-Regulating Gold Nanoplasmonic SERS Detection Strategy for Trace Lead Ions. Sens. Actuator B-Chem. 2018, 258, 739–744. [Google Scholar] [CrossRef]
- Docherty, J.; Mabbott, S.; Smith, W. E.; Reglinski, J.; Faulds, K.; Davidson, C.; Graham, D. Determination of Metal Ion Concentrations by SERS Using 2,2′-Bipyridyl Complexes. Analyst 2015, 140, 6538–6543. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Xu, S.; Li, H.; Lu, Y.; Zhu, C. Recyclable Multifunctional Magnetic Fe3O4@SiO2@Au Core/Shell Nanoparticles for SERS Detection of Hg (II). Chemosensors 2023, 11, 347. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, N.; Yan, J.; Cui, K.; Chu, Q.; Chen, X.; Luo, X.; Deng, X. A Dual-Signaling Surface-Enhanced Raman Spectroscopy Ratiometric Strategy for Ultrasensitive Hg2+ Detection Based on Au@Ag/COF Composites. Food Chem. 2024, 456, 139998. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yamaguchi, Y.; Ni, Y.; Li, M.; Dou, X. A SERS-Based Capillary Sensor for the Detection of Mercury Ions in Environmental Water. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2020, 233, 118193. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, H.; Zhang, L.; Wu, T.; Sun, L.; Jiang, D.; Du, Y. In Situ Preparation of Ag Nanoparticles by Laser Photoreduction as SERS Substrate for Determination of Hg2+. J. Raman Spectrosc. 2016, 48, 399–404. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D. F. Ag Nanostructures as the Surface Plasmon Resonance (SPR)˗based Sensors: A Mechanistic Study with an Emphasis on Heavy Metallic Ions Detection. Sens. Actuators B Chem. 2018, 273, 1768–1779. [Google Scholar] [CrossRef]
- Suriati, G.; Mariatti, M.; Azizan, A. Synthesis of Silver Nanoparticles by Chemical Reduction Method: Effect of Reducing Agent and Surfactant Concentration. Int. J. Automot. Mech. Eng. 2022, 10, 1920–1927. [Google Scholar] [CrossRef]
- Do Thi, H.; Nghien Thi Ha, L.; Chu Viet, H. Seeded Growth Synthesis of Uniform Gold Nanoparticles with Controlled Diameters up to 220 Nm. J. Electron. Mater. 2021, 50, 5514–5521. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D. F. Ag Nanostructures as the Surface Plasmon Resonance (SPR)˗based Sensors: A Mechanistic Study with an Emphasis on Heavy Metallic Ions Detection. Sens. Actuators B Chem. 2018, 273, 1768–1779. [Google Scholar] [CrossRef]
- Pomal, N. C.; Bhatt, K. D.; Modi, K. M.; Desai, A. L.; Patel, N. P.; Kongor, A.; Kolivoška, V. Functionalized Silver Nanoparticles as Colorimetric and Fluorimetric Sensor for Environmentally Toxic Mercury Ions: An Overview. J. Fluoresc. 2021, 31, 635–649. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R. A.; Liz-Marzán, L. M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem.-Int. Edit. 2012, 51, 11214–11223. [Google Scholar] [CrossRef]
- Parakh, A.; Awate, A.; Barman, S. M.; Kadu, R. K.; Tulaskar, D. P.; Kulkarni, M. B.; Bhaiyya, M. Artificial Intelligence and Machine Learning for Colorimetric Detections: Techniques, Applications, and Future Prospects. Trends Environ. Anal. Chem. 2025, 48, e00280. [Google Scholar] [CrossRef]
- Town, R. M.; Buffle, J.; Duval, J. F. L.; van Leeuwen, H. P. Chemodynamics of Soft Charged Nanoparticles in Aquatic Media: Fundamental Concepts. J. Phys. Chem. A 2013, 117, 7643–7654. [Google Scholar] [CrossRef]
- Xu, B. Adsorption Behavior of Metal Cations on Gold Nanoparticle Surfaces Studied by Isothermal Titration Microcalorimetry. J. Chin. Chem. Soc. 2010, 57, 309–315. [Google Scholar] [CrossRef]
- Ngamchuea, K.; Batchelor-McAuley, C.; Sokolov, S. V.; Compton, R. G. Dynamics of Silver Nanoparticles in Aqueous Solution in the Presence of Metal Ions. Anal. Chem. 2017, 89, 10208–10215. [Google Scholar] [CrossRef] [PubMed]
- Toma, H. E.; Zamarion, V. M.; Toma, S. H.; Araki, K. The Coordination Chemistry at Gold Nanoparticles. J. Braz. Chem. Soc. 2010, 21, 1158–1176. [Google Scholar] [CrossRef]
- Guan, H.; Harris, C.; Sun, S. Metal–Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions. Acc. Chem. Res. 2023, 56, 1591–1601. [Google Scholar] [CrossRef]
- Zheng, Y.; Zeng, J.; Ruditskiy, A.; Liu, M.; Xia, Y. Oxidative Etching and Its Role in Manipulating the Nucleation and Growth of Noble-Metal Nanocrystals. Chem. Mater. 2013, 26, 22–33. [Google Scholar] [CrossRef]
- Katanosaka, A.; Fostier, A.; Santos, E. Efeito do Hg2+ e dos Íons Cu2+, Fe2+, Ni2+, Sn2+ e Zn2+ na Estabilidade de Nanopartículas de Prata: Uma Prática Interdisciplinar de Nanotecnologia Experimental. Quim. Nova 2020, 44, 512–518. [Google Scholar] [CrossRef]
- Chopada, R.; Sarwate, R.; Kumar, V. Effect of Mild to Extreme pH, Temperature, and Ionic Strength on the Colloidal Stability of Differentially Capped Gold Nanoparticles. J. Mol. Struct. 2025, 1323, 140751. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, X.; Liu, Q.; Liu, Y.; Liu, R. Colorimetric Detection of Cr3+ Based on Gold Nanoparticles Functionalized with 4-Mercaptobenzoic Acid. J. Anal. Sci. Technol. 2020, 11, 10. [Google Scholar] [CrossRef]
- Memon, R.; Memon, A. A.; Balouch, A.; Shah, M. R.; Sherazi, S. T. H.; Memon, S. S.; Memon, K. Highly Selective Nanomolar Level Colorimetric Sensing of Cr3+ through Biosynthesized Gold Nanoparticles in the Presence of Cr6+. Optik 2021, 248, 168188. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K. W. Conjugation of Cysteamine Functionalized Nanodiamond to Gold Nanoparticles for pH Enhanced Colorimetric Detection of Cr3+ Ions Demonstrated by Real Water Sample Analysis. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2023, 286, 121962. [Google Scholar] [CrossRef]
- Gunupuru, R.; Paul, P. Synthesis and Characterization of 2-Amino-5-Mercapto-1,3,4-Thiadiazole Functionalized Gold Nanoparticles and It’s Use for Colorimetric Sensing of Cr3+ and Pb2+ in Aqueous Medium. J. Indian Chem. Soc. 2025, 102, 101566. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Wang, J.; Yan, X.; Song, J.; Feng, F. An Ultra-Sensitive Colorimetric Sensing Platform for Simultaneous Detection of Moxifloxacin/Ciprofloxacin and Cr(III) Ions Based on Ammonium Thioglycolate Functionalized Gold Nanoparticles. Sensors 2025, 25, 3228. [Google Scholar] [CrossRef]
- Shi, J.; Wu, S.; Xue, Y.; Xie, Q.; Danzeng, Q.; Liu, C.; Zhou, C.-H. Fluorescence/Colorimetric Dual-Signal Sensor Based on Carbon Dots and Gold Nanoparticles for Visual Quantification of Cr3+. Microchim. Acta 2024, 191, 571. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M.; Ju, H. Smartphone-Enabled Colorimetric Visual Quantification of Highly Hazardous Trivalent Chromium Ions in Environmental Waters and Catalytic Reduction of p-Nitroaniline by Thiol-Functionalized Gold Nanoparticles. Chemosphere 2023, 340, 139838. [Google Scholar] [CrossRef]
- Moradifar, B.; Afkhami, A.; Madrakian, T.; Jalali Sarvestani, M. R.; Khalili, S. Rapid, Simple and Highly Selective Determination of Chromium(III) in Aqueous Samples by a Microfluidic Cell Coupled to a Smartphone-Based Colorimetric-Sensing Detector. J. Iran. Chem. Soc. 2025, 22, 605–613. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S. K.; Tiwari, A.; Jaiswal, A.; Uttam, K. N. Chlorophyll Coated Silver Nanoparticles Synthesized by Microwave Assisted Method for the Colorimetric Detection of Cr (VI) Ions in Aqueous Medium. Anal. Lett. 2023, 57, 940–952. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V. Sustainable PVP-Capped Gold Nanoparticles Synthesis “Green” Chemistry Plasma-Liquid Method and Colorimetric Activity for Water Pollutant Chromium Ion (Cr(VI)). Gold Bull. 2025, 58, 15. [Google Scholar] [CrossRef]
- Muthwa, S. F.; Zulu, N. S.; Kistan, M.; Onwubu, S. C.; Shumbula, N. P.; Moloto, N.; Mpelane, S.; Hlatshwayo, T.; Mlambo, M.; Mdluli, P. S. Unravelling Mechanism for Detecting Chromium on Functionalized Gold Nanoparticles via a Smartphone and Spectrophotometric-Based Systems Supported by CIELab* Colour Space and Molecular Dynamics. J. Mol. Struct. 2023, 1274, 134394. [Google Scholar] [CrossRef]
- Karn-orachai, K.; Wattanasin, P.; Ngamaroonchote, A. Colorimetric Sensor for Cr(VI) Ion Detection in Tap Water Using a Combination of AuNPs and AgNPs. ACS Omega 2024, 9, 26472–26483. [Google Scholar] [CrossRef]
- Esquivel-Rincón, J. O.; Vilchis-Nestor, A. R.; Ruiz-Ruiz, V. F.; Olea-Mejía, O. F. Advancements in On-Site Heavy Metal Detection: Characterizing and Sensitive Hg2+ Sensing of Silver Spheroid Nanoparticles Obtained by Laser Ablation Synthesis in Solution. Microchem. J. 2024, 206, 111597. [Google Scholar] [CrossRef]
- Tewari, S.; Sahani, S.; Yaduvanshi, N.; Painuli, R.; Sankararamakrishnan, N.; Dwivedi, J.; Sharma, S.; Han, S. S. Green Synthesized AgNPs as a Probe for Colorimetric Detection of Hg (II) Ions in Aqueous Medium and Fluorescent Imaging in Liver Cell Lines and Its Antibacterial Activity. Discov. Nano 2024, 19, 78. [Google Scholar] [CrossRef]
- Thepwat, P.; Saenchoopa, A.; Onnet, W.; Namcharee, P.; Sanmanee, C.; Plaeyao, K.; Kulchat, S.; Kosolwattana, S. The Synthesis and Study of Carboxymethyl Cellulose from Water Hyacinth Biomass Stabilized Silver Nanoparticles for a Colorimetric Detection Sensor of Hg( II ) Ions. RSC Adv. 2025, 15, 41241–41252. [Google Scholar] [CrossRef]
- Mume, L.; Kebede, M.; Bekana, D.; Tan, Z.; Amde, M. Salvia Tiliifolia Leaf Extract-Based Silver Nanoparticles for Colorimetric Detection of Hg(II) in Food and Environmental Samples. J. Food Compos. Anal. 2024, 133, 106426. [Google Scholar] [CrossRef]
- Ghosh, S.; Mondal, A. Aggregation Chemistry of Green Silver Nanoparticles for Sensing of Hg2+ and Cd2+ Ions. Colloids Surf. A 2020, 605, 125335. [Google Scholar] [CrossRef]
- Ulloa-Gomez, A. M.; Lucas, A.; Koneru, A.; Barui, A.; Stanciu, L. Simultaneous Colorimetric and Electrochemical Detection of Trace Mercury (Hg2+) Using a Portable and Miniaturized Aptasensor. Biosens. Bioelectron. 2023, 221, 114419. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Feng, L.; Liu, J.; Li, S.; Li, N.; Zhang, X. DNA-Mediated Charge Neutralization of AuNPs for Colorimetric Sensing of Hg2+ in Environmental Waters and Cosmetics. Sens. Actuators B Chem. 2024, 398, 134697. [Google Scholar] [CrossRef]
- Liu, L.; Ling, Y.; Han, J.; Hao, T.; Li, X. Rapid and Highly Selective Colorimetric Detection of Mercury(Ii) Ions in Water Sources Based on a Ribavirin Functionalized AuNP Sensor. Anal. Methods 2022, 14, 4669–4679. [Google Scholar] [CrossRef] [PubMed]
- Do Dat, T.; Cong, C. Q.; Le Hoai Nhi, T.; Khang, P. T.; Nam, N. T. H.; Thi Tinh, N.; Hue, D. T.; Hieu, N. H. Green Synthesis of Gold Nanoparticles Using Andrographis Paniculata Leave Extract for Lead Ion Detection, Degradation of Dyes, and Bioactivities. Biochem. Eng. J. 2023, 200, 109103. [Google Scholar] [CrossRef]
- Zannotti, M.; Piras, S.; Remia, L.; Appignanesi, D.; Giovannetti, R. Selective Colorimetric Detection of Pb(II) Ions by Using Green Synthesized Gold Nanoparticles with Orange Peel Extract. Chemosensors 2024, 12, 33. [Google Scholar] [CrossRef]
- Zannotti, M.; Piras, S.; Magnaghi, L. R.; Biesuz, R.; Giovannetti, R. Silver Nanoparticles from Orange Peel Extract: Colorimetric Detection of Pb2+ and Cd2+ Ions with a Chemometric Approach. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2024, 323, 124881. [Google Scholar] [CrossRef]
- Hladun, C.; Beyer, M.; Paliakkara, J.; Othman, A.; Bou-Abdallah, F. A Simple and Highly Sensitive Colorimetric Assay for the Visual Detection of Lead and Chromium Using Ascorbic Acid Capped Gold Nanoparticles. Anal. Methods 2025, 17, 15–25. [Google Scholar] [CrossRef]
- Yan, W.; Qin, X.; Sang, X.; Zhou, X.; Zheng, Y.; Yuan, Y.; Zhang, Y. DNAzyme Amplified Dispersion State Change of Gold Nanoparticles and Its Dual Optical Channels for Ultrasensitive and Facile Detection of Lead Ion in Preserved Eggs. Food Chem. 2024, 435, 137538. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Li, H.; Wang, J.; Zhou, X. A Colorimetric Nanobiosensor with Enhanced Sensitivity for Detection of Lead (II) in Real-Water Samples via an Adenine-Cytosine Mismatched DNAzyme. Front. Environ. Sci. Eng. 2024, 18, 156. [Google Scholar] [CrossRef]
- Kubheka, N. P.; Shange, S. F.; Onwubu, S. C.; Deenadayalu, N.; Mdluli, P. S.; Mokhothu, T. H. ImageJ Analysis for Quantifying Lead Ion in Environmental Water Using Gold Nanoparticles as a Colorimetric Probe. J. Mol. Liq. 2025, 420, 126804. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Wang, Y.; Wu, P. SYBR Green I and DNA-Modulated Charge Neutralization Assembly of Naked AuNPs for Fast Colorimetric Sensing of Cd2+ in Cosmetics. Microchem. J. 2024, 200, 110468. [Google Scholar] [CrossRef]
- Arain, M.; Nafady, A.; Haq, M. A. U.; Asif, H. M.; Ahmad, H. B.; Soomro, R. A.; Shah, M. R. Secnidazole Functionalized Silver Nanoparticles as Trace Level Colorimetric Sensor for the Detection of Cadmium Ions. Optik 2024, 299, 171620. [Google Scholar] [CrossRef]
- Dayanidhi, K.; Sheik Eusuff, N. Distinctive Detection of Fe2+ and Fe3+ by Biosurfactant Capped Silver Nanoparticles via Naked Eye Colorimetric Sensing. New J. Chem. 2021, 45, 9936–9943. [Google Scholar] [CrossRef]
- Andreani, A. S.; Nurkhaliza, F.; Ridwan, M.; Daniarti, S. F.; Rosmaniar, L.; Kumalasari, M. R. Unveiling the Role of α- and β-CDs in Gold Nanoparticle Gel-Based Sensors for Fe3+ Colorimetric Detection. Talanta Open 2025, 12, 100557. [Google Scholar] [CrossRef]
- Patra, S.; Golder, A. K.; Uppaluri, R. V. Monodispersed AuNPs Synthesized in a Bio-Based Route for Ultra Selective Colorimetric Determination of Ni(II) Ions. Chem. Phys. Impact 2023, 7, 100388. [Google Scholar] [CrossRef]
- Nubatonis, Y. K.; Roto, R.; Siswanta, D.; Keikimanova, M.; Hosseini-Bandegharaei, A. Smartphone Colorimetry for Rapid Environmental Monitoring: Detecting Ni2+ Using EDTA and Mercapto Succinic Acid Functionalized Silver Nanoparticles. J. Mol. Liq. 2025, 426, 127351. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Xie, T.; Zhang, A.; Fu, Y. Green and Ligand-Free Gold Nanoparticles in Padina Australis Extract for Colorimetric Detection of Cu2+ in Water. Colloids Surf. A 2023, 658, 130773. [Google Scholar] [CrossRef]
- Aqillah, F.; Diki Permana, M.; Eddy, D. R.; Firdaus, M. L.; Takei, T.; Rahayu, I. Detection and Quantification of Cu2+ Ion Using Gold Nanoparticles via Smartphone-Based Digital Imaging Colorimetry Technique. Results Chem. 2024, 7, 101418. [Google Scholar] [CrossRef]
- Nguyen, M.-K.; Nguyen, C.-N.-T.; Vo, K.-B. Functionalized Hydrogel-Based Colorimetric Sensor for Cu2+ Detection. Mater. Res. Express 2025, 12, 075506. [Google Scholar] [CrossRef]
- Colford, S.; Dhirani, A.-A. Detection of Cu2+ Ion with 100-Fold Improvement Using Mercaptobenzoic Acid-Capped Au Nanoparticles Purified by pH Selective Precipitation. Colloids Surf. A 2025, 723, 137416. [Google Scholar] [CrossRef]
- Joshi, P.; Painuli, R.; Kumar, D. Label-Free Colorimetric Nanosensor for the Selective On-Site Detection of Aqueous Al3+. ACS Sustain. Chem. Eng. 2017, 5, 4552–4562. [Google Scholar] [CrossRef]
- Rastogi, L.; Dash, K.; Ballal, A. Selective Colorimetric/Visual Detection of Al3+ in Ground Water Using Ascorbic Acid Capped Gold Nanoparticles. Sens. Actuators B Chem. 2017, 248, 124–132. [Google Scholar] [CrossRef]
- Ghodake, G.; Shinde, S.; Kadam, A.; Saratale, R. G.; Saratale, G. D.; Syed, A.; Shair, O.; Alsaedi, M.; Kim, D.-Y. Gallic Acid-Functionalized Silver Nanoparticles as Colorimetric and Spectrophotometric Probe for Detection of Al3+ in Aqueous Medium. J. Ind. Eng. Chem. 2020, 82, 243–253. [Google Scholar] [CrossRef]
- Bezuneh, T. T.; Ofgea, N. M.; Tessema, S. S.; Bushira, F. A. Tannic Acid-Functionalized Silver Nanoparticles as Colorimetric Probe for the Simultaneous and Sensitive Detection of Aluminum(III) and Fluoride Ions. ACS Omega 2023, 8, 37293–37301. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, M. F.; Morales, J. M. N.; Morán Vieyra, F. E.; Borsarelli, C. D. Eco-Friendly Synthesis of a Silver Nanohybrid with Carbon Dots Derived from Quebracho Colorado Leaves and Its Application in the Colorimetric Detection of Al3+. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2025, 343, 126628. [Google Scholar] [CrossRef] [PubMed]
- Taheri, H.; Khayatian, G. Smartphone-Based Microfluidic Chip Modified Using Pyrrolidine-1-Dithiocarboxylic Acid for Simultaneous Colorimetric Determination of Cr3+ and Al3+ Ions. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2022, 272, 121000. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Yang, T.; Srivastava, P.; Nile, S. H.; Seth, C. S.; Jadhav, U.; Syed, A.; Bahkali, A. H.; Ghodake, G. S. Alginic Acid-Functionalized Silver Nanoparticles: A Rapid Monitoring Tool for Detecting the Technology-Critical Element Tellurium. J. Hazard. Mater. 2024, 465, 133161. [Google Scholar] [CrossRef]
- Hussain, K.; Umar, A. R.; Rasheed, S.; Hassan, M.; Laiche, M. H.; Muhammad, H.; Hanif, M.; Aslam, Z.; Shah, M. R. Smartphone-Integrated Resorcinarene Macrocycle Capped Silver Nanoparticles (RMF-AgNPs) Probe for Enhanced La(III) Detection in Diverse Environments. J. Ind. Eng. Chem. 2024, 138, 256–269. [Google Scholar] [CrossRef]
- Hsiao, M.; Chen, S.-H.; Li, J.-Y.; Hsiao, P.-H.; Chen, C.-Y. Unveiling the Detection Kinetics and Quantitative Analysis of Colorimetric Sensing for Sodium Salts Using Surface-Modified Au-Nanoparticle Probes. Nanoscale Adv. 2022, 4, 3172–3181. [Google Scholar] [CrossRef]
- Berasarte, I.; Bordagaray, A.; Garcia-Arrona, R.; Ostra, M.; Vidal, M. Silver Nanoparticles for the Colorimetric Determination of Electrolytes by UV–Vis Spectrophotometry and Digital Image Analysis. Sens. Bio-Sens. Res. 2025, 49, 100831. [Google Scholar] [CrossRef]
- Patel, M. R.; Upadhyay, M. D.; Ghosh, S.; Basu, H.; Singhal, R. K.; Park, T. J.; Kailasa, S. K. Synthesis of Multicolor Silver Nanostructures for Colorimetric Sensing of Metal Ions (Cr3+, Hg2+ and K+) in Industrial Water and Urine Samples with Different Spectral Characteristics. Environ. Res. 2023, 232, 116318. [Google Scholar] [CrossRef] [PubMed]
- Frost, M. S.; Dempsey, Michael. J.; Whitehead, D. E. Highly Sensitive SERS Detection of Pb2+ Ions in Aqueous Media Using Citrate Functionalised Gold Nanoparticles. Sens. Actuators B Chem. 2015, 221, 1003–1008. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Mei, B.; Tu, J.; Wang, R.; Chen, M.; Cheng, Y. A Rapid Surface-Enhanced Raman Scattering (SERS) Method for Pb2+ Detection Using L-Cysteine-Modified Ag-Coated Au Nanoparticles with Core–Shell Nanostructure. Coatings 2018, 8, 394. [Google Scholar] [CrossRef]
- Liu, M.; Zareef, M.; Zhu, A.; Wei, W.; Li, H.; Chen, Q. SERS-Based Au@Ag Core-Shell Nanoprobe Aggregates for Rapid and Facile Detection of Lead Ions. Food Control 2024, 155, 110078. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, Y.; Luo, Y.; Liang, A.; Jiang, Z. Quantitative Analysis of Trace Pb(II) by a DNAzyme Cracking-Rhodamine 6G SERRS Probe on AucoreAgshell Nanosol Substrate. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2014, 128, 806–811. [Google Scholar] [CrossRef]
- Chadha, R.; Das, A.; Debnath, A. K.; Kapoor, S.; Maiti, N. 2-Thiazoline-2-Thiol Functionalized Gold Nanoparticles for Detection of Heavy Metals, Hg(II) and Pb(II) and Probing Their Competitive Surface Reactivity: A Colorimetric, Surface Enhanced Raman Scattering (SERS) and x-Ray Photoelectron Spectroscopic (XPS) Study. Colloids Surf. A 2021, 615, 126279. [Google Scholar] [CrossRef]
- Wang, G. Q.; Chen, L. X. Aptameric SERS Sensor for Hg2+ Analysis Using Silver Nanoparticles. Chin. Chem. Lett. 2009, 20, 1475–1477. [Google Scholar] [CrossRef]
- Hassan, M. M.; Ahmad, W.; Zareef, M.; Rong, Y.; Xu, Y.; Jiao, T.; He, P.; Li, H.; Chen, Q. Rapid Detection of Mercury in Food via Rhodamine 6G Signal Using Surface-Enhanced Raman Scattering Coupled Multivariate Calibration. Food Chem. 2021, 358, 129844. [Google Scholar] [CrossRef]
- Dasary, S. S. R.; Jones, Y. K.; Barnes, S. L.; Ray, P. C.; Singh, A. K. Alizarin Dye Based Ultrasensitive Plasmonic SERS Probe for Trace Level Cadmium Detection in Drinking Water. Sens. Actuators B Chem. 2016, 224, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Jing, C. One-Step Fabrication of Dopamine-Inspired Au for SERS Sensing of Cd2+ and Polycyclic Aromatic Hydrocarbons. Anal. Chim. Acta 2019, 1062, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xiao, D.; Ma, Z.; Zheng, Q.; Wang, D.; Wu, Y.; Ying, Y.; Wen, Y.; Wang, F.; Yang, H. Surface Reaction Strategy for Raman Probing Trace Cadmium Ion. Arab. J. Chem. 2020, 13, 6544–6551. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, H.; Yang, L.; Liu, J. Sensitive and Selective SERS Probe for Trivalent Chromium Detection Using Citrate Attached Gold Nanoparticles. Nanoscale 2012, 4, 6442. [Google Scholar] [CrossRef]
- Ly, N.; Joo, S.-W. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples. Sensors 2015, 15, 10088–10099. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Tang, P.; He, X.; Xing, X.; Liu, S.; Zhang, F.; Lu, X.; Zhong, L. Au/Ag Composite-Based SERS Nanoprobe of Cr3+. Anal. Bioanal. Chem. 2021, 413, 2951–2960. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Lai, Y.; Wu, C.; Sun, S.; He, Y.; Ma, H. Ultrasensitive and Selective Detection of Copper (II) and Mercury (II) Ions by Dye-Coded Silver Nanoparticle-Based SERS Probes. Biosens. Bioelectron. 2013, 39, 82–87. [Google Scholar] [CrossRef]
- Ly, N.; Seo, C.; Joo, S.-W. Detection of Copper(II) Ions Using Glycine on Hydrazine-Adsorbed Gold Nanoparticles via Raman Spectroscopy. Sensors 2016, 16, 1785. [Google Scholar] [CrossRef]
- Xu, S.; Cao, X.; Zhou, Y. Polyvinylpyrrolidine-Functionalized Silver Nanoparticles for SERS Based Determination of Copper(II). Microchim. Acta 2019, 186, 562. [Google Scholar] [CrossRef]
- Wang, C.; Fu, Y.; Li, Y.; Liu, Y.; Wan, R.; Shen, Y. Interference-Free SERS Tags for Copper Ion Sensing upon Hypoxia by in Situ Hot-Spot Generation. Talanta 2026, 297, 128767. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Q.; Du, W.; Zhu, R.; Ge, X.; Wang, C.; Li, Q.; Su, L.; Yang, H.; Song, J. Quantitative Assessment of Copper(II) in Wilson’s Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS Nano 2021, 15, 3402–3414. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-Y.; Huang, P.-J. Magnetic Nanoprobes for Rapid Detection of Copper Ion in Aqueous Environment by Surface-Enhanced Raman Spectroscopy. RSC Adv. 2022, 12, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, D.; Zheng, S.; Xu, N.; Deng, W. Utilizing Ag–Au Core-Satellite Structures for Colorimetric and Surface-Enhanced Raman Scattering Dual-Sensing of Cu (II). Biosens. Bioelectron. 2020, 159, 112192. [Google Scholar] [CrossRef]
- Kumar, P. P. P. Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles. Colorants 2025, 4, 29. [Google Scholar] [CrossRef]
- Zheng, S.; Li, D.; Fodjo, E. K.; Deng, W. Colorimetric/Fluorescent/SERS Triple-Channel Sensing of Cu2+ in Real Systems Based on Chelation-Triggered Self-Aggregation. Chem. Eng. J. 2020, 399, 125840. [Google Scholar] [CrossRef]
- Li, C.; Ouyang, H.; Tang, X.; Wen, G.; Liang, A.; Jiang, Z. A Surface Enhanced Raman Scattering Quantitative Analytical Platform for Detection of Trace Cu Coupled the Catalytic Reaction and Gold Nanoparticle Aggregation with Label-Free Victoria Blue B Molecular Probe. Biosens. Bioelectron. 2017, 87, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, M.; Hou, T.; Wu, H.; Wen, Y.; Yang, H. A Novel and Stable Raman Probe for Sensing Fe (III). Sens. Actuators B Chem. 2016, 224, 16–21. [Google Scholar] [CrossRef]
- Xu, G.; Li, N.; Sun, Y.; Gao, C.; Ma, L.; Song, P.; Xia, L. A Label-Free, Rapid, Sensitive and Selective Technique for Detection of Fe2+ Using SERRS with 2,2′-Bipyridine as a Probe. Chem. Eng. J. 2021, 414, 128741. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Lou, T.; Wang, Y. Highly Sensitive SERS Detection of As3+ Ions in Aqueous Media Using Glutathione Functionalized Silver Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 3936–3941. [Google Scholar] [CrossRef]
- Charkova, T. Determination of Barium Ions by SERS Using Silver Nanoparticles. Nano-Struct. Nano-Objects 2025, 43, 101511. [Google Scholar] [CrossRef]
- Jin, H.; Itoh, T.; Yamamoto, Y. S. Classification of La3+ and Gd3+ Rare-Earth Ions Using Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2024, 128, 5611–5620. [Google Scholar] [CrossRef]
- Sharma, S.; Jaiswal, A.; Uttam, K. N. Colorimetric and Surface Enhanced Raman Scattering (SERS) Detection of Metal Ions in Aqueous Medium Using Sensitive, Robust and Novel Pectin Functionalized Silver Nanoparticles. Anal. Lett. 2020, 53, 2355–2378. [Google Scholar] [CrossRef]
- Sharma, S.; Jaiswal, A.; Uttam, K. N. Synthesis of Sensitive and Robust Lignin Capped Silver Nanoparticles for the Determination of Cobalt(II), Chromium(III), and Manganese(II) Ions by Colorimetry and Manganese(II) Ions by Surface-Enhanced Raman Scattering (SERS) in Aqueous Media. Anal. Lett. 2020, 54, 2051–2069. [Google Scholar] [CrossRef]
- Sharma, S.; Jaiswal, A.; Uttam, K. N. Determination of Chromium(VI), Chromium(III), Arsenic(V), Aluminum(III), Iron(II), and Manganese(II) by Colorimetry and Surface-Enhanced Raman Scattering (SERS) Using Ferulic Acid Functionalized Silver Nanoparticles. Anal. Lett. 2021, 55, 715–727. [Google Scholar] [CrossRef]
- Daublytė, E.; Zdaniauskienė, A.; Talaikis, M.; Charkova, T. Synthesis and Functionalization of Silver Nanoparticles for Divalent Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. J. Nanopart. Res. 2023, 26, 6. [Google Scholar] [CrossRef]
- Kappen, J.; Bharathi, S.; John, S. A. Probing the Interaction of Heavy and Transition Metal Ions with Silver Nanoparticles Decorated on Graphene Quantum Dots by Spectroscopic and Microscopic Methods. Langmuir 2022, 38, 4442–4451. [Google Scholar] [CrossRef] [PubMed]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
