Submitted:
16 January 2026
Posted:
16 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Ethical Approval
2.3. Bone Explant Harvesting Procedure
2.4. Experimental Groups and Laser Photobiomodulation Protocol
- -
- Control explant: no laser exposure
- -
- Laser-treated explant: subjected to intraoperative photobiomodulation
- -
- Wavelength: 980 nm
- -
- Output power: 1 W
- -
- Emission mode: pulsed
- -
- Operating mode: biostimulation
- -
- Fiber diameter: 320 μm
- -
- Irradiation distance: 50 mm (non-contact)
- -
- Exposure time: 40 seconds
2.5. Transport and Laboratory Processing
2.6. Explant Culture and Cell Isolation
2.7. Osteogenic Differentiation Protocol
2.8. Immunofluorescence Staining and Confocal Microscopy
2.9. Cell Viability Assessment
2.10. Experimental Yield and Data Analysis
3. Results
3.1. Study Cohort and Experimental Yield
3.2. Osteoblast-Like Cellular Structures: Quantitative Paired Analysis
3.3. Morphometric Analysis of Osteoblastic Area Occupancy
3.4. Immunofluorescence Assessment of Osteogenic Marker Expression
3.5. Cell Viability Analysis
3.6. Summary of Experimental Findings
- -
- Increased numbers of osteoblast-like cellular structures
- -
- Greater osteoblastic surface area occupancy
- -
- Enhanced expression of osteogenic markers (ALPL and OCN)
- -
- Preserved cellular viability
4. Discussion
4.1. Photobiomodulation-Induced Osteogenic Activity in Human Bone Explants
4.2. Morphometric and Organizational Effects of Laser Photobiomodulation
4.3. Osteogenic Marker Expression and Cellular Viability
4.4. Clinical and Translational Significance
4.5. Biological Variability and Response Heterogeneity
4.6. Study Limitations and Future Perspectives
5. Conclusions
References
- Starch-Jensen, T.; Deluiz, D.; Deb, S.; Bruun, N.H.; Tinoco, E.M.B. Harvesting of autogenous bone graft from the ascending mandibular ramus compared with the chin region: A systematic review and meta-analysis focusing on complications and donor site morbidity. J. Oral Maxillofac. Res. 2020, 11, e1. [Google Scholar] [CrossRef]
- Daoud, S.; Zoabi, A.; Kasem, A.; Totry, A.; Oren, D.; Redenski, I.; Srouji, S.; Kablan, F. Computer-assisted evaluation confirms spontaneous healing of donor site one year following bone block harvesting from mandibular retromolar region—A cohort study. Diagnostics 2024, 14, 504. [Google Scholar] [CrossRef]
- Nyimi, B.F.; Yifang, Z.; Liu, B. The changing landscape in treatment of cystic lesions of the jaws. J. Int. Soc. Prev. Community Dent. 2019, 9, 328–337. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Q.Y.; Zhu, H.Y. Efficacy of bone grafts in jaw cystic lesions: A systematic review. World J. Clin. Cases 2022, 10, 2801–2810. [Google Scholar] [CrossRef]
- Tas, A.; Celebi, E.; Çukurova Yilmaz, Z. Assessment of bone healing after surgical management of odontogenic cysts utilizing fractal analysis—A retrospective cross-sectional study. PeerJ 2025, 13, e19745. [Google Scholar] [CrossRef] [PubMed]
- Sakdejayont, S.; Chobpenthai, T.; Suksirivecharuk, P.; Ninatkiattikul, I.F.; Poosiripinyo, T. A review on bone tumor management: Cutting-edge strategies in bone grafting, bone graft substitute, and growth factors for defect reconstruction. Orthop. Res. Rev. 2025, 17, 175–188. [Google Scholar] [CrossRef]
- Cao, H.; He, S.; Wu, M.; Hong, L.; Feng, X.; Gao, X.; Li, H.; Liu, M.; Lv, N. Cascaded controlled delivering growth factors to build vascularized and osteogenic microenvironment for bone regeneration. Mater. Today Bio 2024, 25, 101015. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, X.; Cheng, M.; Cui, X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front. Cell Dev. Biol. 2025, 13, 1544129. [Google Scholar] [CrossRef] [PubMed]
- Elsalanty, M.E.; Genecov, D.G. Bone grafts in craniofacial surgery. Craniomaxillofac. Trauma Reconstr. 2009, 2, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Nicolae, C.-L.; Pîrvulescu, D.-C.; Niculescu, A.-G.; Epistatu, D.; Mihaiescu, D.E.; Antohi, A.M.; Grumezescu, A.M.; Croitoru, G.-A. An Up-to-Date Review of Materials Science Advances in Bone Grafting for Oral and Maxillofacial Pathology. Materials 2024, 17, 4782. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, C.; Yu, Y.; et al. Functionalized mesenchymal stem cells for enhanced bone regeneration: Advances and challenges. Stem Cell Res. Ther. 2025, 16, 600. [Google Scholar] [CrossRef]
- Coccoluto, L.; Roberto, R.; Paola, P.; Francesca, R.; Raffaele, V. Osteoblastic differentiation and proliferation of human mesenchymal stem cells or osteoblast-like cells on bone scaffolds in oral and periodontal surgery: A systematic review of in vitro studies. J. Adv. Oral Res. 2025, 16, 121–139. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef]
- Lin, X.; Patil, S.; Gao, Y.G.; Qian, A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 2020, 11, 757. [Google Scholar] [CrossRef]
- Collignon, A.M.; Lesieur, J.; Vacher, C.; Chaussain, C.; Rochefort, G.Y. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol. 2017, 14, 8:927. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, P.; Basha, S.; Biswas, S.; Prabhu, V.; Prabhu, S.S.; Pai, A.R.; Mahato, K.K. From light to healing: Photobiomodulation therapy in medical disciplines. J. Transl. Med. 2025, 23, 1430. [Google Scholar] [CrossRef] [PubMed]
- Moscatel, M.B.M.; Pagani, B.T.; Trazzi, B.F.d.M.; Reis, C.H.B.; Ribeiro, C.A.; Buchaim, D.V.; Buchaim, R.L. Effects of Photobiomodulation in Association with Biomaterials on the Process of Guided Bone Regeneration: An Integrative Review. Ceramics 2025, 8, 94. [Google Scholar] [CrossRef]
- Rola, P.; Włodarczak, S.; Lesiak, M.; Doroszko, A.; Włodarczak, A. Changes in Cell Biology under the Influence of Low-Level Laser Therapy. Photonics 2022, 9, 502. [Google Scholar] [CrossRef]
- AlGhamdi, K.M.; Kumar, A.; Alfayez, M.; Mahmood, A. Influence of Low-Level Red Laser Irradiation on the Proliferation, Viability, and Differentiation of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells. Life 2025, 15, 1125. [Google Scholar] [CrossRef]
- Della Coletta, B.B.; Jacob, T.B.; Moreira, L.A.d.C.; Pomini, K.T.; Buchaim, D.V.; Eleutério, R.G.; Pereira, E.d.S.B.M.; Roque, D.D.; Rosso, M.P.d.O.; Shindo, J.V.T.C.; et al. Photobiomodulation Therapy on the Guided Bone Regeneration Process in Defects Filled by Biphasic Calcium Phosphate Associated with Fibrin Biopolymer. Molecules 2021, 26, 847. [Google Scholar] [CrossRef]
- Amaroli, A.; Colombo, E.; Zekiy, A.; Aicardi, S.; Benedicenti, S.; De Angelis, N. Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation—A Review. Biology 2020, 9, 409. [Google Scholar] [CrossRef]
- Iaria, R.; Vescovi, P.; De Francesco, P.; Giovannacci, I. Laser Photobiomodulation: What Are the Ideal Parameters for Each Type of Laser Used in Dental Practice to Promote Fibroblast Proliferation and Differentiation? A Systematic Review. Life 2025, 15, 853. [Google Scholar] [CrossRef] [PubMed]
- Rubio, E.D.; Mombrú, C.M. Spontaneous Bone Healing After Cysts Enucleation Without Bone Grafting Materials: A Randomized Clinical Study. Craniomaxillofac. Trauma Reconstr. 2015, 8, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, A.; Tenore, G.; Pergolini, D.; Rocchetti, F.; Palaia, G.; Romeo, U. The Role of the Laser Photobiomodulation (PBM) in the Management of Patients at Risk or Affected by MRONJ. Oral 2022, 2, 7–15. [Google Scholar] [CrossRef]
- Saki, M.; Tahamtan, S.; Shavakhi, M.; Grzech-Leśniak, K.; Fekrazad, R. The effectiveness of photobiomodulation therapy on bone regeneration of oral and craniofacial defects: A systematic review of animal and in vitro studies. Lasers Med. Sci. 2025, 40, 384. [Google Scholar] [CrossRef] [PubMed]
- Irimia, A.; Moraru, L.; Ciubotaru, D.A.; Caruntu, C.; Farcasiu, A.-T.; Caruntu, A. Minimally Invasive Two-Staged Surgery in the Treatment of Large Cystic Lesions of the Jaw. Healthcare 2021, 9, 1531. [Google Scholar] [CrossRef]
- Juncar, M.; Popa, A. R.; Onișor, F.; Iova, G. M.; Popa, L. M. Descriptive Study on Influence of Systemic Conditions on Head and Neck Infections. Appl Med Inform 2011, 28, 62–68. Available online: https://ami.info.umfcluj.ro/index.php/AMI/article/view/65.
- La Rosa, G.R.M.; Priolo, C.Y.; Abiad, R.S.; Romeo, V.R.; Ambu, E.; Pedullà, E. Assessment of bone regeneration after maxillary radicular cyst enucleation with or without bone grafting materials: A retrospective cohort study. Clin. Oral Investig. 2024, 28, 213. [Google Scholar] [CrossRef]
- Sacher, C.; Holzinger, D.; Grogger, P.; et al. Calculation of postoperative bone healing of cystic lesions of the jaw—A retrospective study. Clin. Oral Investig. 2019, 23, 3951–3957. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Tang, Z.; Shao, L.; Zhang, W.; Su, J. Long-term implant success after treatment of a giant mandibular dentigerous cyst: A case report. Int. J. Surg. Case Rep. 2025, 135, 111831. [Google Scholar] [CrossRef]
- McLean, A.C.; Vargas, P.A. Cystic lesions of the jaws: The top 10 differential diagnoses to ponder. Head Neck Pathol. 2023, 17, 85–98. [Google Scholar] [CrossRef]
- Prajapati, A.; Gulia, A.; Gundavda, K.; Botchu, R.; Janu, A. Cystic bone lesions: Diagnostic pitfalls and therapeutic considerations. J. Clin. Orthop. Trauma 2025, 67, 103046. [Google Scholar] [CrossRef]
- Shah, N.; Logani, A.; Kumar, V. A minimally invasive surgical approach for large cyst-like periapical lesions: A case series. Gen. Dent. 2014, 62, e1–e5. [Google Scholar] [PubMed]
- Hosseinpour, S.; Tunér, J.; Fekrazad, R. Photobiomodulation in oral surgery: A review. Photobiomodul. Photomed. Laser Surg. 2019, 37, 814–825. [Google Scholar] [CrossRef]
- Gao, X.; Xing, D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J. Biomed. Sci. 2009, 16, 4. [Google Scholar] [CrossRef]
- Klassmann, F.A.; Ervolino, E.; Kluppel, L.E.; Theodoro, L.H.; Mulinari-Santos, G.; Garcia, V.G. A randomized trial of bone formation after maxillary sinus floor augmentation with bovine hydroxyapatite (Cerabone®) and photobiomodulation: Histomorphometric and immunohistochemical analysis. J. Clin. Exp. Dent. 2023, 15, e542–e550. [Google Scholar] [CrossRef]
- Razaghi, P.; Moradi Haghgou, J.; Khazaei, S.; Farhadian, N.; Fekrazad, R.; Gholami, L. The effect of photobiomodulation therapy on the stability of orthodontic mini-implants in human and animal studies: A systematic review and meta-analysis. J. Lasers Med. Sci. 2022, 13, e27. [Google Scholar] [CrossRef]
- Deana, A.M.; de Souza, A.M.; Teixeira, V.P.; Mesquita-Ferrari, R.A.; Bussadori, S.K.; Fernandes, K.P.S. The impact of photobiomodulation on osteoblast-like cells: A review. Lasers Med. Sci. 2018, 33, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; TruongVo, T.; Jiang, F.; et al. Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. J. Biomed. Opt. 2018, 23, 075008. [Google Scholar] [CrossRef] [PubMed]
- Vigliar, M.F.R.; Marega, L.F.; Duarte, M.A.H.; Alcalde, M.P.; Rosso, M.P.d.O.; Ferreira Junior, R.S.; Barraviera, B.; Reis, C.H.B.; Buchaim, D.V.; Buchaim, R.L. Photobiomodulation therapy improves repair of bone defects filled by inorganic bone matrix and fibrin heterologous biopolymer. Bioengineering 2024, 11, 78. [Google Scholar] [CrossRef]
- De Pace, R.; Iaquinta, M.R.; Benkhalqui, A.; D'Agostino, A.; Trevisiol, L.; Nocini, R.; Mazziotta, C.; Rotondo, J.C.; Bononi, I.; Tognon, M.; Martini, F.; Mazzoni, E. Revolutionizing bone healing: The role of 3D models. Cell Regen. 2025, 14, 7. [Google Scholar] [CrossRef]
- Lazăr, L.; Manu, D.R.; Dako, T.; Mârțu, M.-A.; Suciu, M.; Ormenișan, A.; Păcurar, M.; Lazăr, A.-P. Effects of Laser Application on Alveolar Bone Mesenchymal Stem Cells and Osteoblasts: An In Vitro Study. Diagnostics 2022, 12, 2358. [Google Scholar] [CrossRef]
- Pagin, M.T.; de Oliveira, F.A.; Oliveira, R.C.; et al. Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med. Sci. 2014, 29, 55–59. [Google Scholar] [CrossRef]
- Paim, E.D.; Branchini, G.; Lamers, M.; et al. Effect of photobiomodulation on viability and proliferation of squamous cell carcinoma in vitro. Lasers Med. Sci. 2025, 40, 462. [Google Scholar] [CrossRef] [PubMed]
- Gioga, C.; Bănățeanu, A.-M.; Voinea-Georgescu, R.-N.; Dobrescu, A.-M. Surgical management of a large mandibular cyst: A case report. Romanian Journal of Oral Rehabilitation 2024, 16(4). [Google Scholar] [CrossRef]
- Lu, P.; Peng, J.; Liu, J.; Chen, L. The role of photobiomodulation in accelerating bone repair. Prog. Biophys. Mol. Biol. 2024, 188, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Maglio, M.; Fini, M.; Sartori, M.; Codispoti, G.; Borsari, V.; Dallari, D.; Ambretti, S.; Rocchi, M.; Tschon, M. An Advanced Human Bone Tissue Culture Model for the Assessment of Implant Osteointegration In Vitro. Int. J. Mol. Sci. 2024, 25, 5322. [Google Scholar] [CrossRef]
- Kostadinova, M.; Raykovska, M.; Simeonov, R.; Lolov, S.; Mourdjeva, M. Recent Advances in Bone Tissue Engineering: Enhancing the Potential of Mesenchymal Stem Cells for Regenerative Therapies. Curr. Issues Mol. Biol. 2025, 47, 287. [Google Scholar] [CrossRef]
- Abdellatife, T.A.; Zaki, M.H. Impact of photobiomodulation on postoperative pain and bone healing following cystic enucleation: A randomized clinical trial. Oral Maxillofac. Surg. 2025. [Google Scholar] [CrossRef]




| Patient Number | Patient Age | Patient Gender | Anatomical Localization |
|---|---|---|---|
| Patient 1 | 26 | female | maxilla |
| Patient 2 | 29 | male | maxilla |
| Patient 3 | 19 | female | maxilla |
| Patient 4 | 39 | female | maxilla |
| Patient 5 | 40 | male | mandible |
| Patient 6 | 46 | female | mandible |
| Patient 7 | 50 | male | mandible |
| Patient 8 | 55 | female | mandible |
| Slice | Count | Cumulative Area (Relative Units) |
|---|---|---|
| Patient 1 LASER + | 2201 | 554123.852 |
| Patient 1 LASER - | 1215 | 1441762.407 |
| Patient 2 LASER + | 3901 | 644989.447 |
| Patient 2 LASER - | 2408 | 634447.68 |
| Patient 3 LASER + | 4917 | 533615.553 |
| Patient 3 LASER - | 2760 | 482853.707 |
| Patient 4 LASER + | 1837 | 239164.02 |
| Patient 4 LASER - | 682 | 133335.969 |
| Patient 5 LASER + | 4583 | 1079814.891 |
| Patient 5 LASER - | 2878 | 793648.215 |
| Patient 6 LASER + | 1922 | 621348.193 |
| Patient 6 LASER - | 1256 | 435137.329 |
| Patient 7 LASER + | 929 | 178271.067 |
| Patient 7 LASER - | 320 | 48918.086 |
| Patient 8 LASER + | 441 | 73910.588 |
| Patient 8 LASER - | 94 | 2791900.064 |
| Slice | Cumulative Osteoblastic Area (Relative Units) | Osteoblastic Area Occupancy (%) |
|---|---|---|
| Pacient 1 LASER + | 554123.852 | 11.556 |
| Pacient 1 LASER - | 1441762.407 | 28.777 |
| Pacient 2 LASER + | 644989.447 | 13.292 |
| Pacient 2 LASER - | 634447.68 | 12.136 |
| Pacient 3 LASER + | 533615.553 | 42.039 |
| Pacient 3 LASER - | 482853.707 | 35.527 |
| Pacient 4 LASER + | 239164.02 | 19.231 |
| Pacient 4 LASER - | 133335.969 | 11.216 |
| Pacient 5 LASER + | 1079814.891 | 22.55 |
| Pacient 5 LASER - | 793648.215 | 16.206 |
| Pacient 6 LASER + | 621348.193 | 12.85 |
| Pacient 6 LASER - | 435137.329 | 7.259 |
| Pacient 7 LASER + | 1782710067 | 18.906 |
| Pacient 7 LASER - | 48918.086 | 4.722 |
| Pacient 8 LASER + | 73910.588 | 7.541 |
| Pacient 8 LASER - | 279190006.4 | 0.685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
