Preprint
Article

This version is not peer-reviewed.

Numerical Computation of Critical Binding Parameters of Screened Coulomb Potentials

Submitted:

15 January 2026

Posted:

16 January 2026

You are already at the latest version

Abstract
For nearly a century screened Coulomb potentials have been of recognized importance in diverse areas of physics and chemistry. A key feature of interest in these potentials is the phenomenon of critical screening. This paper has three main purposes: To present an extensive, open-access, high accuracy (60 digit) benchmark reference data set of critical screening parameters, with validation; to confirm excellent past work in the field (to 30 digits), and to correct an historical oversight in its literature; and to present the essentials of our new approach, the “Phase Method” (PM), for computing them. Using the PM we calculate critical screening parameters, accurate to 60 decimal digits, for the Yukawa/Debye, Hulthén, Pseudo-Hulthén, and Exponential Cosine Screened Coulomb (ECSC)) potentials. The practical feasibility of such calculations on inexpensive hardware opens up new possibilities in research and education. We highlight an apparently overlooked 1989 paper of Demiralp on critical screening parameters of the Yukawa potential, which accurately calculated them to 30 decimal digits. Our main results are computations of the critical screening parameters µc= 1/Dc for screening lengths D ≤ 1000 au and angular momenta l = 0 . . . 20. The claimed accuracy of our results is supported by several independent lines of evidence: comparison with the most accurate (30 digit) values available in the print literature for the Yukawa, Hulthén, and ECSC potentials; comparison to 60 decimal digits accuracy with exactly known eigenvalues and critical binding parameters of the Pseudo-Hulthén potential; consistency tests between computed critical parameters, for various l-values for the Pseudo-Hulthén Potential, and known exact relations between eigenvalues; and application of a novel consistency test between results with different potential parameters, that exploits an exact scaling symmetry of this entire class of potentials. Similar calculations were done for ECSC and Yukawa potentials for screening lengths up to D ≤ 105 and l ≤ 12, to 30 digit accuracy, which show interesting (and to our knowledge not previously reported) periodic structure in Dc(n, l) for the ECSC potential that is not observed for the Yukawa potential. The asymptotic scaling behavior for the Yukawa and Hulthén potentials is explained quantitatively by simple semiclassical calculations.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  

1. Introduction

1.1. Background

The Coulomb interaction between two point charges tends to become exponentially screened when the charges are embedded in a medium with mobile or virtual charges. In plasmas, semiconductors, or electrolyte solutions the characteristic length over which this occurs is called the Debye (or screening) length. The screening phenomenon appears in many areas of science and engineering, including nuclear and particle physics; dark matter; cosmology; astrophysics; plasma physics; inertial confinement fusion; condensed matter physics; biophysics; chemistry; semiconductor device physics; nanotechnology; and nanophotonics.
This behavior can be modeled by Screened Coulomb Potentials, such as Yukawa/Debye: Z e μ r / r ; Exponential Cosine Screened Coulomb (ECSC): Z e μ r cos ( μ r ) / r ; and Hulthén Z e μ r / ρ with ρ ( 1 e μ r ) / μ ; for the moment, for simplicity, we suppress writing the centrifugal potential. μ is the screening parameter, and Z is a strength parameter (coupling constant, or atomic number, depending on context). As is well-known, and we will show below, Z can be set to 1 without loss of generality - doing so effectively rescales the screening length.
In this paper we have a simple goal: to directly determine the number of bound quantum states there are for these potentials as a function of screening length D = 1 / μ and angular momentum l. Our initial motivation for addressing this subjects was as a physically important and nontrivial application of our “Phase Method” [1] (PM). The PM accurately, robustly, and automatically calculates quantum energy eigenvalues and wave functions for a broad range of potentials, including discontinuous and singular ones, as described in [1]. It also turns out to be quite effective (with slight variations) and accurate for our present task of directly calculating critical binding parameters. The exact solutions for the Pseudo-Hulthén Potential provide important benchmarks against which to test our methods to high accuracy, as do several other analytical results (e.g. eigenvalues for pure Coulomb potential), and also other internal cross-checks and exact scaling relations, which are described below.

1.2. Preliminaries

It is well-known e.g. [8] that the three-dimensional time independent Schrödinger equation can be separated into an effective radial one-dimensional equation, and another, angular, equation, yielding spherical harmonics as solutions, by adding a centrifugal potential term l ( l + 1 ) / ( 2 r 2 ) into the radial equation: 1 / 2 Φ ( r ) + ( U ( r ) + l ( l + 1 ) / ( 2 r 2 ) ) Φ ( r ) = E Φ ( r ) , with Φ ( r ) being the solution to the radial differential equation and l being the angular momentum quantum number. A proper wave function solution vanishes at r = 0 and r , but we make use of more general divergent solutions in the Phase Method. With no loss of generality we also will use atomic-like units in which = m = 1 , where m is the reduced mass of the two-particle (e.g. electron-ion) system. In the limit of infinite ion mass this is equivalent to atomic units and henceforth we will refer to our units as au.
Following Lam and Varshni [4] we define a variable ρ that serves as an approximation to r that is accurate at short distances, which allows the problem to be exactly solved analytically [6] for l = 0 (i.e. no centrifugal potential), but which deviates significantly from r at large distances. This Hulthén Potential is not exactly soluble for l > 0 , but following Greene and Aldrich [7] it can be extended to what we call the “Pseudo-Hulthén” potential (Greene and Aldrich call it the “Hulthén effective potential”) which is identical to the Hulthén potential except that it replaces the 1 / r 2 factor in the centrifugal potential with 1 / ρ 2 while also multiplying it by a e μ r damping factor, which has the effect of partially compensating for the fact that 1 / ρ 2 1 / μ 2 rather than 1 / r 2 at large distances. Evidently for l = 0 the “Pseudo-Hulthén” and Hulthén’ potentials are identical. Although this modifies the asymptotic potential, it renders the problem exactly soluble [6] in terms of Hypergeometric Functions for all l, for the energy eigenvalues and critical binding parameters, making it invaluable for our benchmark comparisons.
We first observe that for the screened Coulomb Potentials considered here, the change of variable r s / Z transforms our original Schrödinger equation
1 2 d 2 Φ ( r ) d r 2 + Z e μ r r + l ( l + 1 ) 2 r 2 Φ ( r ) = E Φ ( r ) ,
to
1 2 d 2 Φ ( s ) d s 2 + e μ ¯ s s + l ( l + 1 ) 2 s 2 Φ ( s ) = E ¯ Φ ( s ) ,
with μ ¯ μ / Z and E ¯ E / Z 2 . The coefficient Z of the potential is absorbed in the rescaling; if the (reduced) mass m is not set to 1, the product of Z m sets the scale. It is easily shown in a similar manner that the Hulthén potential, ECSC, and pseudo-Hulthén potentials have this same scaling property, indeed any potential of the form f ( μ r ) / r or f ( μ r ) / ρ + centrifugal potential. Without loss of generality we therefore take Z = 1 , unless otherwise noted. Below we will use a variant of this scaling symmetry as an internal check on the accuracy of our higher precision calculations.
The attractive Coulomb potential U ( r ) = 1 / r possesses an infinite number of bound states. General arguments [8] show that potentials that decrease faster than 1 / r 2 at large distances only have a finite number of bound states. The Yukawa potential at short distances is Coulomb-like, as are the other potentials considered here, with the same infinite attractive 1 / r singularity at r = 0 . At large distances the exponential decay factor U ( r ) = e μ r / r reduces the attraction relative to a Coulomb potential, so that it admits only a finite number of bound states, the number depending critically on the value of μ (or equivalently its inverse D = 1 / μ ), and the angular momentum l. For example, for the Yukawa/Debye potential and l = 0 , the critical screening parameter at which a single s-state just becomes bound is μ c 1.1906124 ; a second state becomes bound for l = 0 at μ c . 310209 .
A key point regarding the critical binding parameters is that new physical processes/channels turn on or off at these critical values. This strongly affects photoionization processes in plasma physics and astrophysics [9,10], affecting spectra and opacity of stellar atmospheres. The related potentials Hulthén and Exponential Cosine Screened Coulomb (ECSC) have analogous behavior, but with their own critical binding parameters. These have been studied for many decades. Past work has been reviewed by Roy [11], and more recently by Jiao et al [3].
Here we present direct calculations of these parameters to substantially greater accuracy than in the past, i.e. 60 decimal digits, and demonstrate agreement with independent calculations [2,3] at their upper limit of 30 digits. This consensus, using quite different methods, is a strong validation of all of these results, over the range of digits that they happen to agree.
Although our computational approach calculates critical binding parameters directly, without the need to compute sequences of eigenvalues as a function of μ and extrapolating them to zero energy, it is still edifying to show eigenvalues can be accurately calculated by our methods for these potentials. We compare our eigenvalues with those of Stubbins [12] and Vrscay [13] for their selected values of μ and l for the Yukawa and Hulthén potentials, and also compare with exact values for Pseudo-Hulthén potential, with excellent agreement.
It should be noted that our methods and code readily can be used to calculate a greater number of accurate digits (if there is a need), higher l values, longer screening lengths, and other potentials – it is simply a matter of computation time. Our main data set presented here includes critical binding parameters to 60 accurate digits for Yukawa/Debye, Hulthén, Pseudo-Hulthén, and Exponential Cosine Screened Coulomb (ECSC) for l = 0 –20, and critical screening lengths up to D = 10 3 . We also compute to the lower level of accuracy of 30 digits all critical binding parameters for Yukawa/Debye and ECSC for l = 0 –12 and up to D = 10 5 au and find intriguing structure in D c vs n in the latter.
There has been some disagreement in the literature about these values in recent years. Edwards [14] claimed highest accuracy to 10 digits, which disagreed with our own early (unpublished) calculations at the time, which were accurate to 30 digits, as well as Demiralp’s [2], Rogers [15], and others. To help clarify this confusion our main original purpose in these investigations was to help clarify the problem by independently computing the critical parameters, and secondarily to demonstrate the method that we have developed to obtain them.
We initially found (in preliminary unpublished work) that our results were almost entirely in agreement with the work of Demiralp [2], which claimed 30 digits of accuracy. This very high degree of accuracy at the time (1989) was attained using minimal computational resources by modern standards, on a DEC VAX 11-780 using quadruple-precision arithmetic, by developing sophisticated variational methods with basis sets that were specifically constructed and optimized for each state so as to obtain rapid convergence. Our results, which are relatively simple and direct, but have the benefit of modern computational tools that we use in unconventional ways, also agree (to within their stated accuracies) with those of Rogers [15] (5 digits, 1970), Diaz [20](15 digits, 1991), Singh [16] (15 digits,1993), Napsuciale [17] (10 digits, 2021), Del Valle [18] (17 digits, 2018); yet disagree in the least few significant digits with those of Gomes et al [19] (1994), and Edwards et al [14] (10 digits, 2017).
In the literature the discrepancies in these claimed values appeared to have caused some investigators to doubt some results that actually were correct at higher accuracy, such as those of Diaz [20]. Yet the singular paper of Demiralp [2] appears to have been overlooked by all, and is rarely if ever cited. The high degree of agreement with Demiralp’s tables of results independently calculated (to 30+) digits by two other groups, using quite different methods, indicates that his work continued to be the most accurate for decades until matched by the recent work of Jiao et al [3], and our own unpublished work, which were of the same level of accuracy as [2]. Secondarily, the observed agreement between our results and Demiralp’s also lends support to our new methods, which were independently developed before we became aware of either Demiralp’s or Jiao’s prior work.
The Phase Method [1] allows calculations to much higher accuracy than previously have been published on this topic to date. Here we present critical exponents to 60 decimal digits for screened coulomb potentials up to l = 20 and D = 1000 . They are validated by comparison with exact results (Coulomb, Hulthén l = 0 , and Pseudo-Hulthén for arbitrary l); with prior publications up to their maximum of 30 digits; and by independent calculations using our ζ -scaling test. We also find that we obtain the same level of accuracy for other potentials including Hulthén, extended Hulthén, and Exponential Cosine Screened Coulomb (ECSC). More generally, we observe that the Phase Method can be conveniently applied to many other potentials when more normal levels of accuracy (say, 15-30 digits) are required. Our Mathematica [23] code is freely available for download for independent verification and use at http://gbxafs.iit.edu/phase-method/.

2. Materials and Methods

2.1. Preliminaries

The Yukawa/Debye/Static Screened Coulomb potential is a central (isotropic) potential. It is well known [8] that for non-zero angular momentum l, by addition of a centrifugal potential term, the three-dimensional problem becomes reducible to solving an equivalent one-dimensional potential
U ( r ) = e μ r r + l ( l + 1 ) 2 r 2
in the Schrödinger equation
2 2 m d 2 Ψ ( r ) d r 2 + U ( r ) Ψ ( r ) = E Ψ ( r ) .
Here Ψ ( r ) = r R ( r ) and R ( r ) is the radial wave function. The appropriate boundary conditions are Ψ ( 0 ) = 0 and Ψ ( r ) = 0 . We solve this here through direct calculation by a variant of the Phase Method [1]. As shown in [1] this approach is equally applicable to many potentials including other Yukawa/Debye-related potentials such as Hulthén and Exponential Cosine Screened Coulomb (ECSC).

2.2. Computational Approach

To calculate D c values we use essentially the same logic (and only slightly modified code) as the Phase Method [1] for finding the eigenvalues. Solving for all the energy eigenvalues E for a fixed potential parameter μ (or equivalently, D ) within a given range of energies is isomorphic to the problem of solving for all the D c values within a specified range of D , for fixed E = 0 . As described below, there are differences, however, when it comes to the choice of data range.
In this work we directly calculate the critical parameters μ c (or D c ). In contrast to most other approaches, we do not determine them by calculating a sequence of eigenvalues as a function of μ and extrapolating it to zero energy. Our approach is similar in spirit to Schey and Schwartz [22], and Edwards [14], but our methods are distinct from theirs. As recognized by these authors, calculation of D c = 1 / μ c is less computationally demanding than that of general eigenvalues, because the integration occurs very close to zero energy, where the asymptotic behavior as r is very smooth ( r l + 1 ) – it is close to a straight line for l = 0 . Because of this, large steps can be taken in that region by the adaptive ODE solver, and only modest amounts of computation time is spent in doing so. In contrast, integrating the ODE for arbitrary energies is much more time consuming, because of the oscillatory nature of the solutions. In that case choosing the range more carefully can substantially reduce the time required. In the Phase Method, as applied to general energy levels (rather than just those near the continuum limit), a useful heuristic in such cases is to calculate the classical turning points at the highest considered energy, and multiply them by “turning point scale factors” to estimate a sufficient range at that energy. In this work, for energies near zero, such care is not needed to obtain practical computation times over extremely long ranges.

2.3. Number of Accurate Digits

A peculiar but very useful characteristic of the PM, as presently implemented, is that if the range is sufficient, the ultimate number of accurate digits is reliably half the working precision (as specified in numbers of decimal digits). This is related to the ODE solver being unable to continue (i.e. not registering a legitimate transition/zero appearing within the data range) when the square of the deviation of the test energy from the exact eigenvalue becomes too small to represent at the selected working precision. With arbitrary precision arithmetic we are not much concerned about wasting digits of precision, as long as the ultimate accuracy and run time are reasonable. A very useful consequence is that the number of accurate digits can be “dialed-in” before running the job simply by choosing the working precision, i.e. just by changing a single number at runtime, provided the x-range is sufficient. This applies to calculating eigenvalues in the PM, but also to calculating critical screening lengths D c .
The merits of calculating such quantities to high precision of 60 digits are several-fold. Taking in quantities that are nearly equal can stretch the limits of accuracy of computed numerical results. Very accurate numerical results may suggest patterns to investigate, or to provide critical tests of analytical results. More generally, the methods demonstrated here may be of use in much broader contexts in physics, and mathematics.
The probability of getting 9 digits correct randomly is one in a billion. The probability of randomly getting 60 digits correct is one in a quadrillion quadrillion quadrillion quadrillion. If this happens, you’re probably onto something.

2.4. Working Precision, Data Range, and Accuracy

Computationally, to avoid divide by zero errors, we must approximate the singular 1 / r potential. We do it here simply by starting the ODE solution at a very short distance above r = 0 , r min at which we set the initial value of the ODE solution to be zero. The value of the initial slope is relatively unimportant as long as it is nonzero. Setting the initial function value to zero effectively places an infinitely high potential barrier at this short distance r min . To attain the desired high level of accuracy of D c (or eigenvalues) for these potentials with the 1 / r singularity it is necessary to choose a range that extends to extremely short distances, related to the desired accuracy, and also rather long distances.
The short distance criteria are different for l = 0 and l > 0 owing to the presence of the repulsive centrifugal potential. The ODE solution for l = 0 samples the attractive singular potential very close to r = 0 . In contrast, for l > 0 , the repulsive 1 / r 2 centrifugal potential shifts the weight of the solution away from r = 0 , making it less sensitive to the potential at very small r. For l = 0 the minimum distance required for these 1 / r potentials for n digits precision is close to < 10 n digits ) ; for 60 digits this is 10 60 , but there is little reason not to go further as a safety factor. For the calculations presented here we used r min = 10 110 which is empirically found to be vastly more than sufficient. The short distance cutoff that is needed for l > 0 is much less stringent than this. To set the upper limit r max , rather than adjusting it incrementally upward in a series of calculations until sufficient convergence is obtained, we find it practical to choose a very large cutoff, and rely on the adaptive sampling of the ODE solver algorithm to obtain the desired accuracy within a reasonable time frame. This could be optimized but it is not clear there is a practical need to do so for this application.
For this reason we choose very (arguably, unnecessarily) large upper r-limits, yet still obtain reasonable computation times. The run time likely might be reduced somewhat by optimization, but we agree with the programming aphorism (usually attributed to Knuth) that “premature optimization is the root of all evil’, meaning, don’t optimize code unless there is a practical reason to do so. For this reason we have not followed the conventional procedure of selecting sensible ranges and then incrementally extending them until the computed values converge to the desired accuracy. This can be time-consuming and as we have seen, unnecessary for this work. Rather, we have started with very large ranges and decreased them if needed. Convergence still can be assessed by reducing the range moderately and comparing results, but this need be done only rarely.
The ranges that ultimately were used in this work were indexed to the desired accuracy via the working precision “ W P ” as [ 10 ( 10 W P ) , 10 ( W P 10 ) ] for l = 0 , and [ 10 ( W P / 4 ) , 10 ( W P / 2 ) ] for l = 1 20 . These ranges are purely heuristic and not especially optimized, and so might warrant some systematic study. Actual values for W P = 120 were [ 10 110 , 10 110 ] for l = 0 and [ 10 30 , 10 60 ] for l > 0 . For l < 3 the lower cutoff that was initially used was 10 40 , but the calculation spontaneously aborted for l 4 using that cutoff, presumably because of numerics associated with the l ( l + 1 ) / ( 2 r 2 ) centrifugal potential; relaxing the lower cutoff by increasing it to 10 30 for l 4 was found to be both stable and sufficient for the desired accuracy up to l = 20 , at least. These ranges were checked by comparing with exact results for Pseudo-Hulthén potential, then consistently used for the other potentials considered here.

2.5. Phase Method

2.5.1. PM in a nutshell

Here we give a brief outline of key aspects of the Phase Method for solving the Time Independent Schrödinger Equation for 1D potentials, and central/separable potentials (and for good measure, the Helmholtz Equation). First, eigenvalues are accurately found, then wave functions are generated from them, as needed. The PM is described in more detail below (with the adaptations used for the critical binding parameter problem), and in expanded form with many applications in [1].
  • Phase Method is related to Shooting Method, but upside down and backwards.
  • Sturm’s separation theorem implies the number of zeros in the solution doesn’t change even if the initial conditions do: their locations just move around.
  • You don’t have to find a proper convergent wave function to find eigenvalues.
  • “Shoot First” Method - uses nominal initial slope/value conditions for specified energy parameter (no tweaking initial conditions/boundary conditions is needed).
  • Choose x-range so as to promote divergent solutions by placing initial point far enough into the classically forbidden region. It actually is beneficial for reasons described below and in [1]
  • Automatic x-range setting is/can be done by scaling computed classical turning points at highest energy (easily overridden if desired). The small x (aka r) criterion is different for potentials singular at x = 0 , see below.
  • “Phase Plot” digitizes divergent ODE solution for the purpose of counting transitions/ # of bound states, and visualizing to check appropriate x-range.
  • Use Adaptive ODE solver (no fixed grids!) with Stiffness Switching for robustness.
  • Parallel interval-based evolutionary solver finds all eigenvalues accurately and efficiently, no initial guessing is needed, as it is in Shooting Method.
  • Automatic maximum and minimum E -search range setting is/can be calculated based on potential (easily overridden if desired).
  • Use Arbitrary Precision Arithmetic - really big numbers are fine. Take care not to pollute high precision numbers with low precision.
  • The number of accurate digits of the computed eigenvalues is reliably half the number of digits of working precision, iff range is adequate. The reason is explained below. User chooses the accuracy, you just have to wait for the answer.
  • “Shoot First” method can be used to compute wave functions starting with the very accurate eigenvalues from above, with automatic divergence detection/truncation at large x.
  • “Self-healing” of differences in the logarithmic derivatives owing to different initial conditions occurs well into classically forbidden region (see below); solution is robust even if transient overflow occurs.
  • Automatic validation of wave functions: Virial Theorem tests, expectation value vs eigenvalue; wave function convergence tests.

2.5.2. Expanded Description

In this paper we borrow some ideas and methods from the Phase Method (PM) [1] an approach that we have developed for solving the Schrödinger equation in 1D, and central and separable potentials. It automatically maps out all of the (finite number of) eigenvalues within a designated energy range, without discretizing the potential as in matrix methods, or needing to guess locations of eigenvalues or tweak boundary conditions as in the Shooting Method, to which the PM is most closely related. It uses standard highly performant ODE solvers with stiffness switching algorithms (originally LSODA, currently, StiffnessSwitching) that automatically switch between stiff/nonstiff algorithms, according to the numerical conditions encountered during the solution process. This is basically an insurance policy so as to obtain a robust solution – many ODEs can become stiff under conditions that are not obvious to the user. Algorithms that are appropriate under stiff conditions (e.g. Backward Differentiation Formula, implicit methods) are computationally expensive, and so are used only when needed, on a step by step basis. Otherwise non-stiff algorithms are used where they are appropriate.
The PM is closely related to Shooting Methods, but in a sense it is a conceptual inversion of them. Importantly, it does not seek to find convergent wave functions from the start. We call this the “Shoot First Method” (as in “shoot first and ask questions later”) because we just don’t worry about the initial conditions: we can just use nominal initial conditions appropriate to the general class of potentials (e.g. singular at the origin, or not). Indeed the PM actively promotes divergent solutions, from which it extracts useful information, allowing the algorithm to accurately locate the eigenvalues. In a most basic sense it is node-counting, but not of a proper wave function: to paraphrase, the key point from Sturm’s separation theorem is that the number of zeroes in the integration range (if it is set wide enough) is invariant if the initial conditions are changed. Convergent wave functions are not needed or even sought in the determination of energy eigenvalues. We count zeroes, or equivalently, transitions in the Phase Plot described below. Once the eigenvalues are accurately determined (through a sort of parallel evolutionary binary search), proper wave functions then can be readily computed if they are needed, but again, without the need to adjust initial conditions.

2.5.3. “Self-healing” Logarithmic Derivative

It is not difficult to show that as long as the initial starting point for the ODE solver is placed well into the classically forbidden region (well before the lowest (in x) classical turning point), the difference between logarithmic derivatives of two solutions starting with different initial conditions rapidly vanishes in the ODE integration process.
Consider two solutions Φ 1 ( x ) and Φ 2 ( x ) of the time independent Schrödinger equation with the same energy E and potential U ( x ) but with different boundary conditions. We have then Φ 1 ( x ) = 2 ( E U ) Φ 1 ( x ) , and Φ 2 ( x ) = 2 ( E U ) Φ 2 ( x ) . Multiplying the first equation by Φ 2 ( x ) and the second by Φ 1 ( x ) , and subtracting the two equations gives
Φ 2 ( x ) Φ 1 ( x ) Φ 1 ( x ) Φ 2 ( x ) = 0 .
Recognizing the left side of the equation as the derivative of Φ 2 ( x ) Φ 1 ( x ) Φ 1 ( x ) Φ 2 ( x ) and integrating, we get Φ 2 ( x ) Φ 1 ( x ) Φ 1 ( x ) Φ 2 ( x ) = constant ; dividing by Φ 1 ( x ) Φ 2 ( x ) we get Φ 1 ( x ) / Φ 1 ( x ) Φ 2 ( x ) Φ 2 ( x ) = constant / ( Φ 1 ( x ) Φ 2 ( x ) ) .
In the classically forbidden region the solutions Φ 1 ( x ) and Φ 2 ( x ) diverge exponentially and the product of their inverses rapidly approaches zero. We also recognize the left side of the equation as the difference of the logarithmic derivatives of the two solutions, which therefore rapidly approach zero. Integrating, we find ln ( Φ 1 ( x ) ) / Φ 2 ( x ) ) anotherconstant which implies the ratio of the two solutions is a proportionality constant, which is normalized away for a wave function. Another way to describe this is the Wronskian of the two functions rapidly approaches zero when the ODE solution is started well into the classical forbidden region, so the two solutions rapidly become linearly dependent.
This “self-healing” of differences between two solutions with different initial conditions when started in the classically forbidden region is the basic reason we don’t have to fuss with precise initial conditions in the PM. It is a great operational simplification. It also provides more robustness to the solution (e.g. in the event of transient numeric overflow) because any such glitch is just a difference of initial conditions for subsequent points at larger x, so the solution tends to “heal” itself.

2.5.4. Phase Plot

The PM makes use of what we call the Phase Plot, which is simply the tanh (hyperbolic tangent) of the diverging solutions of the Schrödinger equation. Alternatively 2 π arctan could be used instead of tanh, whence the “phase”. We use fixed nominal initial conditions, for reasons described above. Reining in the very large magnitude exponentially diverging solutions by using the tanh (or arctan) effectively digitizes the solution, with useful results, as described below. Other compression functions could be used but it is helpful for visualization purposes to have ones that are differentiable.
In the Phase Method, for most potentials, the ODE integration, treated as an initial value problem, is started and ended well past the extremal classical turning points, i.e. far into the classically forbidden region where E < U ( x ) (in general for the PM we use the independent variable x because we are not only concerned with central potentials, for which r is conventional). However, for “one-sided potentials”, i.e. those in which the independent variable is restricted to x 0 , as in the potentials considered here, the ODE solution is started at a very small positive value x m i n , at which the solution is set to zero, and the initial slope is set to some larger but nominal value. In the case of Coulomb-like potentials when high accuracy is sought, the value of x m i n must be quite small. However, it is not necessary to adjust or tweak the initial conditions for the particular solution.
If there are n bound states below the specified energy the Phase Plot will show n step-like transitions, jumping between ± 1 . These are easily counted by a human by eye, or by a computer – they are most directly counted within the ODE solver itself (in Mathematica [23], by using WhenEvents). The Phase Plot essentially digitizes the analog ODE solution, much like digital circuits, which in reality are just analog circuits that are driven into saturation, yet in doing so, afford new kinds of uses. The morphology (e.g. sharp vs rounded transitions) of the Phase Plot tells the user at a glance if the range [ x m i n , x m a x ] is insufficient and needs to be extended. Another way to say this is the transition counting process rapidly evaluates the integrated density of states at the specified energy, typically in milliseconds. This is the sharp computational tool that provides the accuracy, along with arbitrary precision arithmetic.

2.5.5. Arbitrary Precision Arithmetic

If we were limited to machine precision ( 16 decimal digits, 64 bit real numbers, divided up between exponent and mantissa) other methods may be more accurate than the PM. For smooth potentials, spectral methods are especially rapidly convergent. Example code to implement these can be found in [1]. On the other hand, these other rapidly convergent methods may break for non-smooth potentials. The PM handles everything with about equal facility.
There are unique advantages that come with using arbitrary precision arithmetic in the PM. It allows us to better handle diverging solutions (which are beneficial) without encountering floating point overflow. If overflow is encountered, the range just needs to be reduced slightly. Also, we can effectively dial-in the accuracy of the results we desire.
Modern implementations of arbitrary precision are surprisingly efficient. Of course greater accuracy involves somewhat longer run times, but we find that these are quite acceptable on modern computers. Effectively we reduce the human user time in exchange for increased computer time. To use arbitrary precision in Mathematica we simply specify WP, the working precision, given in decimal digits. However attention still needs to be given to not polluting high precision numbers with lower precision ones.
A simple python port has been written and posted, giving quite acceptable performance running in the Pyto environment on a Gen8 iPad, using machine precision. This demonstrates a good degree of portability. The Julia language/environment seems especially promising as an open source alternative to Mathematica for the PM, because of its integrated support for arbitrary precision arithmetic, sophisticated ODE solvers, and parallel evaluation.

2.5.6. Evolutionary Search: Sifting and Refining

The ability to quickly count the number of bound states that exist below a given energy allows us to rapidly determine if an energy interval contains one or more eigenvalues. This is then used to systematically map out all of the energy eigenvalues within a specified initial search interval, using a simple kind of parallel evolutionary binary search process. We define a simple function that takes a given energy interval as input; divides it in half; and tests if each subinterval contains one or more eigenvalues, by applying the state counting function to each end of each subinterval. If there are eigenvalues within a subinterval, it is retained and passed along to a common pool (list) of intervals; if not, the subinterval is discarded. This function then is repeatedly mapped in parallel (using Mathematica’s ParallelMap) across the list of intervals until a fixed point is attained, or otherwise it is determined that sufficient accuracy is achieved. It is very helpful to cache ("memoize") previously computed values to avoid the need to recompute them, which speeds up the process about threefold. This is easy to do in Mathematica using the idiom e.g. f [ x _ ] : = f [ x ] = .
The list of intervals initially roughly doubles in length each iteration, but then rapidly converges to only those intervals containing a single eigenvalue, or nearly so (a process we call "sifting", which normally is done serially, but could be parallelized). Those intervals are then "refined" in parallel using the same basic process, bringing it to completion. A great virtue of this approach is that it automatically and efficiently separates even nearly-degenerate eigenvalues, and no guessing is needed whatsoever (as is normally the case for the shooting method). Basically the user defines the potential to solve (analytically or numerically), puts an upper limit on the energy below which to look for eigenvalues (or defines a specific energy range to look within), specifies the accuracy desired, and the algorithm does the rest automatically. In this paper, it is this Phase Method algorithm that we have adapted to calculate critical binding parameters to high accuracy, instead of the eigenvalues.
Once all of the energy eigenvalues are determined to sufficient accuracy, the wave functions are easy to calculate, again without any need to match boundary conditions. With accurate eigenvalues in hand, the ODE solver is started well into the classically forbidden region, using only nominal initial conditions. The “self-healing” of the solution described above comes into play, giving an accurate solution where it is substantial. Then, in the final classically forbidden region at large x, at some point, the solution will tend to exponentially diverge again, if only because of the errors associated with representation of real numbers on a computer by a finite number of bits. At that point the program simply detects the location of first divergence using a simple algorithm (find the local minimum closest to x m a x of log | Φ ( x ) | ), and truncates the solution there, setting the solution to zero above that point. The resulting approximate wave function is then normalized by dividing by the integral of its square. These approximate wave functions are satisfactory for many purposes, and refinements to them for improving accuracy are feasible, if needed.
As described above, it is a peculiar but very useful property that the ultimate accuracy of the eigenvalues in the PM is reliably equal to, or better than, the working precision (number of decimal digits) divided by two. This behavior is related to the following observation: in the ODE solution, the transitions will stop registering (i.e. zeros are not counted) in the ODE solution process when ( E E * ) 2 < numres , where E is the test energy, E * is the eigenvalue, and numeps is the numerical epsilon, i.e. the minimum difference representable by numbers at the designated working precision.
For example if one wants 30 digits of accuracy, just use WorkingPrecision=60. This is straightforward to do using arbitrary-precision arithmetic, where adding more digits of precision simply requires longer execution time (and a little more memory), which are readily available on modern computers.
The computations in this paper were mostly done on M4 Mac Mini computers with 16GB RAM which is more than enough: each process running on a single cores takes about 200MB RAM on Mac OS, so 10 cores requires only about 2 GB RAM. With arbitrary precision arithmetic in Mathematica, the penalty for using WP of twice the desired accuracy is very modest, at least for the range accuracy we are most interested in. Our approach to this issue has the benefit of allowing the user to simply specify up-front the minimum accuracy that is needed, by specifying the WP. The computer then chips away until the eigenvalues are revealed, which usually takes from minutes to hours on a desktop or laptop computer. It takes longer to process a greater number of eigenvalues, more or less in proportion to their number, as does computation of very high n ODE solutions, with their highly oscillatory structure.
But unlike most matrix methods, it is not necessary to calculate all the states, if only a few are needed, because the algorithm searches within an energy range that is specified by the user. The user only has to ensure the x-ranges are large enough, and the Phase Plot is a useful guide to that. But for most eigenvalue problems, a better heuristic is to define a range that is scaled from the the extremal classical turning points, which are automatically calculated, as described in [1]. In our PM software this is the default option, but easily can be overridden if desired. The whole process naturally parallelizes, and runs very well on modern multicore desktop computers. The computations readily could be farmed across a compute cluster, or even supercomputers if hundreds of thousands, or millions of accurate eigenvalues were needed. The code should be readily portable to the Julia language; a very basic Python port is currently downloadable for eigenvalues.

2.6. Eigenvalues and Critical Binding Parameters

The energy levels for the Yukawa and similar potentials as a function of μ (or D are quite straightforward to determine by the Phase Method, as described above. Determining the critical screening parameters by the appearance and disappearance of transitions in the Phase Plot as a function of screening parameter (with a fixed upper energy limit of zero), is essentially the same process as finding the eigenvalues. Rough intervals in μ that contain transitions are automatically calculated from the Phase Plot, and then refined further. The evolutionary iterative bisection mechanic is virtually the same as in the standard Phase Method, and is also done in parallel.
Only a few user-inputs are needed for the critical binding parameter calculation: the potential; the angular momentum (needed to calculate the centrifugal potential); the desired accuracy (via working precision parameter); and the range of D values within which to look for bound states. Applying the ζ -scaling test is another option. The rest of the process is automatic, typically taking a few hours, depending on the accuracy desired, on an inexpensive desktop computer to obtain critical exponents for all of the bound states of the specified angular momentum l.

2.7. Adapting the Phase Method for Determining Critical Screening Lengths D c = 1 / μ c

It is helpful to use D = 1 / μ as our screening parameter, as in Rogers [15]. In applying the Phase Method (PM) to calculating eigenvalues of the Yukawa potential we vary the energy for a fixed D and l and look for changes in the number of transitions in the Phase Plot that reflect changes in the number of bound states. This is done without any need to guess locations of eigenvalues or fiddle with boundary conditions. The task we are now faced with is the flip side of this process for finding eigenvalues: we fix E = 0 and vary D to see when new states become bound/unbound. The computational apparatus is essentially the same as the usual PM. For the purpose we simply adapted our a simple example code for computing eigenvalues which is posted for download at https://gbxafs.iit.edu/phase-method/. Here we adapted it to very accurately compute, for a given l, all the D c values that are less than a specified D max . This problem is isomorphic to that of computing all the E eigenvalues that are less than a specified E max . Note that this variation on the PM allows us to find critical screening lengths without the necessity to calculate eigenvalues for E 0 , although those also readily can be calculated using the PM, if needed.

2.8. ζ -Scaling Test

As mentioned above, multiplying the prefactor of the exponential term in the potential (i.e. coupling constant or atomic number, which is here by default taken as 1, with no loss of generality) by a scaling factor ζ , while dividing the screening length D by the same factor, has the sole effect of multiplying the eigenvalues by ζ 2 . This is physically plausible because increasing the coupling constant (or atomic charge Z e ) and decreasing screening length D have opposite effects on the propensity to bind states. But for these potentials, indeed for any that scale as 1 / r using a single length scale parameter (here D = 1 / μ ) describing the potential, they are exactly equivalent.
Here we exploit this symmetry as one check on the accuracy (or at least, self-consistency) of our calculations. We multiply the exponential term by a factor ζ while dividing the screening length by the same factor ζ . In doing so, the energy eigenvalues get rescaled by ζ 2 , but in the case of critical binding, these are identically zero. This implies that this double-rescaling transformation (e.g. coupling constant increased, screening length decreased by the same amount) should leave the critical screening parameters invariant, exactly. By doing two independent calculations, with unscaled ( ζ = 1 ) and scaled ( ζ = 10 ), which result in quite different spatial dependencies and computational numerics, we have an independent test as to whether our computed critical screening lengths are identical at the claimed accuracy. This zeta-scaling test is built into our code as a clickable option. Our tests have passed every time they have been applied.
The explicit scaled forms of the potential used in the calculations, including the centrifugal potential term (which is modified for the Pseudo-Hulthén potential), and including ζ -rescaling form of ρ D / ζ 1 e ζ x D are:
  • Yukawa: ζ e ζ x D x + l ( l + 1 ) 2 x 2
  • Hulthén: ζ 2 e ζ x D D 1 e ζ x D + l ( l + 1 ) 2 x 2
  • Pseudo-Hulthén: ζ 2 e ζ x D D 1 e ζ x D + ζ 2 l ( l + 1 ) e ζ x D 2 D 2 1 e ζ x D 2
  • ECSC: ζ e ζ x D cos ζ x D x + l ( l + 1 ) 2 x 2 .
Note: for l = 0 the Hulthén and Pseudo-Hulthén potentials are identical.
In summary, critical screening lengths are invariant under changes in ζ . We use this to verify the accuracy of our calculations to the indicated number of digits by comparing independent runs with different instances of the potential ζ = 1 and ζ = 10 . In all of the tests, our results were confirmed to the claimed accuracy.

2.9. Pseudo-Hulthén Internal Self-Consistency Tests

The μ c values for the PH potential are exactly known and highly regular: μ c = 2 / ( n + l ) 2 . This symmetry is evident from inspection of the PH data tables. This structure implies that incrementing the index l while decrementing n in the table by the same amount should give the same μ c to within the tolerance of 10 60 , determined by setting the working precision to 120. We have programmatically checked this relation for 192 distinct pairs of l, n values for the l = 0 20 tables, and find all discrepancies in μ c to be below the specified tolerance. As these correspond to independent computational runs for different l, with different centrifugal potentials, this is a stringent test of our computational methods.
The agreement in all cases with the exact known values is even more so. All 714 (for l = 0 20 ) μ c values for the Pseudo-Hulthén Potential that are presented in the tables in the Appendix were compared programmatically with exact values, and agree to the claimed 60 decimal digits (i.e. the absolute value of the error 10 60 ). The code and parameters used to generate these results were then applied to calculation of the Yukawa, Hulthén, and ECSC tables.

2.10. Alternative Method for Calculating Critical Screening Lengths D c

We also implemented a alternative approach based on considerations that are also shared by our own methods used here, but have been exploited by few investigators tackling this problem. The central point is that the asymptotic dependence of solutions near zero energy are very smooth and therefore relatively fast to calculate with an adaptive ODE solver, even over extremely long ranges. At zero energy, in spherical coordinates, the wave function at large distances has the asymptotic form a / r l + b r l + 1 , which at large r is dominated by r l + 1 . Dividing the ODE solution by r l produces a straight line. A zero slope line demarcates bound from unbound states. These considerations are invoked by Schey and Schwartz [22], and also Edwards [14]. Using this observation, as an alternative to the Phase method, we sought the solution with zero slope, which is straightforward to calculate numerically in our usual way out to very large distances. However, extrapolating the slope solely from smaller values of r isn’t sufficient or reliable: a long lever arm (range) is needed to achieve high accuracy of the slope estimation. Further, we must exclude the region at low r to ensure that we are in an asymptotically appropriate region. Here we chose to use the range r max / 2 to r max for slope determination.
We sought the value of μ that gives zero slope when the energy is set to zero. This was done in an evolutionary search process like that used in the Phase Method. As before, we defined an interval in μ within which to search for critical values. Our metric was simple: we varied μ and (programmatically) looked for changes in the sign of the slope corresponding to μ values at the ends of the μ interval. As in the PM, we then bisect the interval, apply the sign change criterion to see in which half the desired μ c resides, retain the viable subinterval if it exists, and discard the other, and iterate (using ParallelMap to map across the common list of intervals). As in the PM we "memoize" (cache) previously computed results to avoid unnecessarily recomputing them.
The initial bracketing intervals were determined by applying the state-locating function to roughly map out the transitions, evaluating (in parallel) on a simple grid search. These brackets compared well to those of Bylicki’s numerical tables [21] that are posted online; the bound-unbound transitions were judged by the values at which the energies first acquired an imaginary part. This alternative approach worked well (to 30 digit accuracy) when paying attention to the “points on accuracy” listed above.
However, our adapted Phase Method that was used to generate all of the tables in this work is simpler and more efficient, mostly because the evolutionary binary search automates the entire process, so no bracketing of the μ transition locations by other means is needed.

2.11. Recommendations for Obtaining Accurate Calculations

It may be helpful to outline certain details that have needed attention to achieve the claimed accuracy in our present computing environment.
  • Use arbitrary precision arithmetic sufficient to get the desired accuracy. It is not necessary to limit oneself to machine arithmetic or to use GPUs, which normally support at most double precision floating point. Our code for this class of problems (and more generally, Phase Method) primarily uses CPU cores, not GPU.
  • Take care to avoid polluting high precision numerics by introducing lower precision numbers into the calculation, intentionally or inadvertently. For example "1./2."≠ "1/2": the real number 1 . / 2 . is machine precision, while the rational fraction 1 / 2 has infinite precision. Mathematica/Wolfram Language automatically tracks precision and accuracy of real numbers in its computations, a powerful feature. SetPrecision is your friend.
  • For robustness use adaptive ODE solvers with stiffness detection and switching. Alternatively change variables so the function being integrated is rather smooth. Or do both.
  • Use very short and reasonably long distance cutoffs sufficient to obtain the desired accuracy. For singular potentials, and for l = 0 , the short distance cutoff needs to be much shorter than it does for l > 0 because in the latter the centrifugal potential pushes the wave function to larger r. For near-zero energies the time cost is very modest to use an absurdly long range with an adaptive ODE solver. For l = 0 , the solution at large r where U 0 , is close to a straight line. But to determine a near-zero slope of a computed solution a long lever-arm (i.e. long range) is still needed.
  • Compare with known exact values as benchmarks (and of course literature values) to validate the computational apparatus. Use ζ -scaling tests and internal cross checks as applicable.

3. Results

In this section we first present evidence supporting our accuracy claims for the PM-calculated results. We then present numerical results in 84 tables n the Appendix, with some limited graphics and limited analysis.
  • Compare PM eigenvalues to 60 digit accuracy with exact values for Coulomb and Pseudo-Hulthén potentials.
  • Compare PM eigenvalues to 30 digit accuracy with Stubbins’s variational calculations for the Yukawa, Hulthén, and Pseudo-Hulthén potentials for μ = 10 8 , confirming the correct ordering of levels at small μ , and Stubbins’s values.
  • Compare our μ c results to 30 digits with Demiralp’s for the Yukawa and Hulthén potentials.
  • Compare our μ c results to 30 digits to those of Jiao’s values printed in the paper, for several potentials.
  • Compare PM μ c results to 60 digit accuracy with exact values for Pseudo-Hulthén potentials.
  • Present our tables at 60 digits accuracy of μ c values for PseudoHulthén, Hulthén, Yukawa, and ECSC potentials for all states up to D = 1000 and l = 0 20 .
  • These are followed by our computed D c values at 30 digits accuracy up to D = 10 5 for l = 0 12 for the Yukawa potential and ECSC potentials. Over this range the asymptotic dependence is clear. The ECSC values show interesting structure that is not present in the former. Asymptotic convergence is clear.
  • Confirm the correct ordering of m u c ( n , l ) for the various potentials in all cases: μ c ( hulth é n ) μ c ( pseudo - hulth é n ) > μ c ( yukawa )
  • Using semiclassical approximation, we analytically derive the asymptotic forms of D c vs n l for Yukawa and Hulthén potentials, which agree with fits to the numerically calculated behavior.

3.1. Phase Method Eigenvalues - Validation Tests

Here we give some examples of the accuracy of eigenvalue calculation using the PM. PM-calculated Energy eigenvalues to 60 digits. Comparing to exact eigenvalues of the Coulomb and Pseudo-Hulthén potential, we confirm PM calculations are accurate to the 60 digit accuracy chosen by setting W P = 120 . Specifically what is meant by this is the worst case absolute value of the difference between computed and exact value is of order 10 60 . The median of the errors of the eigenvalues typically is one or two orders of magnitude lower than the maximum.

3.1.1. Comparison with Exact Pseudo-Hulthén Potential Eigenvalues

The computed results for μ c for l = 0 20 are tabulated for D 1000 , at working precision W P = 120 . Our claimed accuracy for these tables is 60 digits, specifically meaning the absolute value of the difference between the calculated μ c values and the exact values are all 10 60 . As support for this, we compare to exact solutions for the eigenvalues of the Pseudo-Hulthén potential. These have the simple form 2 μ ( n + l ) 2 2 8 ( n + l ) 2 for n = 1 ( 2 μ l ) . Setting E = 0 and solving for μ gives μ c = 2 / ( n + l ) 2 .

3.1.2. Comparison with Exact Coulomb Eigenvalues, Confirmation of SO(4) Degeneracy

Test calculations were done to verify accuracy of eigenvalues for coulomb potentials with various angular momenta. We conclude that the full 60 digit accuracy is readily attained, provided the working precision is set to 120 and the r-ranges are set appropriately. We simply give a summary of the results here.
A test calculation was made for l = 0 for the Coulomb potential ( 1 / x + l ( l + 1 ) / ( 2 x 2 ) , including centrifugal potential) over the r-range 10 60 10 4 at W P = 120 , which gave maximum error of order 10 62 (median error 10 64 ) for all the states that were calculated, which were the 12 s-states below the designated upper energy limit of . 003 au. Another calculation was done for l = 1 over the range 10 40 10 4 at W P = 120 which gave maximum error of order 10 64 for all the states that were calculated, i.e. the lowest 11 p-states below . 003 au. Choices of these ranges for l = 0 and l > 0 depend on desired accuracy and working precision as described above.
We note that, to the same level of accuracy, the energy eigenvalues corresponding to the different l values are degenerate, a consequence of the well-known SO(4)-symmetry of the Coulomb potential. This is a broken symmetry for the screened Coulomb potentials, Yukawa et al, which do not have energy-degenerate levels for different l.
It is important to note that each of our calculations for different l involves a numerically different centrifugal potential, and an independent computation, so the high degree of consistency among the degenerate eigenvalues for different l also is a significant confirmation of numerical consistency and robustness of the Phase Method.
To verify the accuracy (here at WP60, giving accuracy of 10 30 , to compare with earlier work) for high angular momentum states, a calculation for l = 20 , and also a repeat run of l = 0 , were done with the lower energy search limit set to 1 , so as to include all the bound states. For l = 20 , the 50 energy eigenvalues for states n = 21 70 were automatically located and calculated to an accuracy of order 10 35 . For l = 0 , all energy eigenvalues for n = 1 70 were located and calculated with an accuracy better than 10 33 . These calculations took about 3.6 hours on a Mac M1 Studio Ultra, and would be perhaps twice that on a M4 Mac Mini computer; fewer eigenvalues would take less time. These results show that accurate eigenvalues can be obtained close to the continuum limit for the Coulomb case, and for higher angular momentum states (up to l = 20 ).

3.1.3. Comparison with Exact Coulomb Eigenvalues Near E = 0

The critical binding parameter problem addressed in this work focusses on states at the continuum limit. Unlike the screened-Coulomb potentials that are the focus of this paper, which have a finite number of bound states for μ > 0 , the Coulomb Potential has an infinite number of bound states, accumulating near E = 0 . For this reason in these calculations we set an upper energy limit below E = 0 , to avoid requiring the PM to compute an infinite number of eigenvalues, which could take a while.
Ordinarily, to compute eigenvalues we often employ the heuristic of choosing the r-range by scaling the classical turning points, evaluated at the highest computed energy. For attractive potentials like those considered here, which are singular at r = 0 , r min is chosen as small as the numerics allow at the specified WP. For Coulomb-like potentials this is r min 10 W P / 2 . For the upper range limit, we use the turning point scaling recipe. The upper classical turning point for energy limit 10 4 au is r = 10 4 au, and we scale that by a factor of 10, to set r max = 10 5 (the exact value is not critical, as long as it is large enough). For this test, because we are particularly interested in states near E = 0 , we set the lower end of the energy search interval to 10 3 au, i.e. reasonably close to the continuum.
For this test we calculated energy eigenvalues for l = 0 , 1 , 2 at WP60 (expected accuracy of 30 digits, iff the r-range is sufficient). The r-range was set to 10 32 r 10 5 au with an energy search range from 10 3 E 10 5 au. For l=0 the PM, using its sifting and refining process, computed eigenvalues for all 48 states from n = 23 70 with an energy error 10 33 au or better, which, as is typical, is slightly more accurate than the nominal expected 30 digits. This illustrates the importance of a using a sufficiently small r min . The calculations took about half an hour to calculate on a Mac M1 Studio Ultra.

3.1.4. Comparison of PM-calculated Energy eigenvalues to Stubbins, and Vrscay

Using the Phase Method also we readily confirm the full 30 digits of accuracy of the tabulation by Stubbins [12] of the Yukawa and Hulthén potentials, for the smallest n s-levels, as well as the claimed 10 7 accuracy of his upper levels. We also readily confirm Vrscay’s [13] 20-digit values for all levels.

3.1.5. Comparison of PM eigenvalues with Stubbins for μ = 10 8 ; Perturbation Theory

Stubbins’s paper [12] reported accurate variational calculations of eigenvalues for selected states, for Yukawa and Hulthén potentials over an assortment of screening parameters μ , the values being specific to each state. In contrast, our Phase Method approach automatically computes all the energy eigenvalues up to the specified upper energy for a selected μ = 1 / D and l (or if desired, only those within a chosen energy window).
The D = 10 8 ( μ = 10 8 ) case is an extreme test self-imposed by Stubbins. We applied the same test to the PM. Our computed eigenvalues for μ = 10 8 for 1 s and 2 p for Yukawa and Hulthén potentials agree with Stubbins’s to all of his listed digits (with the slight discrepancy of his 1s value, in the least significant digit). Other values up to n = 8 were also computed for l = 0 and l = 1 .
Stubbins [12] also showed that his computed eigenvalues conformed to the correct ordering of eigenvalues: E coulomb < E hulth é n < E yukawa even at the small values of μ = 10 8 , supporting the accuracy of his calculations in this extreme limit, where the variational basis set might become inadequate. We confirm his results with our (non-variational) PM calculations finding E coulomb < E hulth é n < E pseudo - hulth é n < E yukawa , and also find it is quantitatively consistent with first order perturbation theory, as we show next.
Using the exact Coulomb eigenvalues as references, in first order perturbation theory, the shift in eigenvalues for the other potentials is just the expectation value of the perturbation Hamiltonian Δ H , evaluated in the relevant eigenstates of the unperturbed (Coulomb) system. Δ H is the difference in the potential from (Yukawa, Hulthén ) from the Coulomb potential. The perturbation Hamiltonian for l > 0 must include the centrifugal potential, which is slightly different in form for Pseudo-Hulthén than the others, so that term doesn’t cancel out. Expanding those perturbations to first order in μ = 10 8 simply gives the constant μ for the Yukawa potential, and μ / 2 for Hulthén/Pseudo-Hulthén. This makes evaluation of the expectation value trivial. We conclude the corresponding eigenvalues (when they are exist) are shifted from the Coulomb eigenvalues upward by μ (for Yukawa/Debye) or μ / 2 (Hulthén and Pseudo-Hulthén) potentials. Our computed results agree with this fully, with residual differences of second order in μ , or 10 16 .
Other eigenvalues for various choices of μ in Stubbins’s article were also computed and compared with excellent agreement to Stubbins’s listed digits, which are variable in number, up to 30 digits. This mutually confirms the accuracy of Stubbins’s variational eigenvalues, and our own PM-calculated ones.

3.2. Critical Binding Parameters

3.2.1. Comparison with Exact Pseudo-Hulthén Potential Eigenvalues

The computed results for μ c for l = 0 20 are tabulated for D 1000 , at working precision W P = 120 . Our claimed accuracy for these tables is 60 digits, specifically meaning the absolute value of the difference between the calculated μ c values and the exact values are all 10 60 . As support for this, we compare to exact solutions for the eigenvalues of the Pseudo-Hulthén potential. These have the simple form 2 μ ( n + l ) 2 2 8 ( n + l ) 2 for n = 1 ( 2 μ l ) . Setting E = 0 and solving for μ gives μ c = 2 / ( n + l ) 2 .

3.2.2. Comparison with Demiralp’s1989 μ c calculations for the Yukawa Potential

A remarkable paper [2] apparently has been overlooked in subsequent literature. In 1989 Demiralp [2] developed a sophisticated variational approach by constructing basis sets specially“tuned” to provide optimal convergence for each state. His Table 1 presents critical binding parameters μ c to 30 digit accuracy for the first 44 bound states of the Yukawa potential, with μ c ranging from 1.1906 to 0.0115 (roughly D 0.84 87.0 ). Over this range the following states become bound: ( 1 s 10 s ) ; ( 2 p 10 p ) ; ( 3 d 10 d ) ; ( 4 f 9 f ) ; ( 5 g 9 g ) ; ( 6 h 8 h ) ; ( 7 i 8 i ) ; ( 8 k ) .
Comparing with our own earliest results on this problem calculated to 30 digits (which were calculated, but not published, before learning of Demiralp’s or Jiao’s results) we found full agreement with Demiralp’s claimed 30 digits for the entire l = 0 , 1 , 2 manifolds (27 s,p,d states), with the only discrepancies being in the least significant digits (28–30) for l > 2 manifolds (17 f,g,h,i,k states), and a single clerical error described below. The number of digits of agreement between our results and Demiralp’s can be summarized approximately as 30 l 2 digits. Since our initial (unpublished) 30 digit calculations were done, we have subsequently performed 45 digit and 60 digit calculations (those presented here) with the same conclusions.
We note that in Demiralp’s table 1 there appears to be a single clerical error (transposition in the eighth– ninth decimal places) for the 9 s state: 0.015673723828 (compared to our value 0.015673732828 ). As our own numbers and typeset tables are manipulated solely by machine (but checked by the author, who reportedly is human) we think such clerical errors in our table are highly unlikely.
As is common in this subfield, Demiralp used state labeling that is conventional for atomic physics and plasma physics, and chemistry (except the l = 7 state is mistakenly labeled “j” rather than the spectroscopic convention “k”). As this numbering scheme is not appropriate for nuclear systems, and as this work is relevant to them, we simply label the states with the angular momentum quantum number l = 0 , 1 , , and within a given l manifold, number them sequentially from their lowest energy level as n = 1 , 2 , . This also is the natural way in which they are computed, one l-manifold at a time. The first state of angular momentum l appears at l = n ¯ 1 , where n ¯ is the principal quantum number, so our sequence number n = n ¯ l .
The complete agreement of our results with the (totally different, computationally) variational calculations of Demiralp for 0 l 2 and the near-complete agreement for l 3 is a strong confirmation of both results to the consensus accuracy. In 1989, and for three decades afterward, no other known published computations came close to the accuracy of Demiralp’s results. It is unfortunate that they had been largely overlooked over that time frame. We expect the full set of Jiao’s recent results which are expected to be accurate to 30 digits will agree with our own that are presented here. However, to ensure independence, we have kept a “firewall” (and a paywall) between them, for others to independently verify.

3.3. Comparison with Singh and Varshni’s [16] Calculations of μ c for the ECSC Potential

Singh and Varshni in 1983 published their calculations to an accuracy of 8 digits (10 for the 1 s state) of critical screening parameters for the ECSC potential. Their tabulations covered bound states ranging from l = 0 8 and principal quantum number n = ( l + 1 ) 8 , explicitly states 1 s 8 k . Our computed values fully agree with theirs to their accuracy of 8 10 digits.

3.4. Comparison with μ c of Jiao et al [3] for Yukawa, ECSC, and Hulthén Potentials

In addition to their extensive benchmark calculations of μ c to an accuracy of 30 digits, and interesting observations, Jiao et al published a rather thorough review of the chronology of the apparently steady advances in accuracy of past calculations of critical parameters. Unfortunately, the community and review articles seem to have missed Demiralp’s 1989 paper [2], which gave results accurate in most cases to 30 digits, which was a significant advance at the time. The historical record will need to be corrected.
The computational method Jiao et al have used (Generalized Pseudo-Spectral Method), like previous investigators such as Bylicki et al [21] and Roy [11], calculates the critical parameters, energies of the bound states, as well as resonances and widths at positive energies. This is quite different in method from the results presented here, which directly determines the critical parameters.
We have compared our critical parameters μ c to those explicitly listed in the paper, for 1 s and 2 p (our l = 0 , n = 1 , and l = 1 , n = 1 ) states of the Yukawa, ECSC, and Hulthén potentials. To maintain independence (and because their supplementary data is behind a paywall) we have not yet compared our full tabulations. However there is perfect agreement between our results and their printed values to their full listed 30 digits that are presented in their Tables 1–3. Our values to 60 digits below are quoted directly from our tables in the appendix.
Yukawa 1 s :
1.190 612 421 060 617 705 342 777 106 361 046 347 275 901 572 981 749 063 530 790
Yukawa 2 p :
0.220 216 806 606 573 040 405 041 463 289 577 110 508 548 104 023 305 084 754 657
ECSC 1 s :
0.720 524 085 881 953 095 871 917 136 918 578 087 183 481 757 107 097 035 500 102
ECSC 2 p :
0.148 205 032 642 758 419 285 886 459 123 248 041 030 459 181 523 505 707 250 28
Hulthén 1 s :
2.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
Hulthén 2 p :
0.376 935 996 093 545 491 107 886 597 464 844 838 761 579 551 432 087 617 184 727

3.5. ζ -Scaling Tests

As described above, the screened Coulomb potentials considered here (Yukawa, ECSC, Pseudo-Hulthén, Hulthén) all have the same exact scaling symmetry: multiplying the coupling constant/atomic number (i.e. the coefficient of the e μ x term) by a factor ζ is exactly equivalent to multiplying the screening length D by the same factor, with the only consequence being a rescaling of the energy eigenvalues by a factor of ζ 2 . If ζ > 1 the rescalings both have the effect of increasing the propensity to bind states.
Our search for critical binding parameters refers specifically to the case of E = 0 energy eigenvalues, and we can conclude that multiplying the exponential factor(s) by ζ while simultaneously dividing the screening length D by ζ must leave the critical parameters strictly invariant. We use this symmetry as an exacting test of our numerical values. The rescaling also applies to the exponential terms in ρ = ( 1 e μ r ) / μ and to the exponential decay factor of the centrifugal term in the Pseudo-Hulthén potential.
The scaled and unscaled potentials are quite different numerically in these two cases if the scale factor is substantial. In our case we use ζ = 10 , which gives dramatically different spatial dependencies in the two cases, and the detailed numerics during the calculations in the two cases are inevitably quite different. We apply this critical ζ -scaling test to support our claim of accuracy of critical exponents to the full 60 digits.

3.6. Our Tables

Here we present our tables of μ c for Pseudo-Hulthén, Hulthén, Yukawa, and ECSC potentials, from l = 0 20 at 60 digit accuracy, for all states up to screening lengths of D = 1000 au. Elsewhere we will present similar tables accurate to 30 digits up to D = 10 5 au for all four of these potentials. We have also computed a few up to D = 10 6 au which produces 1124 μ c values. These calculations are straightforward, but take about 40 hours to compute all the μ c values to 30 digits for a single l, on a M4 Mac Mini, because their large number. The computation is easily job-farmed, or it could be sped up by clustering if there a need.
We start with the Pseudo-Hulthén potential [7] as a benchmark, as it is similar to the other screened Coulomb potentials, but was contrived to be exactly soluble for both critical binding parameters and energy eigenvalues, for all l for which there is a bound state.
In these PH tables, it will be noted that many of the entries for angular momentum l = 0 20 are equal (to within rounding to 10 60 in the last digit) but are shifted upward for each increase in l by 1 by dropping the top row. The exact expression is [7] μ c = 2 / ( n + l ) 2 , n = 1 n max , where n max = ( ( 2 / μ ) 1 / 2 l ) . All of the presented results agree with the theoretical expressions to the claimed accuracy. Since each of the calculations for the 21 different l values is computationally independent of the others (they are executed in different jobs, and often, on different computers), and as each run employs different l and different centrifugal potential terms, this demonstrates a remarkable consistency of the tabulated values. This supports our claims of accuracy to the indicated number of digits. Each of the following tables in the Appendix were done in the same way.
Our results for μ c at l = 0 20 are tabulated for D 1000 , using working precision W P = 120 . We claim accuracy to 60 digits, specifically meaning the difference between the calculated μ c values and the exact values are claimed to be 10 60 . For this potential, the maximum error of 10 60 was found for l = 0 and l = 1 ; the median of the errors of all the 21 values of l was 0.2 × 10 61 .

3.7. Comparison with Rogers et al

Rogers et al [15], in their Figure 5, showed useful relationships between the total number of bound states ( n * ), and with the square of the number of bound s-states ( g * ), both expressed as a linear functions of the critical screening parameter D . Our tables reproduce their figure quite accurately, as seen in Figure 1, but also extend it to a much larger range. In this we have limited the D range in the plot and fits to that for which angular momenta l > 12 do not contribute (as they were not included in this dataset for D max = 10 3 ). The inset box in the figure represents the approximate range covered in Figure 5 of Rogers et al.
We also have performed least squares fits (shown as the straight lines in the figure) using their same parameterizations: n * = a 1 + a 2 D ; ( g * ) 2 = b 1 D ; and ( g * ) 2 = b 2 + b 3 D . The best fit values are: b 1 = 1.27297 ( 1.27294 , 1.2300 ) ; b 2 = 0.289 ( 0.314 , 0.264 ) ; b 3 = 1.27309 ( 1.27308 , 1.27312 ) ; a 1 = 0.573 ( 0.412 , 0.733 ) ; a 2 = . 50012 ( . 49885 , . 50138 ) , where the quantities in the parentheses are 95% confidence intervals. These values are quite close to those of both Rogers [15] et al and Schey and Schwartz [22].
We show below by semiclassical quantization of the phase space integral that the number of s-states scales as D π 4 n 2 as previously observed, and confirmed here. Further, the coefficient 4 π 1.2732 agrees very well with our numerical fits above. These fits may be useful for roughly predicting the total number of bound states for other values of D .

3.8. Yukawa D c ( l , n )

It is clear from the data shown in Figure 3 that the Yukawa, Hulthén, and of course, the exactly known Pseudo-Hulthén critical screening lengths D c = 1 / μ c are rather smooth functions of l and n. The ECSC potential is also, but with some added rough structure we will show over an extended range below. This is made especially clear by plotting D c vs l + 1 and n in Figure 4, for the Yukawa Potential. The maximum n for the higher l states is limited by D max and l so we have selected a square region for ( l + 1 | n ) = 1 17 . The Yukawa critical values evidently are not functions only of ( n + l ) , as is the case for Pseudo-Hulthén potential: for example, exchanging values of n and l gives a different value for D c . This is seen in the contour plot of Figure 2. The contours are labeled with D c , so, for example, the l + 1 = 10 , n = 10 value is about 19, and D c ( l = 9 , n = 10 ) 19 2 360 au.
For Pseudo-Hulthén, 2 D c = ( n + l ) , exactly. In this case the coefficients of the linear relation for between D c and n and l are precisely equal and constant, which is not the case for the Yukawa Potential.

3.9. Inequality Plots

As is well-known, there is a rigorous ordering of the energy levels in these potentials, owing to the strict inequality of the potential energies at all values of r, for the same μ and l. As a consequence there is the reverse ordering of the μ c values, and the same ordering of D c values. Figure 3 shows this clearly for all computed μ c . These represent 84 independent runs and 2167 different levels – all conform to the known strict ordering of the levels.
It will be noticed that the l = 0 curves for all potentials are close to a straight line on a log-log plot, which indicates a power law relation, in this case, n 2 . This is explained below. However, note the “kinks” in the ECSC curves for l = 0 2 : they are not artifacts – they are real. A larger range of D max is needed to see this structure clearly, which is done below.

4. Discussion

4.1. Asymptotic Behavior of D ( n l , l ) vs n l

For the Yukawa Potential, the log-log plot of D ( n l , l ) vs n l in Figure 4 and Figure 5 show convergence to the l = 0 curve at large n l for all l values. Fits to our computed values are very close to n 2 behavior, with a coefficient that is close to π / 4 . Similar fits in the Hulthén (Figure 3) and Pseudo-Hulthén cases give the same n 2 dependence, with the coefficient close to 1 / 2 . The ECSC potential shows a similar trend as the Yukawa case, but with additional structure superimposed on it, which does not smoothly converge.
(Note: in the tables and figures below, for simplicity we suppress the l subscript in n l . n simply numbers the states for each l manifold; it is not generally equal the conventional principal quantum number from atomic physics, which ties state numbering to angular momentum.)
The convergence of the l > 0 curves in Figure 4, Figure 5, Figure 6 and Figure 7 to the l = 0 curve at sufficiently large n can be rationalized by a simple argument. Large n corresponds to large D c , and therefore small μ c , which is the μ 0 Coulomb limit of both the Yukawa and ECSC potentials (similarly for Hulthén and Pseudo-Hulthén. Coulomb potential eigenvalues depend on l and n l (state number for a given l) through their sum, as E n l , l = 1 / ( 2 ( n l + l ) 2 ) , n l = 1 , 2 , . For a given l, if n l l the eigenvalues approach the l = 0 limit as n l increases, regardless of l.
We can explain the Yukawa and (Pseudo)-Hulthén l = 0 fitting results quantitatively using semiclassical quantization of the phase space integral in units of Planck’s constant h, which becomes increasingly accurate as n increases. As usual, we employ units in which = m = 1 where m is the reduced mass of the two body system. The phase space integral is
J ( E ) = 2 r 1 ( E ) r 2 ( E ) 2 ( E U ( r ) ) d r ,
where r 1 ( E ) and r 2 ( E ) are the classical turning points for energy E , i.e. the extremal points at which U ( r ) = E . For the Yukawa Potential (with l = 0 , i.e. the centrifugal potential is zero), r 1 = 0 , and μ r 2 ( E ) = W ( μ / E ) where W is the (principal branch of the) Lambert W function (ProductLog in Mathematica). For the l = 0 Hulthén/Pseudo-Hulthén Potential we have μ r 2 ( E ) = log ( 1 μ / E ) .
Quantizing J ( E ) in multiples of Planck’s constant h = 2 π , and taking = 1 as usual, we have 2 π ( n ν ) = J ( E ) . Here ν is the negative of a Maslov Index (we number states n = 1 , 2 ), a refinement we can neglect in the limit of large n. This condition amounts to requiring an integer number of half-oscillations of the solution to reside between the classical turning points. Its energy parameter provides an upper bound to the true energy eigenvalue; the true eigenvalues is reduced below that limit by tunneling [1]. This quantization condition gives an approximate relationship between E and n. Taking E 0 , r 1 0 , r 2 we get
2 π ( n ν ) = 2 0 2 U ( r ) ) d r .
For these potentials, the J ( E = 0 ) integral can be factored into a dimensionless definite integral (pure number) times 1 / μ = D . Equating it to 2 π n implies that D n 2 , and the question is, what are the proportionality constants? The integrals for the Yukawa and Hulthén/Pseudo-Hulthén potentials are straightforward to work out, and they evaluate respectively to J = 4 π μ and J = 2 π 2 μ , which for large n gives the observed D π 4 n 2 and D 1 2 n 2 behaviors.
The phase space integral for the ECSC potential is more involved, as is the physics it represents. The l = 0 ECSC potential crosses E = 0 at r = π 2 D , unlike the others, which smoothly approach E = 0 as r . A detailed analysis of this interesting behavior of the bound states and resonant states of the ECSC potential is out of the scope of the present paper, which is focussed on critical binding parameters at E = 0 .

5. Conclusions

This work has had three main purposes: to validate and confirm excellent historical work, some done to as much as 30 digit accuracy with very limited computational resources; to build on all past work to extend the database to 60 digits over extended parameter ranges; and to introduce and explain the “Phase Method” [1] which allows such computations to be easily done in hours on ordinary desktop computers.
Specifically we have calculated tables of critical exponents μ c for four potentials: Yukawa/Debye, Exponential Cosine Screened Coulomb (ECSC); Hulthén; and Pseudo-Hulthén (PH) for l = 0 20 for screening lengths up to D c = 1 / μ c 1000 . The PH potential has the advantage of being exactly soluble and is used as a benchmark, and one of several checks on the accuracy of our calculations. We have highlighted the apparently-overlooked 1989 paper of Demiralp, which accurately calculated μ c for s and p states for the Yukawa potential up to n = 10 with an accuracy to 30 digits, and other angular momenta from l = 3 7 to 27– 29 digits. We further test our values by comparison with the most accurate values currently available in print by Jiao et al [3], and by applying cross checks between many independent calculations with different potential parameters by employing a well-known scaling relation in a novel way. Similar calculations (tables to be presented elsewhere) for the same potentials and l values at 30 digits accuracy also were performed for 100-fold larger screening lengths D c 10 5 and for a couple, up to D c 10 6 to demonstrate feasibility, with initial results presented here.
We find interesting not-yet-unexplained roughly periodic structure in plots of D c / n 2 vs n for the ECSC potential, while corresponding plots of D c / n 2 vs n plots for Yukawa are smooth. These imply that there are certain ranges of state number n in which the rate of state-binding suddenly but temporarily increases, perhaps owing to shape resonances. This should prove interesting to explore.
The Phase Method [1] and variations described here have a vast array of other potential applications, among them the study of related potentials (e.g. generalized ECSC potential), and unrelated ones; semiclassical limiting behavior and approximations; and dimensionalities D 3 , including fractal dimensions. The demonstrated ability to easily compute eigenvalues and critical binding parameters to exceptional accuracy, as well as wave functions, on inexpensive hardware, offers new possibilities for research and education in diverse fields. Mathematica code and data files are freely available for download. It is our hope that the data and methods presented here will prove to be of lasting value.

Funding

This research received no external funding.

Data Availability Statement

Tables generated in this work are freely available for download at https://gbxafs.iit.edu/criticalscreening/.

Acknowledgments

This paper is dedicated to the memory of Professor Kathie Elaine Newman. The author wishes to acknowledge Illinois Tech for office space, library and support facilities, and Mathematica site license. This work includes no content from generative AI.

Conflicts of Interest

The author declares no conflicts of interest.

Appendix A. Data Tables

Appendix A.1. Yukawa Potential μ c vs l for D=1/μ≤1000 au

Table A1. Critical binding parameters μ c (au−1) for Yukawa potential, l=0
Table A1. Critical binding parameters μ c (au−1) for Yukawa potential, l=0
1 1.190 612 421 060 617 705 342 777 106 361 046 347 275 901 572 981 749 063 530 790 2 0.310 209 282 713 936 939 110 112 212 953 178 705 349 599 031 944 443 568 807 467 3 0.139 450 294 064 178 013 882 357 954 889 722 517 358 682 070 623 404 646 786 613 4 0.078 828 110 273 171 565 170 282 204 980 085 098 973 351 019 260 888 746 422 916 5 0.050 583 170 374 558 799 782 284 408 667 887 460 545 239 317 224 034 890 845 443 6 0.035 183 477 367 820 588 148 390 875 853 262 885 268 142 234 028 596 118 621 973 7 0.025 876 416 481 121 578 169 930 945 718 830 202 789 078 031 434 488 317 564 745 8 0.019 826 307 429 825 264 337 059 425 553 555 077 160 575 657 815 051 433 639 569 9 0.015 673 732 828 474 905 372 994 735 928 228 583 279 580 081 823 547 690 160 729 10 0.012 700 950 763 810 386 771 388 389 902 420 733 627 024 086 520 424 984 123 071 11 0.010 500 024 455 619 102 409 170 099 944 982 569 310 719 743 670 339 995 597 072 12 0.008 825 198 121 484 659 811 270 303 976 175 766 844 867 057 703 402 578 304 334 13 0.007 521 262 452 007 728 805 322 863 142 424 514 822 184 317 460 547 814 979 975 14 0.006 486 286 938 808 751 846 027 057 159 306 710 502 220 964 478 728 953 456 964 15 0.005 651 091 789 872 167 090 289 697 309 407 460 341 038 027 574 898 977 790 528 16 0.004 967 387 416 043 937 005 279 974 157 702 092 628 637 459 319 849 508 630 310 17 0.004 400 638 186 614 534 200 164 624 753 101 341 961 775 493 049 429 592 111 617 18 0.003 925 616 252 642 987 361 919 801 781 687 855 256 624 734 089 581 709 077 023 19 0.003 523 546 047 303 059 302 930 807 006 543 848 657 268 654 756 338 445 013 676 20 0.003 180 220 857 157 501 549 875 970 900 787 366 240 278 974 498 709 193 057 221 21 0.002 884 730 898 748 748 370 510 575 417 920 197 208 411 065 838 540 918 481 283 22 0.002 628 586 099 141 690 992 345 132 094 391 618 422 797 663 117 277 445 964 482 23 0.002 405 099 565 976 777 462 613 742 086 301 436 629 914 052 722 366 960 447 330 24 0.002 208 946 829 749 002 585 609 890 805 134 123 005 098 755 544 739 839 203 438 25 0.002 035 845 837 319 507 460 598 299 223 590 573 273 328 352 843 900 479 099 061 26 0.001 882 321 319 013 588 185 399 202 323 956 567 238 298 970 220 511 031 022 951 27 0.001 745 529 031 596 967 394 013 752 883 138 912 204 659 566 564 432 926 568 473 28 0.001 623 123 100 112 845 045 101 426 154 562 803 419 344 175 396 382 738 941 081 29 0.001 513 154 790 434 057 475 846 749 997 753 711 787 895 410 525 806 583 407 642 30 0.001 413 994 481 430 354 847 091 995 213 563 143 574 858 903 425 925 220 597 261 31 0.001 324 270 953 535 356 533 721 572 017 564 643 842 847 503 263 856 721 647 933 32 0.001 242 823 737 179 600 438 576 044 256 794 487 115 870 099 004 541 118 628 533 33 0.001 168 665 406 436 293 443 089 992 126 289 954 735 444 623 102 366 797 661 583 34 0.001 100 951 514 625 698 631 606 189 558 994 126 701 492 245 400 524 937 647 872 35 0.001 038 956 451 786 215 690 706 155 028 365 487 321 455 601 213 643 108 615 177
Table A2. Critical binding parameters μ c (au−1) for Yukawa potential, l=1
Table A2. Critical binding parameters μ c (au−1) for Yukawa potential, l=1
1 0.220 216 806 606 573 040 405 041 463 289 577 110 508 548 104 023 305 084 754 657 2 0.112 710 498 359 524 944 973 972 952 155 224 913 892 868 301 875 890 014 593 875 3 0.067 885 376 100 579 552 788 417 968 577 926 855 528 188 107 427 403 091 549 403 4 0.045 186 248 071 624 990 093 706 122 691 149 700 082 081 699 976 692 806 777 344 5 0.032 174 932 293 205 003 538 581 132 479 497 170 537 750 623 981 126 930 117 511 6 0.024 047 639 235 996 140 851 390 943 514 030 035 675 238 783 333 920 290 131 907 7 0.018 640 705 347 623 634 654 280 763 091 951 419 532 127 297 367 838 085 448 127 8 0.014 865 869 356 224 286 239 220 545 742 341 923 021 754 151 982 978 073 475 837 9 0.012 128 229 513 755 452 397 915 667 879 939 264 611 177 011 460 670 670 828 612 10 0.010 080 687 145 923 836 466 765 910 015 546 439 569 913 105 433 368 902 613 307 11 0.008 509 830 499 710 479 069 873 094 008 358 997 383 848 480 474 272 922 583 324 12 0.007 278 668 379 888 337 373 490 037 851 784 478 448 770 322 700 178 950 709 026 13 0.006 296 036 702 746 696 030 864 002 654 933 252 283 498 242 423 890 647 828 468 14 0.005 499 381 839 660 386 381 910 026 478 217 577 768 672 121 690 011 380 117 557 15 0.004 844 636 441 262 068 006 313 029 223 715 294 851 389 343 933 457 321 314 760 16 0.004 300 037 517 324 852 911 233 319 241 109 599 247 077 705 594 076 090 544 189 17 0.003 842 226 505 895 156 685 504 061 852 778 439 097 527 492 424 141 010 873 837 18 0.003 453 717 701 331 520 535 157 714 511 573 752 357 702 570 686 090 275 549 267 19 0.003 121 212 990 695 427 514 038 142 600 662 801 589 490 316 456 054 263 576 486 20 0.002 834 454 552 306 933 607 219 254 650 364 909 995 696 257 810 636 277 317 361 21 0.002 585 427 964 400 090 816 911 891 970 182 323 725 271 901 385 550 216 674 772 22 0.002 367 798 612 298 766 592 699 509 977 451 237 650 315 498 092 054 846 347 200 23 0.002 176 506 522 122 167 038 928 807 483 767 618 074 874 559 727 831 805 560 934 24 0.002 007 470 722 526 291 520 410 939 702 436 475 387 447 922 043 526 849 229 839 25 0.001 857 370 574 821 133 625 569 481 579 762 605 274 570 459 191 740 685 633 026 26 0.001 723 482 004 804 275 535 865 533 469 996 700 596 091 855 669 492 421 919 457 27 0.001 603 553 437 033 706 920 056 660 004 002 837 964 937 629 839 845 815 161 581 28 0.001 495 710 805 433 181 432 382 166 478 091 914 633 492 675 901 649 701 715 847 29 0.001 398 384 108 558 467 382 672 389 889 861 747 550 847 715 778 020 223 051 410 30 0.001 310 250 102 833 715 024 834 389 134 071 732 450 976 710 281 049 033 349 026 31 0.001 230 187 206 409 594 279 451 158 767 280 728 961 852 262 389 126 055 200 474 32 0.001 157 239 729 339 536 930 506 942 974 729 467 957 609 782 525 684 694 791 028 33 0.001 090 589 289 956 033 634 456 609 981 034 981 037 707 106 886 395 073 854 117 34 0.001 029 531 814 193 654 775 135 822 036 625 433 213 210 801 172 832 352 701 833
Table A3. Critical binding parameters μ c (au−1) for Yukawa potential, l=2
Table A3. Critical binding parameters μ c (au−1) for Yukawa potential, l=2
1 0.091 345 120 771 732 184 927 710 066 860 260 994 943 058 993 864 195 867 962 724 2 0.058 105 052 754 469 264 181 224 714 848 364 071 796 955 340 541 865 049 333 535 3 0.040 024 353 938 324 274 958 258 960 950 658 181 673 118 690 753 654 208 576 940 4 0.029 166 650 229 397 650 381 902 551 150 091 217 129 157 580 019 769 556 909 594 5 0.022 161 826 355 339 786 360 688 903 637 457 024 877 612 036 345 657 214 230 915 6 0.017 390 648 079 030 682 359 871 838 426 184 182 502 979 485 340 826 520 343 673 7 0.013 999 880 572 892 515 518 358 979 691 514 812 098 789 437 273 737 551 341 386 8 0.011 506 513 742 042 353 053 318 933 727 190 168 758 587 209 157 943 458 105 434 9 0.009 620 998 940 890 081 042 424 057 801 069 027 814 090 471 439 898 512 911 102 10 0.008 161 438 126 668 077 044 523 912 919 975 242 516 373 935 542 734 899 348 321 11 0.007 009 014 659 248 687 450 049 068 390 492 017 656 833 274 589 352 446 825 790 12 0.006 083 513 307 343 769 558 596 719 084 217 149 872 553 287 208 443 598 072 485 13 0.005 329 226 409 206 182 617 348 572 775 155 650 190 945 604 476 957 984 410 940 14 0.004 706 506 949 866 792 512 495 422 435 716 029 963 101 377 318 013 909 277 734 15 0.004 186 527 200 410 042 742 554 435 951 858 045 443 435 632 667 950 375 315 840 16 0.003 747 926 383 550 933 875 136 224 697 423 279 581 813 662 973 078 313 615 282 17 0.003 374 608 580 805 902 649 837 659 210 475 717 015 240 132 062 620 663 303 514 18 0.003 054 261 568 450 447 774 006 055 618 720 207 075 788 231 222 821 048 916 356 19 0.002 777 339 272 194 660 833 012 768 207 848 573 859 863 430 645 052 250 329 466 20 0.002 536 349 311 124 928 089 182 086 459 601 707 039 529 840 356 104 537 778 129 21 0.002 325 345 514 945 833 738 861 095 969 664 614 107 779 838 637 455 001 225 593 22 0.002 139 560 761 545 996 571 936 013 070 195 328 858 393 703 719 224 502 165 369 23 0.001 975 137 529 514 510 354 406 032 056 886 739 893 061 243 972 697 606 823 909 24 0.001 828 927 566 628 524 923 101 211 142 942 527 640 333 770 967 660 694 246 099 25 0.001 698 341 150 409 933 953 733 046 490 190 128 000 806 523 805 651 869 848 548 26 0.001 581 232 403 959 194 139 432 095 443 641 835 760 096 746 988 833 129 612 474 27 0.001 475 811 146 311 305 909 447 665 928 269 328 257 730 663 861 902 163 531 699 28 0.001 380 574 492 052 148 496 398 574 889 651 133 405 696 540 251 054 686 840 630 29 0.001 294 253 304 826 113 370 665 428 389 193 914 411 563 199 890 931 647 151 226 30 0.001 215 769 932 371 477 893 693 222 805 826 863 312 587 198 270 663 636 942 743 31 0.001 144 204 588 312 792 283 726 073 175 272 439 118 444 679 484 764 438 558 006 32 0.001 078 768 418 048 793 116 474 516 325 958 752 052 503 431 043 757 851 736 456 33 0.001 018 781 773 061 749 791 129 320 870 422 123 075 885 617 400 474 730 729 266
Table A4. Critical binding parameters μ c (au−1) for Yukawa potential, l=3
Table A4. Critical binding parameters μ c (au−1) for Yukawa potential, l=3
1 0.049 831 132 318 645 225 242 887 831 002 756 419 440 415 254 341 194 982 502 589 2 0.035 389 389 799 948 414 321 063 141 286 063 362 448 208 083 941 289 892 157 971 3 0.026 350 671 639 829 827 843 633 383 335 035 383 631 935 032 612 947 309 330 267 4 0.020 342 170 661 307 635 762 223 228 450 065 484 246 066 940 406 974 771 477 223 5 0.016 156 534 483 956 706 186 410 014 699 551 483 726 817 563 207 573 518 227 065 6 0.013 129 670 383 752 190 264 262 157 917 649 320 668 913 997 462 501 300 189 673 7 0.010 872 967 863 956 656 342 020 988 496 407 073 181 307 093 545 132 692 686 993 8 0.009 147 265 755 199 268 525 577 924 628 974 040 607 565 331 808 752 619 513 417 9 0.007 799 091 791 686 795 710 131 452 595 299 498 840 659 022 373 640 501 679 706 10 0.006 726 427 312 139 240 861 214 910 759 578 845 633 802 104 201 004 082 855 607 11 0.005 859 383 443 402 889 698 289 236 251 622 438 930 953 446 493 153 408 211 647 12 0.005 148 820 047 526 225 185 045 857 181 995 018 473 506 632 864 251 408 032 433 13 0.004 559 392 437 530 779 396 185 247 922 013 097 837 524 042 575 992 551 325 080 14 0.004 065 165 471 558 655 012 064 088 436 545 336 755 705 403 583 745 763 678 618 15 0.003 646 768 376 314 233 606 573 161 941 208 620 684 968 227 283 273 284 885 643 16 0.003 289 502 633 216 048 192 574 672 661 599 916 090 238 618 463 782 825 826 848 17 0.002 982 055 486 788 724 398 334 477 829 435 111 025 837 466 831 923 805 881 408 18 0.002 715 607 664 343 344 053 292 853 654 935 292 143 165 268 196 142 338 690 688 19 0.002 483 203 307 516 971 681 859 424 549 993 353 399 544 774 111 150 280 516 139 20 0.002 279 297 761 250 375 290 750 408 181 634 900 677 086 689 129 248 825 673 886 21 0.002 099 428 166 628 839 463 777 361 230 566 958 396 211 396 595 939 409 513 926 22 0.001 939 970 232 034 424 082 634 325 271 630 512 685 964 158 271 561 600 936 121 23 0.001 797 956 386 187 015 984 241 369 615 094 918 116 640 509 463 088 195 930 211 24 0.001 670 938 253 277 169 233 056 284 762 099 518 961 964 715 630 545 691 685 442 25 0.001 556 881 538 131 045 939 860 272 845 354 331 649 503 836 819 868 632 852 472 26 0.001 454 084 889 238 817 876 719 857 784 205 570 323 572 494 521 815 472 080 959 27 0.001 361 116 694 648 767 942 391 343 942 070 473 192 981 666 859 256 063 304 039 28 0.001 276 765 425 737 156 972 514 713 243 123 304 066 935 453 062 826 160 937 355 29 0.001 200 000 312 916 096 874 039 942 749 637 128 322 028 179 146 716 691 838 248 30 0.001 129 939 970 418 023 721 190 916 915 081 194 137 505 946 742 094 008 155 363 31 0.001 065 827 187 541 120 970 799 660 693 252 073 378 937 543 174 659 633 147 968 32 0.001 007 008 540 723 110 453 312 126 542 731 245 616 310 673 817 018 596 127 931
Table A5. Critical binding parameters μ c (au−1) for Yukawa potential, l=4
Table A5. Critical binding parameters μ c (au−1) for Yukawa potential, l=4
1 0.031 343 552 436 538 045 217 407 715 645 768 660 311 933 402 418 847 475 743 263 2 0.023 799 103 968 969 544 816 131 058 135 674 890 103 275 339 606 635 424 001 953 3 0.018 646 215 359 623 339 252 011 442 573 715 064 507 502 876 468 540 810 216 313 4 0.014 980 862 636 386 665 583 951 297 163 710 250 509 181 187 055 193 530 056 221 5 0.012 286 145 678 137 967 681 387 938 523 522 620 191 693 243 195 219 177 937 507 6 0.010 250 170 296 275 649 468 436 766 130 425 113 885 709 328 055 826 184 193 602 7 0.008 676 175 408 226 172 756 104 823 814 983 799 375 234 985 868 143 563 265 324 8 0.007 435 300 540 333 087 455 670 244 870 848 665 496 368 206 209 200 831 141 662 9 0.006 440 420 274 157 059 035 813 828 138 976 926 729 839 730 138 662 290 521 431 10 0.005 630 986 001 798 835 787 482 560 241 030 160 589 384 983 606 159 460 085 160 11 0.004 963 899 986 689 285 023 671 739 067 813 660 301 093 770 576 999 050 383 628 12 0.004 407 834 292 379 346 775 981 460 150 484 206 993 251 408 889 639 783 510 227 13 0.003 939 588 917 617 898 199 511 666 827 816 230 941 987 338 954 401 749 467 705 14 0.003 541 695 809 262 418 358 258 147 367 359 623 653 826 794 552 270 646 362 825 15 0.003 200 805 693 900 593 119 738 431 699 814 780 398 592 430 672 227 477 178 786 16 0.002 906 579 239 013 156 530 468 604 345 146 439 426 563 268 240 182 853 225 791 17 0.002 650 910 514 033 720 453 595 914 372 563 973 142 472 175 288 326 162 078 179 18 0.002 427 373 893 045 390 161 197 983 762 647 703 935 875 061 769 968 045 301 990 19 0.002 230 823 996 545 080 929 538 238 810 685 217 329 795 098 841 005 140 742 654 20 0.002 057 102 228 651 278 914 860 670 805 894 614 101 325 945 070 929 080 116 926 21 0.001 902 818 711 700 931 943 500 899 464 615 193 280 029 922 177 292 786 280 541 22 0.001 765 188 310 404 463 977 532 706 312 135 700 843 445 432 440 677 821 678 107 23 0.001 641 905 968 565 860 687 998 562 610 571 267 191 073 159 591 782 109 715 999 24 0.001 531 050 964 936 382 621 915 017 201 729 241 419 582 532 335 106 883 030 812 25 0.001 431 012 681 834 144 623 893 901 004 263 830 213 268 506 751 292 894 441 657 26 0.001 340 432 544 322 203 056 858 066 029 621 562 426 282 241 850 269 848 435 058 27 0.001 258 158 232 834 184 595 386 951 198 066 015 565 160 644 568 413 565 290 276 28 0.001 183 207 296 185 967 337 294 495 763 263 849 295 289 186 151 270 185 354 239 29 0.001 114 738 025 867 771 817 695 593 650 189 441 877 894 889 358 012 798 757 952 30 0.001 052 025 984 167 231 875 696 220 132 270 494 924 454 652 523 992 900 254 242
Table A6. Critical binding parameters μ c (au−1) for Yukawa potential, l=5
Table A6. Critical binding parameters μ c (au−1) for Yukawa potential, l=5
1 0.021 524 548 401 894 416 262 524 364 177 194 466 883 459 401 283 133 469 882 964 2 0.017 095 135 615 471 857 578 885 040 840 919 499 801 798 948 713 700 365 836 399 3 0.013 883 519 722 165 163 911 660 034 621 283 169 354 094 048 610 278 678 681 690 4 0.011 485 753 776 518 393 844 790 229 238 468 285 898 336 202 595 467 314 010 449 5 0.009 651 169 953 126 909 789 885 247 571 489 616 892 028 780 410 282 245 333 635 6 0.008 217 950 625 200 664 573 659 593 141 928 815 118 771 500 759 643 948 700 606 7 0.007 078 067 894 672 385 758 249 398 468 330 578 213 541 539 077 331 769 492 458 8 0.006 157 289 717 717 264 083 983 436 752 308 686 701 235 871 906 210 149 887 915 9 0.005 403 310 239 195 924 377 948 458 162 320 486 561 340 754 020 756 555 114 501 10 0.004 778 452 977 369 578 427 843 543 209 776 905 086 275 950 283 958 298 715 241 11 0.004 255 045 931 632 468 597 930 204 878 918 933 581 370 096 914 792 533 797 334 12 0.003 812 410 019 081 560 541 376 616 973 747 959 789 581 467 145 671 212 298 198 13 0.003 434 850 400 625 823 596 884 068 924 773 710 870 715 305 834 701 631 222 466 14 0.003 110 287 613 363 367 249 668 363 724 596 225 397 863 864 119 980 324 260 224 15 0.002 829 306 488 249 314 222 267 699 555 230 084 518 224 153 198 314 635 148 236 16 0.002 584 483 667 168 114 591 408 090 672 988 871 186 707 634 914 066 011 347 108 17 0.002 369 904 476 527 537 655 587 306 026 469 561 773 643 203 596 593 552 724 741 18 0.002 180 810 754 362 922 030 335 467 276 039 768 274 768 400 860 354 828 146 860 19 0.002 013 340 690 275 879 305 713 698 173 754 484 542 071 162 966 539 039 961 279 20 0.001 864 334 266 333 522 836 843 629 739 326 951 840 936 945 440 294 940 645 613 21 0.001 731 186 100 864 983 916 478 409 186 550 342 529 460 006 215 731 338 455 608 22 0.001 611 732 973 217 795 354 972 561 069 801 488 155 896 597 061 731 706 907 160 23 0.001 504 167 015 542 677 685 663 134 156 682 101 083 471 501 251 179 337 945 783 24 0.001 406 968 104 807 650 291 938 986 799 094 882 623 110 873 166 541 491 209 999 25 0.001 318 850 761 471 931 366 935 521 687 288 262 886 399 263 684 656 422 046 673 26 0.001 238 722 111 175 958 741 106 528 387 527 442 548 124 584 930 089 359 351 818 27 0.001 165 648 357 161 920 355 078 830 465 363 854 866 268 059 076 312 224 660 822 28 0.001 098 827 853 746 689 400 098 131 476 345 162 889 793 445 839 640 324 245 726 29 0.001 037 569 339 197 314 004 070 695 060 671 416 900 743 803 965 226 039 302 431
Table A7. Critical binding parameters μ c (au−1) for Yukawa potential, l=6
Table A7. Critical binding parameters μ c (au−1) for Yukawa potential, l=6
1 0.015 691 083 667 701 475 990 456 075 684 746 765 747 489 404 601 734 787 901 617 2 0.012 871 464 312 728 093 468 171 295 596 442 391 982 070 946 861 585 607 789 714 3 0.010 736 147 820 911 701 644 601 236 426 176 375 751 136 815 181 112 002 957 379 4 0.009 082 952 537 639 986 592 173 519 469 425 260 061 210 063 874 681 677 853 359 5 0.007 778 558 385 748 099 860 568 617 229 592 920 963 732 773 442 984 439 165 276 6 0.006 732 353 063 648 933 088 218 291 811 417 569 808 795 221 292 410 943 256 321 7 0.005 881 113 049 997 633 587 222 379 272 302 724 611 627 362 644 607 029 731 117 8 0.005 179 699 336 067 246 152 066 822 873 198 613 720 324 719 998 403 885 533 717 9 0.004 595 224 082 090 593 670 655 069 129 500 111 771 590 454 663 000 802 115 566 10 0.004 103 289 551 746 336 045 236 479 761 089 145 821 626 326 391 572 275 271 006 11 0.003 685 502 078 183 432 613 848 026 724 480 319 397 226 799 715 082 004 232 711 12 0.003 327 791 850 616 851 030 946 771 392 307 570 073 403 204 865 250 588 835 334 13 0.003 019 254 370 704 045 405 100 107 894 847 934 365 216 826 600 425 717 922 485 14 0.002 751 337 025 318 293 645 611 605 483 383 159 272 492 518 694 612 383 642 882 15 0.002 517 258 503 219 957 472 361 646 990 312 717 964 172 347 734 977 582 491 226 16 0.002 311 588 141 227 367 805 687 371 801 852 145 599 005 234 191 687 550 509 396 17 0.002 129 936 928 410 114 323 618 093 925 413 704 598 706 333 879 689 458 989 013 18 0.001 968 727 644 463 920 474 961 017 078 205 818 210 063 787 578 277 629 413 853 19 0.001 825 021 861 825 776 108 217 755 748 210 604 827 336 228 789 316 702 443 580 20 0.001 696 388 333 153 405 088 760 399 813 924 033 723 010 018 874 919 369 208 788 21 0.001 580 801 857 137 708 186 019 817 847 203 073 940 253 520 802 461 123 550 281 22 0.001 476 564 837 985 978 917 946 554 967 291 369 576 368 378 027 928 163 740 730 23 0.001 382 245 915 970 997 146 866 276 768 844 677 041 367 786 669 679 381 308 544 24 0.001 296 631 562 737 812 939 991 713 168 852 874 674 022 478 107 014 205 935 236 25 0.001 218 687 611 196 305 109 054 563 454 085 246 030 565 701 681 447 409 186 200 26 0.001 147 528 462 123 847 933 901 358 975 320 835 668 992 662 965 501 945 912 553 27 0.001 082 392 269 659 998 708 355 882 407 289 444 738 037 739 985 958 892 019 706 28 0.001 022 620 818 021 923 148 802 760 553 537 832 576 361 364 590 294 753 906 219
Table A8. Critical binding parameters μ c (au−1) for Yukawa potential, l=7
Table A8. Critical binding parameters μ c (au−1) for Yukawa potential, l=7
1 0.011 944 531 306 208 677 525 206 755 417 428 052 609 604 230 955 715 860 040 182 2 0.010 039 758 846 369 438 096 516 015 494 947 267 187 183 302 585 495 974 384 002 3 0.008 548 707 757 897 152 348 756 881 521 307 298 365 141 920 595 361 534 141 093 4 0.007 361 194 112 631 079 076 347 189 566 228 968 718 840 491 876 599 791 123 747 5 0.006 401 071 548 888 573 906 330 788 559 918 396 686 014 424 537 717 086 018 226 6 0.005 614 442 239 208 413 159 709 270 561 099 207 434 217 271 667 245 719 361 398 7 0.004 962 343 085 609 065 409 656 260 924 390 065 448 038 125 229 781 172 440 915 8 0.004 416 074 969 810 907 970 526 810 303 391 857 539 024 529 062 176 258 296 404 9 0.003 954 142 236 476 666 278 910 079 407 729 959 324 487 961 737 574 895 102 379 10 0.003 560 200 686 378 626 401 516 941 411 662 448 040 775 307 248 261 227 861 611 11 0.003 221 653 053 543 648 048 330 227 390 599 074 874 493 085 016 890 365 522 492 12 0.002 928 669 560 826 826 632 022 464 633 536 633 113 740 169 635 337 708 252 136 13 0.002 673 493 239 101 928 947 187 252 838 587 510 787 004 031 230 656 008 188 266 14 0.002 449 939 550 974 127 343 712 029 795 611 406 158 755 376 656 118 303 407 692 15 0.002 253 030 840 615 853 724 080 841 480 624 583 265 634 794 356 498 716 826 658 16 0.002 078 725 790 036 004 285 545 341 425 663 415 987 616 421 329 332 653 921 718 17 0.001 923 716 778 004 823 219 501 204 934 975 253 444 581 424 321 461 687 395 113 18 0.001 785 276 409 311 969 253 523 874 710 291 995 241 563 215 851 679 803 189 196 19 0.001 661 140 083 797 948 053 942 338 662 309 362 734 028 635 253 433 789 636 994 20 0.001 549 415 279 942 150 535 491 443 715 032 469 653 715 616 223 506 549 922 763 21 0.001 448 510 849 228 748 610 672 403 975 814 168 547 968 894 458 655 795 618 476 22 0.001 357 081 447 051 376 572 600 916 108 003 374 093 039 601 210 173 054 157 875 23 0.001 273 983 518 393 097 469 888 128 550 702 987 930 710 495 597 365 791 767 027 24 0.001 198 240 180 023 735 532 641 905 984 169 525 657 320 986 228 295 521 609 803 25 0.001 129 013 007 892 089 769 639 940 394 720 602 695 449 573 396 633 295 040 416 26 0.001 065 579 224 880 297 293 717 724 330 859 592 767 107 420 065 434 649 352 879 27 0.001 007 313 142 309 918 256 032 572 433 927 596 105 623 097 654 112 398 700 745
Table A9. Critical binding parameters μ c (au−1) for Yukawa potential, l=8
Table A9. Critical binding parameters μ c (au−1) for Yukawa potential, l=8
1 0.009 395 999 944 229 339 224 815 371 489 123 824 712 215 843 650 316 625 130 244 2 0.008 049 285 481 393 441 050 500 660 525 463 100 634 466 948 144 655 517 910 648 3 0.006 967 264 013 476 505 425 449 438 946 407 037 148 883 838 085 007 261 904 163 4 0.006 085 772 583 749 423 361 272 611 700 121 963 362 172 146 752 876 144 553 184 5 0.005 358 781 236 870 528 025 460 544 297 654 352 970 530 603 818 532 219 437 391 6 0.004 752 621 421 098 130 620 937 910 939 291 194 739 799 584 668 562 273 825 350 7 0.004 242 235 989 927 510 214 102 154 530 580 597 235 704 086 069 104 401 144 291 8 0.003 808 684 339 665 585 421 450 136 488 296 669 151 460 742 674 011 023 949 979 9 0.003 437 446 921 667 810 978 303 849 796 049 184 340 223 403 020 784 351 850 864 10 0.003 117 250 673 470 559 321 166 620 133 363 148 522 971 744 384 529 999 081 439 11 0.002 839 241 029 266 540 366 976 566 687 501 186 397 990 873 253 895 163 580 477 12 0.002 596 388 909 385 139 460 522 562 741 643 575 196 493 755 508 838 846 570 581 13 0.002 383 059 792 373 246 991 808 379 169 974 571 587 162 713 868 441 954 167 395 14 0.002 194 696 366 688 727 005 811 608 852 847 655 345 872 077 026 966 345 944 397 15 0.002 027 581 937 730 602 223 393 643 875 562 163 746 797 494 732 235 832 640 138 16 0.001 878 662 026 735 100 877 672 503 927 528 050 906 933 266 324 919 320 652 769 17 0.001 745 408 425 832 184 791 816 039 974 331 338 940 035 372 523 187 463 508 951 18 0.001 625 714 587 396 416 809 816 203 671 981 577 502 363 441 291 716 755 009 001 19 0.001 517 814 388 480 072 200 287 303 267 420 209 018 734 055 904 790 778 797 621 20 0.001 420 218 508 039 996 436 384 775 023 848 474 505 640 549 725 946 419 254 696 21 0.001 331 664 199 796 881 950 754 282 080 125 489 496 276 176 823 823 541 562 576 22 0.001 251 075 342 949 062 842 287 357 819 664 283 079 076 819 538 487 080 221 241 23 0.001 177 530 443 737 066 820 482 105 959 713 463 241 507 224 195 141 982 794 786 24 0.001 110 236 835 481 654 047 770 413 565 249 806 313 533 862 964 274 264 136 476 25 0.001 048 509 746 303 775 426 833 603 164 228 069 279 659 304 134 232 835 893 659
Table A10. Critical binding parameters μ c (au−1) for Yukawa potential, l=9
Table A10. Critical binding parameters μ c (au−1) for Yukawa potential, l=9
1 0.007 584 125 249 138 792 121 527 487 152 454 852 279 440 449 565 965 407 365 864 2 0.006 597 033 115 693 489 589 576 186 666 737 207 490 058 388 854 264 489 194 153 3 0.005 787 097 483 586 137 309 150 239 140 474 623 612 101 072 431 857 959 285 062 4 0.005 114 915 383 089 152 569 411 366 503 823 719 978 986 773 215 435 075 916 108 5 0.004 551 345 045 024 666 356 146 479 397 854 217 749 562 966 604 818 410 081 072 6 0.004 074 484 792 696 218 118 207 090 923 945 036 186 651 097 862 084 919 298 511 7 0.003 667 634 139 663 550 231 875 797 474 914 462 753 762 662 661 033 913 808 353 8 0.003 317 890 360 839 953 391 665 231 693 330 641 138 063 648 833 734 990 010 786 9 0.003 015 165 049 871 463 972 868 976 201 676 521 954 139 610 572 813 731 087 091 10 0.002 751 483 666 477 167 081 012 037 922 610 102 748 150 103 629 210 996 860 498 11 0.002 520 479 159 086 602 758 130 781 318 843 423 622 300 252 401 860 231 755 898 12 0.002 317 020 853 798 832 359 639 175 843 441 263 523 853 816 061 465 220 269 225 13 0.002 136 939 032 618 266 990 443 240 663 904 733 669 736 508 234 912 775 623 435 14 0.001 976 818 137 944 311 024 062 104 873 478 567 108 853 364 619 633 632 697 818 15 0.001 833 839 822 524 118 146 365 491 076 209 288 347 043 354 930 675 250 806 235 16 0.001 705 662 632 356 885 680 202 940 163 989 458 738 865 469 888 345 193 135 395 17 0.001 590 328 908 643 110 123 165 403 483 454 423 895 752 096 009 584 787 644 726 18 0.001 486 192 121 598 028 510 217 098 931 204 294 608 015 322 874 629 178 125 987 19 0.001 391 859 688 429 412 177 734 072 906 222 096 429 381 878 883 632 864 126 340 20 0.001 306 147 631 267 882 288 522 129 212 862 117 285 228 997 907 180 792 583 763 21 0.001 228 044 364 791 101 738 553 663 019 129 105 530 121 137 841 039 958 133 724 22 0.001 156 681 579 450 838 113 489 757 346 957 050 653 972 688 399 630 301 874 676 23 0.001 091 310 680 552 144 671 866 704 234 379 398 769 277 708 362 049 267 266 189 24 0.001 031 283 608 182 991 869 223 668 871 688 899 991 596 326 673 357 185 734 088
Table A11. Critical binding parameters μ c (au−1) for Yukawa potential, l=10
Table A11. Critical binding parameters μ c (au−1) for Yukawa potential, l=10
1 0.006 250 052 998 160 550 125 094 547 331 185 307 026 223 602 413 300 224 717 538 2 0.005 505 090 666 622 390 257 931 928 915 029 232 150 879 294 763 424 200 666 430 3 0.004 883 139 839 015 814 308 457 481 923 223 741 406 185 006 551 319 732 178 311 4 0.004 358 925 188 061 638 748 304 535 008 183 463 349 164 733 201 486 765 212 139 5 0.003 913 274 064 716 964 419 566 621 726 413 066 366 721 016 362 532 401 925 762 6 0.003 531 445 167 692 476 806 594 273 791 351 848 104 071 095 938 580 735 069 509 7 0.003 201 964 158 709 195 528 838 567 563 625 568 241 184 506 447 146 688 177 016 8 0.002 915 798 808 338 067 174 722 260 041 665 089 709 771 515 621 808 367 096 203 9 0.002 665 765 687 651 831 691 673 248 255 376 329 561 516 056 570 398 776 654 620 10 0.002 446 097 396 502 023 109 081 680 542 793 209 543 769 716 310 377 318 571 022 11 0.002 252 122 799 661 950 378 810 218 327 732 010 589 534 872 916 259 167 597 093 12 0.002 080 027 935 581 741 293 797 178 318 990 997 831 956 580 335 559 723 838 717 13 0.001 926 675 265 543 951 436 445 441 237 643 038 677 012 304 705 585 184 596 567 14 0.001 789 465 623 093 761 037 199 198 826 421 934 858 795 110 656 177 748 442 220 15 0.001 666 231 767 642 459 371 183 103 740 713 966 282 565 696 647 712 143 606 418 16 0.001 555 155 574 506 382 979 417 617 513 962 712 413 735 429 506 567 895 462 566 17 0.001 454 703 075 289 709 945 315 612 269 299 830 789 189 603 411 122 501 528 062 18 0.001 363 573 102 357 857 456 021 499 221 212 064 950 823 589 408 729 730 704 013 19 0.001 280 656 390 299 498 290 561 929 733 985 272 365 034 456 471 001 163 952 598 20 0.001 205 002 780 195 834 880 951 875 243 835 305 580 963 380 844 300 845 946 938 21 0.001 135 794 750 235 436 376 063 502 618 169 908 098 781 490 633 866 326 245 422 22 0.001 072 325 921 095 456 495 141 294 414 506 459 610 184 786 102 929 493 891 706 23 0.001 013 983 499 760 005 051 801 319 898 014 119 047 645 987 529 432 071 111 159
Table A12. Critical binding parameters μ c (au−1) for Yukawa potential, l=11
Table A12. Critical binding parameters μ c (au−1) for Yukawa potential, l=11
1 0.005 239 411 361 174 170 081 811 642 525 798 338 434 184 323 360 747 063 821 342 2 0.004 663 418 808 054 505 064 777 756 023 350 704 749 086 313 198 613 515 461 215 3 0.004 175 494 195 710 189 388 646 348 773 341 854 194 591 416 714 401 644 612 676 4 0.003 758 823 657 939 642 725 796 629 224 219 665 899 039 832 708 046 070 480 416 5 0.003 400 377 273 927 100 382 220 875 245 437 599 207 644 013 766 771 991 942 529 6 0.003 089 940 413 523 433 763 303 415 351 859 962 261 736 846 628 086 158 039 911 7 0.002 819 420 424 860 304 881 143 589 968 050 760 396 588 104 490 673 213 423 324 8 0.002 582 343 247 597 222 487 659 930 015 036 334 676 495 071 271 510 165 515 597 9 0.002 373 483 081 135 099 444 420 533 486 732 696 246 810 983 935 695 033 539 708 10 0.002 188 586 608 523 370 563 258 465 736 790 900 018 649 990 507 576 163 779 733 11 0.002 024 165 310 572 309 026 832 090 598 381 126 152 340 398 996 370 871 184 092 12 0.001 877 337 416 776 480 284 749 316 014 984 579 227 717 895 792 179 613 151 799 13 0.001 745 706 455 380 135 287 769 879 363 775 733 608 347 223 833 323 004 743 207 14 0.001 627 267 077 455 873 029 369 664 278 210 059 631 972 699 831 783 208 143 815 15 0.001 520 331 408 409 830 608 148 634 179 287 904 846 021 629 537 437 965 298 966 16 0.001 423 470 993 297 035 474 396 228 895 659 580 346 878 747 206 307 212 185 279 17 0.001 335 470 691 712 295 579 246 271 754 490 888 779 160 936 171 379 115 471 385 18 0.001 255 291 804 934 371 620 708 403 457 293 944 929 038 066 364 081 095 788 152 19 0.001 182 042 391 104 597 365 234 314 072 772 552 754 900 524 044 570 237 113 716 20 0.001 114 953 217 684 404 793 200 122 509 580 984 266 790 797 123 625 316 362 059 21 0.001 053 358 165 461 903 513 001 802 591 727 233 416 666 030 083 049 039 047 787
Table A13. Critical binding parameters μ c (au−1) for Yukawa potential, l=12
Table A13. Critical binding parameters μ c (au−1) for Yukawa potential, l=12
1 0.004 455 496 943 517 601 349 637 757 200 655 865 471 210 302 965 746 458 502 488 2 0.004 000 991 659 868 884 042 758 891 819 418 723 655 074 994 360 337 013 430 632 3 0.003 611 187 503 012 747 107 464 005 455 091 044 002 293 000 630 169 903 968 748 4 0.003 274 548 952 167 286 671 245 573 373 206 403 639 380 072 169 314 370 319 396 5 0.002 981 971 390 374 176 333 663 370 512 581 208 824 578 680 930 043 936 734 122 6 0.002 726 196 961 486 426 297 862 730 271 834 393 118 179 774 715 942 563 311 452 7 0.002 501 386 647 180 406 110 992 685 448 347 513 848 184 045 811 102 956 430 740 8 0.002 302 802 872 988 051 892 688 104 659 260 797 700 699 387 048 090 457 787 701 9 0.002 126 571 376 904 221 528 946 340 563 514 773 716 825 756 566 124 216 334 762 10 0.001 969 500 633 142 702 853 165 303 323 600 382 616 487 040 634 731 999 128 919 11 0.001 828 943 556 483 328 912 432 104 255 179 400 468 422 887 758 429 525 719 054 12 0.001 702 690 604 064 645 781 328 642 634 869 629 100 666 720 268 976 582 130 325 13 0.001 588 886 429 473 350 206 814 125 910 746 564 081 157 970 426 653 455 091 152 14 0.001 485 964 371 980 893 127 846 975 076 087 827 813 390 488 297 035 329 906 217 15 0.001 392 594 571 809 471 402 891 335 403 121 942 621 376 044 910 344 452 452 245 16 0.001 307 642 582 723 996 660 131 596 117 302 362 479 943 283 186 631 047 398 607 17 0.001 230 136 135 279 599 015 464 807 313 968 791 276 751 799 700 503 862 566 415 18 0.001 159 238 275 603 447 579 471 208 864 180 256 842 070 016 871 482 750 194 748 19 0.001 094 225 526 128 117 404 893 168 875 255 081 188 411 224 109 305 914 987 304 20 0.001 034 470 028 279 627 329 962 237 713 421 281 366 111 084 588 068 357 915 621
Table A14. Critical binding parameters μ c (au−1) for Yukawa potential, l=13
Table A14. Critical binding parameters μ c (au−1) for Yukawa potential, l=13
1 0.003 835 226 174 264 515 033 267 849 139 548 287 740 281 097 991 587 591 226 740 2 0.003 470 302 462 489 204 945 585 539 068 407 823 790 916 903 490 978 804 345 634 3 0.003 153 976 114 291 042 717 949 854 207 701 177 670 939 753 177 640 424 453 760 4 0.002 878 120 447 734 598 850 866 488 018 620 901 917 298 030 406 411 265 287 464 5 0.002 636 218 878 011 081 549 066 871 387 046 140 374 529 638 794 175 132 238 239 6 0.002 423 000 366 333 179 840 743 214 676 013 223 739 391 849 645 981 842 616 459 7 0.002 234 166 914 669 194 049 927 416 936 326 038 110 710 100 744 564 283 851 169 8 0.002 066 187 641 759 626 973 239 462 375 541 590 714 182 010 563 790 559 076 866 9 0.001 916 141 593 138 516 856 733 231 031 572 576 206 639 750 887 234 608 026 107 10 0.001 781 596 616 649 485 140 899 488 562 126 511 444 343 183 928 620 385 139 636 11 0.001 660 515 203 807 703 594 660 574 302 292 474 292 358 054 137 268 499 771 481 12 0.001 551 180 688 047 140 566 569 070 536 919 700 656 439 109 175 813 607 456 975 13 0.001 452 138 949 798 487 527 596 656 250 417 300 764 817 038 699 785 240 162 118 14 0.001 362 152 034 313 485 848 794 932 175 962 870 778 149 149 187 021 963 445 995 15 0.001 280 160 994 380 952 933 558 947 795 206 565 362 660 254 727 130 441 015 133 16 0.001 205 255 930 398 127 368 975 756 683 479 312 747 218 735 343 586 025 357 311 17 0.001 136 651 685 864 041 050 426 838 804 513 171 225 101 599 074 317 879 279 107 18 0.001 073 668 016 607 772 073 028 222 715 035 470 611 251 581 121 416 952 656 863 19 0.001 015 713 321 529 109 825 025 447 961 433 846 096 808 903 604 890 636 451 046
Table A15. Critical binding parameters μ c (au−1) for Yukawa potential, l=14
Table A15. Critical binding parameters μ c (au−1) for Yukawa potential, l=14
1 0.003 336 024 121 729 805 956 918 763 618 364 004 188 577 896 128 767 031 971 880 2 0.003 038 600 957 641 413 959 575 804 305 569 796 033 719 065 827 325 773 068 864 3 0.002 778 385 371 486 867 445 221 410 117 527 901 108 132 872 033 742 877 098 913 4 0.002 549 518 962 783 644 062 156 863 546 886 975 455 084 783 051 164 998 409 663 5 0.002 347 238 493 289 466 865 949 143 696 459 062 178 276 945 890 571 007 448 224 6 0.002 167 641 471 603 124 816 104 479 027 127 610 478 269 524 999 968 252 047 474 7 0.002 007 507 792 443 196 338 514 697 714 518 684 296 578 713 269 975 429 788 116 8 0.001 864 162 719 392 691 280 155 587 151 520 803 244 206 536 104 791 397 800 256 9 0.001 735 370 681 029 733 752 162 145 098 968 289 075 457 118 112 598 869 529 709 10 0.001 619 252 257 890 261 787 502 903 290 276 890 326 623 969 267 602 257 070 901 11 0.001 514 218 783 983 000 724 063 540 961 231 996 106 570 353 900 448 882 406 734 12 0.001 418 920 443 003 632 684 725 873 879 137 726 291 885 072 291 858 315 332 799 13 0.001 332 204 787 009 072 738 591 807 672 901 417 028 465 606 650 504 366 793 229 14 0.001 253 083 366 394 357 291 072 370 125 176 773 360 101 411 265 649 824 709 677 15 0.001 180 704 718 138 835 475 012 457 960 198 899 044 406 723 602 985 342 266 794 16 0.001 114 332 372 215 182 774 967 043 380 193 250 306 697 755 812 706 968 937 716 17 0.001 053 326 844 124 648 437 335 449 165 330 083 288 563 096 951 317 838 179 554
Table A16. Critical binding parameters μ c (au−1) for Yukawa potential, l=15
Table A16. Critical binding parameters μ c (au−1) for Yukawa potential, l=15
1 0.002 928 313 521 690 063 775 178 776 079 353 356 453 724 725 986 585 221 040 381 2 0.002 682 716 051 955 355 629 610 886 662 206 352 269 656 433 593 079 157 623 365 3 0.002 466 086 847 984 669 778 248 235 516 458 127 809 383 316 532 599 418 463 238 4 0.002 274 116 676 276 297 038 694 673 908 198 245 041 642 044 405 740 018 354 029 5 0.002 103 258 808 569 315 934 612 160 071 587 004 277 448 945 371 871 269 983 256 6 0.001 950 574 266 548 647 004 604 820 785 481 937 962 417 190 881 211 611 967 836 7 0.001 813 612 211 653 184 498 602 404 933 849 530 841 118 127 027 613 990 764 846 8 0.001 690 316 707 004 217 820 056 986 780 235 656 946 103 781 124 123 156 416 802 9 0.001 578 953 453 396 412 720 944 889 184 586 206 978 121 468 011 504 502 490 564 10 0.001 478 051 786 259 914 503 603 107 545 220 643 456 169 886 960 217 082 544 152 11 0.001 386 358 428 830 161 449 583 559 567 029 929 135 579 245 697 745 276 093 784 12 0.001 302 800 372 059 126 246 170 510 608 003 738 237 111 544 443 455 431 242 517 13 0.001 226 454 891 906 965 500 903 276 548 213 646 801 146 153 678 408 195 005 443 14 0.001 156 525 186 978 848 624 895 555 859 734 854 862 280 105 774 165 401 622 138 15 0.001 092 320 470 962 647 429 470 490 846 153 871 628 737 549 899 934 378 017 173 16 0.001 033 239 618 000 765 628 065 651 843 502 415 059 432 911 813 203 161 748 424
Table A17. Critical binding parameters μ c (au−1) for Yukawa potential, l=16
Table A17. Critical binding parameters μ c (au−1) for Yukawa potential, l=16
1 0.002 591 027 910 214 871 070 625 042 516 821 801 391 952 087 717 496 884 658 561 2 0.002 385 880 178 181 694 995 598 146 680 365 351 513 906 485 719 172 864 903 217 3 0.002 203 621 420 843 433 177 368 808 770 283 768 330 760 753 615 836 115 133 035 4 0.002 041 024 944 882 576 024 385 601 586 913 763 192 233 925 579 170 094 456 800 5 0.001 895 406 037 180 615 077 534 751 461 975 248 341 078 203 558 426 711 723 652 6 0.001 764 517 385 706 657 126 442 908 688 929 664 159 518 035 071 184 714 805 369 7 0.001 646 467 113 152 885 078 527 020 445 468 933 934 998 273 549 798 026 973 727 8 0.001 539 654 041 671 617 090 370 974 014 336 900 234 171 218 047 454 419 530 702 9 0.001 442 716 197 827 149 212 113 163 921 266 118 394 176 239 412 584 270 210 298 10 0.001 354 489 571 461 081 813 102 150 949 066 090 175 267 914 454 531 992 486 067 11 0.001 273 974 874 828 760 757 502 820 249 436 414 572 180 276 919 800 969 360 863 12 0.001 200 310 587 579 380 044 186 713 734 312 327 887 417 177 637 892 651 889 033 13 0.001 132 750 973 420 842 475 602 438 413 132 435 920 066 789 771 018 801 907 321 14 0.001 070 648 053 862 317 134 663 180 060 232 472 060 719 462 037 193 361 390 090 15 0.001 013 436 750 339 900 880 995 987 806 171 969 681 623 170 499 534 697 934 543
Table A18. Critical binding parameters μ c (au−1) for Yukawa potential, l=17
Table A18. Critical binding parameters μ c (au−1) for Yukawa potential, l=17
1 0.002 308 833 222 819 251 305 393 823 458 478 520 412 738 118 434 683 615 356 495 2 0.002 135 717 343 983 354 159 268 680 237 108 460 381 556 393 113 449 530 811 179 3 0.001 980 925 766 084 668 600 031 353 933 963 489 446 763 952 374 477 196 269 075 4 0.001 842 003 769 572 564 369 779 671 735 944 871 780 562 890 724 271 672 246 597 5 0.001 716 889 033 898 471 921 650 512 446 077 803 400 060 195 097 028 852 852 498 6 0.001 603 839 476 804 630 299 879 620 071 795 149 748 435 675 871 056 817 837 230 7 0.001 501 375 983 520 056 025 591 051 605 214 880 848 652 060 635 872 157 718 699 8 0.001 408 236 639 971 366 472 134 146 230 261 841 958 290 253 105 088 624 838 458 9 0.001 323 339 921 134 082 814 911 830 860 634 712 843 620 326 811 858 111 759 176 10 0.001 245 754 900 097 509 247 517 112 174 144 328 487 953 376 926 426 731 630 042 11 0.001 174 676 998 415 608 161 074 980 197 588 318 007 373 487 207 612 780 987 687 12 0.001 109 408 138 028 501 672 998 169 009 518 614 105 548 240 218 211 658 298 502 13 0.001 049 340 410 662 235 302 905 866 437 581 598 356 920 764 543 549 490 843 477
Table A19. Critical binding parameters μ c (au−1) for Yukawa potential, l=18
Table A19. Critical binding parameters μ c (au−1) for Yukawa potential, l=18
1 0.002 070 352 844 679 897 614 495 441 669 136 892 931 398 468 609 960 641 853 274 2 0.001 922 931 852 759 094 572 122 737 689 935 592 122 263 198 421 706 279 433 545 3 0.001 790 353 932 832 950 673 795 976 717 716 089 407 901 662 026 777 056 789 307 4 0.001 670 724 929 796 019 945 359 780 980 425 894 368 443 162 203 757 990 583 833 5 0.001 562 439 526 454 969 032 963 454 611 679 019 750 898 250 485 659 529 910 467 6 0.001 464 130 510 016 686 332 072 337 568 012 760 170 969 023 460 851 522 707 787 7 0.001 374 628 049 506 160 772 569 763 701 379 100 893 663 008 242 081 398 232 787 8 0.001 292 926 804 729 776 999 401 559 486 542 685 595 281 072 835 719 699 846 180 9 0.001 218 159 203 740 478 951 038 795 448 596 084 445 808 664 738 397 142 238 330 10 0.001 149 573 610 383 056 133 553 135 113 784 158 917 837 424 136 818 840 162 853 11 0.001 086 516 392 272 896 290 349 807 564 942 162 531 889 116 605 486 236 316 965 12 0.001 028 417 118 005 185 830 611 777 856 294 072 034 096 468 291 969 115 216 280
Table A20. Critical binding parameters μ c (au−1) for Yukawa potential, l=19
Table A20. Critical binding parameters μ c (au−1) for Yukawa potential, l=19
1 0.001 867 002 301 807 143 147 367 477 477 175 839 127 059 813 897 511 474 826 454 2 0.001 740 432 085 714 494 766 618 749 910 344 181 368 717 341 095 412 673 593 907 3 0.001 626 012 652 566 334 066 945 568 353 921 336 292 824 883 904 764 058 563 939 4 0.001 522 263 571 120 434 435 122 982 839 227 962 511 169 813 271 724 573 691 566 5 0.001 427 920 214 894 725 198 896 519 639 304 917 090 752 264 736 128 772 946 204 6 0.001 341 897 484 241 425 923 224 047 443 920 693 635 227 789 760 609 768 153 593 7 0.001 263 260 387 071 954 520 950 575 705 920 612 356 955 695 952 653 482 257 935 8 0.001 191 200 046 163 457 354 029 723 387 689 329 409 204 757 633 429 524 534 075 9 0.001 125 014 026 707 656 558 506 083 741 900 672 030 646 948 638 932 626 656 671 10 0.001 064 090 123 644 600 827 231 234 340 636 881 975 122 160 199 411 677 219 969 11 0.001 007 892 935 272 570 139 329 408 980 714 769 959 701 898 931 372 777 388 281
Table A21. Critical binding parameters μ c (au−1) for Yukawa potential, l=20
Table A21. Critical binding parameters μ c (au−1) for Yukawa potential, l=20
1 0.001 692 205 505 855 946 304 800 054 144 464 956 352 161 730 464 131 127 903 368 2 0.001 582 731 867 386 316 112 478 910 396 305 038 907 858 874 002 536 245 066 974 3 0.001 483 300 477 159 519 142 548 717 572 457 230 921 615 285 826 781 361 004 702 4 0.001 392 740 768 833 757 926 733 056 359 754 201 725 588 191 350 359 843 775 041 5 0.001 310 045 611 120 833 511 083 142 693 031 038 823 413 917 694 890 419 001 051 6 0.001 234 344 964 670 920 319 656 163 401 600 728 820 574 128 224 096 630 292 019 7 0.001 164 884 319 100 886 140 579 087 794 814 772 305 293 486 867 485 166 674 060 8 0.001 101 006 951 302 174 403 967 410 491 462 692 480 063 832 713 055 964 672 680 9 0.001 042 139 255 881 033 275 848 251 861 680 954 126 427 918 280 134 416 603 927

Appendix A.2. Exponential Cosine Screened Coulomb (ECSC) Potential μ c vs l for D=1/μ≤1000 au

Table A22. Critical binding parameters μ c (au−1) for ECSC potential, l=0
Table A22. Critical binding parameters μ c (au−1) for ECSC potential, l=0
1 0.720 524 085 881 953 095 871 917 136 918 578 087 183 481 757 107 097 035 500 102 2 0.166 617 599 995 556 539 731 598 280 947 442 350 321 823 717 112 428 036 976 749 3 0.072 436 991 196 399 382 410 616 183 437 020 010 582 340 111 221 679 442 539 474 4 0.040 427 221 157 774 623 711 569 333 221 315 103 793 817 401 687 739 383 934 111 5 0.025 787 301 102 820 745 520 704 458 261 109 335 771 504 558 091 797 255 040 648 6 0.017 878 285 415 402 881 402 256 914 633 797 271 902 658 538 868 493 306 743 693 7 0.013 122 872 755 839 147 382 548 346 950 692 787 697 254 237 221 504 031 954 820 8 0.010 041 421 218 113 844 638 910 790 952 481 122 462 906 622 005 664 195 968 541 9 0.007 930 924 973 987 263 445 857 856 216 689 003 392 968 900 834 472 246 789 134 10 0.006 422 322 284 191 135 912 404 066 577 715 848 787 203 071 762 741 856 571 797 11 0.005 306 661 160 443 474 353 548 132 017 193 328 783 724 776 687 572 007 740 000 12 0.004 458 408 166 049 461 735 737 050 860 933 554 574 147 499 880 984 550 362 260 13 0.003 798 444 345 396 882 716 950 511 753 513 245 998 300 649 916 614 059 199 498 14 0.003 274 892 232 463 425 565 932 301 184 318 633 833 472 375 874 003 836 450 050 15 0.002 852 586 963 704 240 723 272 646 587 552 628 651 478 131 085 238 514 229 834 16 0.002 732 746 158 566 434 829 602 775 911 304 860 604 390 892 212 564 667 486 379 17 0.002 507 007 181 691 831 480 583 835 569 084 873 986 148 629 710 533 854 672 386 18 0.002 220 630 554 441 271 915 747 015 516 080 658 058 971 621 873 272 912 800 797 19 0.001 980 666 003 343 410 153 519 574 212 315 086 343 531 333 607 484 681 657 531 20 0.001 777 599 543 651 618 709 301 049 909 046 310 051 220 808 482 520 530 882 671 21 0.001 604 235 938 574 517 370 364 110 511 696 420 378 633 241 296 068 656 300 841 22 0.001 455 052 129 719 299 008 578 213 418 863 093 564 464 362 482 225 956 578 860 23 0.001 325 751 649 328 551 819 638 657 065 183 782 253 473 519 741 091 224 756 492 24 0.001 212 951 657 528 666 003 299 552 989 738 524 868 071 153 290 142 911 327 921 25 0.001 113 959 333 811 295 082 320 808 272 277 889 110 309 927 208 605 306 667 978 26 0.001 026 609 611 039 482 810 433 287 787 806 015 382 154 975 066 541 356 255 959
Table A23. Critical binding parameters μ c (au−1) for ECSC potential, l=1
Table A23. Critical binding parameters μ c (au−1) for ECSC potential, l=1
1 0.148 205 032 642 758 419 285 886 459 123 248 041 030 459 181 523 505 707 250 286 2 0.068 712 143 689 454 437 828 240 788 113 432 765 979 858 246 762 388 460 980 918 3 0.039 263 401 179 219 453 864 149 118 304 166 829 024 724 592 932 343 315 105 173 4 0.025 315 625 317 701 391 098 514 960 031 651 610 563 594 714 223 194 493 595 469 5 0.017 652 070 207 413 558 721 254 671 787 887 029 810 186 348 432 592 643 242 289 6 0.013 001 063 990 474 074 365 275 868 082 517 618 307 972 808 851 539 823 804 174 7 0.009 970 087 244 432 186 697 472 955 683 956 352 071 545 854 209 255 719 599 895 8 0.007 886 405 586 786 030 126 440 977 459 839 315 291 719 821 005 917 171 286 125 9 0.006 393 114 816 456 147 513 817 777 567 377 854 253 854 876 997 136 904 017 402 10 0.005 286 711 315 486 548 551 953 185 978 343 312 406 080 888 649 281 772 603 305 11 0.004 444 321 287 407 293 710 003 874 183 722 928 778 055 633 141 971 560 937 257 12 0.003 788 216 176 793 633 137 648 687 186 220 637 200 149 682 029 129 640 949 128 13 0.003 267 287 414 827 172 235 861 365 493 012 856 744 007 400 025 629 246 069 751 14 0.002 846 815 793 550 234 128 074 943 903 196 462 595 060 575 902 199 231 132 784 15 0.002 502 548 890 296 272 760 943 467 729 367 024 110 386 311 218 834 033 360 778 16 0.002 217 132 123 848 092 917 031 749 982 157 147 421 172 437 883 353 221 832 813 17 0.001 977 882 470 444 294 750 928 243 167 632 479 483 843 630 285 588 126 142 715 18 0.001 775 357 278 046 269 682 741 200 694 524 841 569 009 615 393 563 744 040 130 19 0.001 679 417 892 412 599 929 152 047 424 655 148 848 853 134 731 694 848 761 737 20 0.001 602 409 543 901 829 364 115 713 307 738 670 886 419 423 668 371 848 237 331 21 0.001 453 549 510 557 440 109 116 263 808 362 929 007 553 410 611 237 133 811 728 22 0.001 324 504 135 177 119 067 759 812 640 848 046 265 874 044 867 246 037 100 112 23 0.001 211 907 337 084 608 546 000 383 666 111 407 950 195 845 117 431 426 729 476 24 0.001 113 078 471 423 532 574 095 024 410 859 055 509 913 135 595 083 509 313 953 25 0.001 025 861 441 470 766 528 539 329 580 482 966 401 944 182 744 148 121 407 307
Table A24. Critical binding parameters μ c (au−1) for ECSC potential, l=2
Table A24. Critical binding parameters μ c (au−1) for ECSC potential, l=2
1 0.063 581 546 150 838 472 194 379 494 206 193 266 728 159 563 676 891 951 063 219 2 0.037 405 048 313 454 121 087 967 384 446 332 325 869 630 812 959 787 029 566 381 3 0.024 500 014 162 249 349 814 867 206 456 637 534 779 164 648 024 014 168 062 332 4 0.017 242 903 688 977 069 524 256 967 813 816 727 303 312 443 899 180 851 050 974 5 0.012 774 701 431 983 541 897 555 762 599 560 737 399 948 055 381 509 205 426 349 6 0.009 835 204 171 995 417 863 073 223 909 090 108 832 651 772 205 543 298 252 706 7 0.007 801 227 482 595 971 277 826 701 887 952 528 740 313 502 670 727 927 280 671 8 0.006 336 762 026 759 042 608 543 639 062 208 044 125 522 346 016 145 715 707 531 9 0.005 247 980 905 682 110 713 894 256 692 025 435 431 263 498 359 098 873 120 387 10 0.004 416 843 931 244 811 052 184 169 355 385 716 199 713 277 803 689 525 637 465 11 0.003 768 192 046 966 102 933 645 201 578 808 900 456 472 540 325 893 752 498 980 12 0.003 252 355 600 366 466 879 247 762 266 216 358 446 084 153 359 967 007 979 155 13 0.002 835 457 560 138 389 598 862 343 857 412 159 123 668 966 133 186 821 814 070 14 0.002 493 757 472 554 534 946 742 937 543 775 622 014 972 404 333 317 945 952 996 15 0.002 210 222 406 252 910 591 557 102 378 827 364 463 541 765 017 378 949 157 272 16 0.001 972 377 332 047 092 819 785 710 102 753 244 221 411 064 169 933 938 960 822 17 0.001 770 917 569 083 661 691 650 980 986 324 749 807 966 809 396 752 442 695 814 18 0.001 598 789 735 644 962 555 915 572 598 188 792 364 892 441 750 464 226 417 279 19 0.001 450 568 904 055 144 038 551 866 876 077 668 245 420 706 904 163 862 361 004 20 0.001 322 027 753 333 045 677 668 313 925 569 130 827 090 151 683 605 334 506 847 21 0.001 209 832 986 637 388 593 698 505 553 650 614 793 368 163 449 575 396 523 143 22 0.001 130 801 507 929 820 471 634 652 527 457 705 288 284 505 203 155 348 232 538 23 0.001 111 327 822 871 870 162 461 369 530 643 437 596 392 411 359 951 874 528 553 24 0.001 024 373 776 687 919 039 894 681 503 072 769 784 290 507 008 933 984 839 748
Table A25. Critical binding parameters μ c (au−1) for ECSC potential, l=3
Table A25. Critical binding parameters μ c (au−1) for ECSC potential, l=3
1 0.035 241 242 180 742 251 639 977 833 793 880 265 961 039 430 645 317 095 033 654 2 0.023 482 156 409 613 228 006 999 976 191 869 900 316 143 339 517 169 753 362 402 3 0.016 708 150 087 855 378 948 364 481 307 490 624 513 542 311 298 158 739 811 321 4 0.012 469 382 412 504 385 986 631 331 976 288 202 151 206 855 107 784 421 818 533 5 0.009 649 192 213 468 040 846 731 725 995 694 154 201 584 716 608 806 979 937 820 6 0.007 681 858 994 576 573 231 448 514 773 371 551 579 742 784 246 021 765 815 270 7 0.006 256 839 407 887 471 963 956 587 592 522 627 972 816 286 671 023 246 871 993 8 0.005 192 548 540 600 130 789 259 456 920 460 452 448 079 727 326 129 421 032 010 9 0.004 377 237 553 391 555 417 209 413 880 934 652 814 580 269 483 148 999 599 860 10 0.003 739 166 314 111 031 766 228 431 693 843 363 047 899 639 860 358 725 237 422 11 0.003 230 613 293 401 157 772 989 544 149 319 638 151 086 206 089 343 744 580 327 12 0.002 818 857 623 875 297 936 481 933 164 970 799 363 090 277 525 289 369 742 717 13 0.002 480 869 673 272 555 322 626 059 315 644 972 125 223 374 836 023 433 574 525 14 0.002 200 067 255 259 246 161 906 335 636 826 900 145 700 647 222 482 911 651 250 15 0.001 964 269 073 671 345 830 080 211 575 966 068 027 454 164 885 221 854 862 277 16 0.001 764 366 561 120 792 626 792 451 274 812 678 462 729 152 572 357 819 995 631 17 0.001 593 440 143 914 171 565 152 193 171 763 884 438 509 961 687 319 889 791 853 18 0.001 446 157 990 118 769 278 152 582 633 798 942 686 498 693 400 587 070 710 313 19 0.001 318 358 701 872 416 919 767 133 870 794 596 737 587 507 311 708 814 305 189 20 0.001 206 756 417 855 208 420 797 555 245 185 050 991 694 045 918 395 592 998 639 21 0.001 108 728 992 099 847 850 130 300 380 941 350 429 678 459 354 018 227 900 180 22 0.001 022 163 568 905 894 038 762 537 116 805 475 543 268 522 293 648 495 141 694
Table A26. Critical binding parameters μ c (au−1) for ECSC potential, l=4
Table A26. Critical binding parameters μ c (au−1) for ECSC potential, l=4
1 0.022 371 423 947 612 063 346 334 499 365 316 843 905 640 785 814 050 126 144 468 2 0.016 099 483 083 173 257 338 961 551 772 224 894 071 595 090 220 509 166 623 999 3 0.012 110 841 492 508 710 047 544 808 940 701 540 126 394 383 005 266 780 465 164 4 0.009 425 574 620 316 002 848 173 103 670 831 316 109 200 365 056 421 613 980 684 5 0.007 535 771 378 168 027 489 285 464 678 473 536 971 541 588 471 166 432 121 929 6 0.006 157 665 312 445 150 133 665 625 101 563 171 502 002 626 977 753 638 974 322 7 0.005 123 012 502 152 556 036 586 243 025 699 828 635 833 457 176 598 196 662 568 8 0.004 327 122 089 535 273 201 243 725 797 030 012 177 514 774 571 028 983 833 464 9 0.003 702 181 251 230 666 459 489 618 659 527 864 795 039 621 512 748 561 004 431 10 0.003 202 750 095 117 000 317 314 739 353 188 575 731 621 301 439 838 359 802 374 11 0.002 797 483 740 785 447 273 592 178 023 808 438 380 370 963 163 808 479 155 620 12 0.002 464 209 908 484 348 607 079 209 600 548 747 933 511 507 637 647 438 413 262 13 0.002 186 896 212 318 133 659 861 910 078 050 073 816 802 730 414 195 635 203 990 14 0.001 953 723 060 349 632 197 466 639 507 062 647 594 700 238 905 890 152 661 997 15 0.001 755 825 344 755 730 839 510 865 988 179 826 690 539 318 373 229 704 010 053 16 0.001 586 450 763 530 546 251 344 069 099 315 022 042 138 978 645 923 433 449 498 17 0.001 440 384 564 110 390 099 122 996 959 029 317 493 187 586 787 711 599 978 745 18 0.001 313 548 689 385 726 532 897 817 461 045 446 504 026 827 427 553 322 634 773 19 0.001 202 717 521 098 501 244 900 107 264 155 902 133 321 561 669 524 662 543 071 20 0.001 105 313 076 778 122 837 787 470 393 229 881 745 812 677 360 559 370 033 509 21 0.001 019 255 297 327 095 057 101 882 096 501 090 654 964 625 702 819 439 384 912
Table A27. Critical binding parameters μ c (au−1) for ECSC potential, l=5
Table A27. Critical binding parameters μ c (au−1) for ECSC potential, l=5
1 0.015 455 476 970 671 009 960 309 373 172 367 170 228 417 216 386 096 488 422 508 2 0.011 720 488 823 891 314 751 277 604 695 796 127 246 961 264 173 711 822 782 017 3 0.009 176 572 196 297 732 699 725 173 634 343 668 712 418 750 757 551 074 121 927 4 0.007 370 163 443 404 617 186 906 242 323 907 129 233 784 517 476 295 983 242 328 5 0.006 043 615 630 932 783 746 352 895 328 830 631 883 368 358 941 415 505 260 925 6 0.005 042 113 368 849 732 762 709 113 596 969 543 536 182 919 356 615 760 040 050 7 0.004 268 262 232 267 991 151 728 793 887 547 163 904 762 306 043 649 832 443 918 8 0.003 658 402 503 356 846 797 672 098 426 392 347 638 590 808 357 774 453 529 303 9 0.003 169 554 099 284 664 144 114 713 855 068 637 055 170 361 464 830 365 526 319 10 0.002 771 880 176 036 274 253 639 455 792 941 146 543 767 467 911 919 661 452 508 11 0.002 444 161 398 272 089 091 211 541 576 700 769 205 375 698 840 410 978 402 998 12 0.002 170 983 911 650 292 963 994 406 496 885 474 328 434 224 656 037 472 813 664 13 0.001 940 939 310 232 447 018 430 410 437 367 072 559 709 094 313 040 736 160 339 14 0.001 745 441 763 489 914 590 621 348 942 183 194 255 624 426 408 469 893 247 826 15 0.001 577 932 365 462 606 196 855 634 559 229 177 883 568 281 259 067 503 575 915 16 0.001 433 332 662 833 002 802 775 354 060 159 609 740 744 634 099 515 269 402 433 17 0.001 307 662 208 726 982 429 445 474 493 595 163 941 055 112 825 844 115 420 597 18 0.001 197 766 319 927 743 784 341 327 190 186 607 081 282 432 195 525 183 230 572 19 0.001 101 119 261 873 753 488 183 463 136 792 314 328 255 151 848 602 664 931 385 20 0.001 015 679 939 075 498 020 779 154 128 651 356 796 585 563 599 645 742 757 184
Table A28. Critical binding parameters μ c (au−1) for ECSC potential, l=6
Table A28. Critical binding parameters μ c (au−1) for ECSC potential, l=6
1 0.011 314 415 073 416 202 952 425 413 789 882 158 622 792 903 862 880 171 594 562 2 0.008 912 130 581 868 735 191 281 646 393 966 225 762 256 702 936 882 369 340 986 3 0.007 191 277 470 291 155 932 738 096 640 932 273 917 016 420 696 525 774 473 823 4 0.005 918 684 553 633 729 004 222 370 853 537 057 407 060 024 082 611 742 886 350 5 0.004 952 459 789 048 368 732 051 785 607 597 313 533 050 324 465 004 050 696 662 6 0.004 202 396 831 989 801 537 581 624 978 338 942 207 072 385 203 650 502 566 800 7 0.003 609 012 159 542 453 348 652 331 069 043 931 550 441 408 176 524 333 871 712 8 0.003 131 844 017 057 182 970 498 834 607 840 542 293 292 732 062 919 105 534 155 9 0.002 742 623 966 065 229 972 895 219 095 602 271 299 196 876 448 158 475 645 891 10 0.002 421 137 530 963 128 385 779 391 349 242 739 342 417 151 049 167 076 015 087 11 0.002 152 631 030 127 601 113 639 475 215 971 059 394 020 494 612 986 178 123 913 12 0.001 926 139 621 999 562 923 033 024 730 053 550 804 573 673 357 681 855 196 711 13 0.001 733 381 583 771 107 677 005 089 079 854 521 657 049 845 453 339 994 328 318 14 0.001 568 010 352 667 883 250 949 088 711 290 044 530 781 270 908 733 153 470 798 15 0.001 425 098 230 749 108 701 445 350 967 082 854 143 482 183 992 989 969 048 978 16 0.001 300 773 440 754 445 106 133 930 996 134 920 703 274 905 882 162 621 313 600 17 0.001 191 960 732 091 258 258 613 496 906 829 551 634 554 472 268 961 689 010 926 18 0.001 096 193 182 002 818 646 367 062 042 896 998 826 667 846 745 345 136 677 184 19 0.001 011 473 758 487 486 449 618 961 387 042 941 957 662 674 914 725 750 494 374
Table A29. Critical binding parameters μ c (au−1) for ECSC potential, l=7
Table A29. Critical binding parameters μ c (au−1) for ECSC potential, l=7
1 0.008 639 853 207 347 760 064 195 924 708 427 606 759 679 788 959 944 390 281 383 2 0.007 004 184 669 808 105 808 290 664 148 373 544 678 737 664 722 311 804 204 937 3 0.005 786 282 830 201 942 080 991 794 130 818 856 039 009 270 428 844 785 080 263 4 0.004 856 373 753 064 726 474 454 083 677 004 281 802 319 944 179 405 365 915 239 5 0.004 131 128 598 024 289 619 792 301 843 592 976 766 401 571 855 794 316 475 060 6 0.003 555 132 413 298 761 967 176 856 654 682 920 518 584 603 246 604 652 999 480 7 0.003 090 416 880 699 907 316 529 385 517 822 165 276 633 692 228 727 452 901 734 8 0.002 710 289 113 040 969 169 675 085 992 277 733 931 918 915 775 124 491 106 233 9 0.002 395 557 233 604 708 004 232 796 850 602 719 005 974 309 370 381 231 956 779 10 0.002 132 147 217 180 900 443 065 925 405 713 979 743 684 335 770 241 137 602 610 11 0.001 909 555 635 969 330 251 600 981 166 805 187 443 763 699 539 755 782 354 418 12 0.001 719 820 062 087 978 847 755 241 402 776 981 273 827 225 491 194 562 651 829 13 0.001 556 818 742 702 993 538 547 446 460 969 837 880 986 717 320 421 300 458 761 14 0.001 415 784 782 238 542 666 711 209 924 324 420 475 102 268 979 167 509 679 986 15 0.001 292 963 095 882 626 284 891 354 523 052 999 699 098 306 810 039 456 532 676 16 0.001 185 364 247 210 289 101 896 449 360 635 480 394 592 863 181 155 471 942 192 17 0.001 090 585 197 731 281 575 084 063 481 884 439 678 874 655 296 478 744 392 607 18 0.001 006 677 016 082 744 223 446 052 109 776 329 669 565 700 231 938 192 320 898
Table A30. Critical binding parameters μ c (au−1) for ECSC potential, l=8
Table A30. Critical binding parameters μ c (au−1) for ECSC potential, l=8
1 0.006 812 835 383 973 685 366 024 588 715 713 989 123 082 386 282 042 094 205 743 2 0.005 649 197 708 317 049 220 496 227 595 058 613 865 316 007 636 068 783 991 147 3 0.004 755 830 480 087 669 287 731 064 788 389 901 193 009 195 843 061 686 023 959 4 0.004 055 868 184 184 486 638 430 127 375 595 945 634 019 821 692 620 176 887 081 5 0.003 497 780 297 403 072 343 048 904 856 142 919 472 571 703 108 753 473 360 643 6 0.003 046 013 503 078 794 125 372 461 833 351 129 822 403 930 477 623 169 095 275 7 0.002 675 420 952 448 535 094 401 542 286 109 507 320 679 242 329 644 625 796 209 8 0.002 367 826 190 614 427 671 449 706 825 938 788 666 315 526 638 931 653 508 890 9 0.002 109 837 394 897 073 337 399 949 366 492 315 677 788 670 421 610 336 993 805 10 0.001 891 418 837 826 709 243 505 132 502 302 816 395 495 943 063 058 605 257 191 11 0.001 704 934 627 889 640 894 052 815 910 851 457 664 889 455 044 677 707 664 293 12 0.001 544 494 785 294 616 824 371 990 282 962 768 409 860 471 744 644 184 912 516 13 0.001 405 499 418 515 263 301 059 305 277 313 065 125 519 441 243 980 068 542 420 14 0.001 284 315 447 010 711 884 895 521 015 199 099 205 657 922 921 381 519 142 309 15 0.001 178 043 701 189 727 265 379 900 028 001 846 613 941 215 880 032 232 681 132 16 0.001 084 348 714 344 146 336 614 051 265 251 385 858 707 902 962 952 580 660 870 17 0.001 001 332 689 548 287 474 913 046 610 030 322 015 603 048 899 155 245 182 435
Table A31. Critical binding parameters μ c (au−1) for ECSC potential, l=9
Table A31. Critical binding parameters μ c (au−1) for ECSC potential, l=9
1 0.005 509 639 433 353 859 160 774 391 632 366 197 808 217 451 271 489 752 442 310 2 0.004 652 458 191 400 806 863 016 513 789 791 471 574 677 874 742 996 590 049 660 3 0.003 977 817 428 358 344 801 554 419 573 695 287 305 117 840 944 781 826 198 830 4 0.003 437 847 317 106 416 259 403 675 900 262 416 139 437 957 564 969 858 225 815 5 0.002 999 299 559 017 729 907 526 210 831 515 693 247 829 052 836 823 549 273 245 6 0.002 638 520 267 153 621 163 527 532 579 525 205 701 946 196 688 062 179 161 275 7 0.002 338 324 135 556 071 953 503 191 282 329 781 764 427 650 818 648 820 544 789 8 0.002 085 991 846 443 000 858 207 983 273 710 472 820 875 684 824 697 877 033 606 9 0.001 871 952 930 501 456 158 035 877 050 841 446 334 628 949 991 460 588 672 837 10 0.001 688 899 050 223 034 953 285 659 492 770 951 160 587 832 177 990 244 133 093 11 0.001 531 174 511 029 407 617 831 007 762 116 287 356 840 347 340 402 852 167 042 12 0.001 394 349 429 069 344 586 369 369 482 831 032 438 454 634 409 983 477 028 948 13 0.001 274 915 728 763 492 796 557 200 599 088 111 697 167 722 032 849 131 620 962 14 0.001 170 067 279 105 309 392 253 875 221 693 263 829 939 970 774 126 349 637 830 15 0.001 077 538 641 823 281 954 694 425 745 333 003 669 505 033 895 868 618 845 938
Table A32. Critical binding parameters μ c (au−1) for ECSC potential, l=10
Table A32. Critical binding parameters μ c (au−1) for ECSC potential, l=10
1 0.004 547 569 114 405 207 303 478 818 883 362 190 922 376 548 906 639 597 663 007 2 0.003 897 976 459 535 657 021 092 019 392 450 706 362 322 781 116 116 322 684 332 3 0.003 376 096 120 524 451 091 966 266 227 599 364 472 785 793 880 102 154 618 847 4 0.002 950 858 403 369 156 763 677 508 657 340 602 621 584 132 605 084 950 119 488 5 0.002 600 035 331 539 019 210 850 969 493 182 198 590 548 354 211 952 849 837 944 6 0.002 307 397 445 651 282 862 281 759 352 943 343 643 518 323 537 409 433 138 004 7 0.002 060 879 832 519 793 207 312 161 045 997 298 607 065 078 772 437 476 205 033 8 0.001 851 368 549 092 251 345 680 420 519 050 975 574 276 938 039 282 192 347 250 9 0.001 671 879 160 645 100 850 119 100 753 733 855 066 632 543 052 097 660 119 209 10 0.001 516 989 314 976 148 652 316 509 828 231 416 579 854 245 338 908 340 442 362 11 0.001 382 439 582 476 651 990 330 872 598 913 484 441 385 420 113 759 986 016 018 12 0.001 264 847 996 658 180 384 729 275 648 582 640 586 963 846 110 979 959 179 310 13 0.001 161 502 825 297 057 038 400 881 943 750 813 611 931 599 932 151 531 490 978 14 0.001 070 210 060 090 910 963 873 995 166 334 936 641 663 118 390 582 561 172 977
Table A33. Critical binding parameters μ c (au−1) for ECSC potential, l=11
Table A33. Critical binding parameters μ c (au−1) for ECSC potential, l=11
1 0.003 817 163 057 337 947 515 338 408 555 188 048 887 451 096 701 046 561 208 866 2 0.003 313 167 340 376 498 149 671 397 834 150 496 363 442 657 777 095 946 788 914 3 0.002 901 191 691 358 188 435 516 010 823 069 699 410 336 459 752 941 744 543 253 4 0.002 560 359 693 531 390 642 622 734 979 636 582 155 179 327 349 224 104 519 565 5 0.002 275 355 854 946 644 137 283 220 572 606 502 260 549 911 373 298 855 249 454 6 0.002 034 746 122 326 397 608 835 093 004 551 337 521 026 618 741 333 458 853 813 7 0.001 829 860 021 279 189 491 294 380 845 292 360 891 188 711 413 056 397 386 985 8 0.001 654 030 005 364 189 395 520 246 808 837 205 761 433 252 824 956 819 935 768 9 0.001 502 063 536 963 459 833 500 257 808 952 778 738 477 441 763 879 863 186 678 10 0.001 369 870 111 928 342 115 963 228 398 363 727 478 089 644 063 279 557 097 454 11 0.001 254 193 470 795 920 566 331 448 140 320 558 454 088 331 206 868 945 207 177 12 0.001 152 416 491 755 957 914 953 152 507 291 607 742 206 966 771 468 066 494 446 13 0.001 062 417 120 749 856 161 385 298 482 255 417 106 891 312 957 941 978 920 976
Table A34. Critical binding parameters μ c (au−1) for ECSC potential, l=12
Table A34. Critical binding parameters μ c (au−1) for ECSC potential, l=12
1 0.003 249 591 594 959 846 269 283 043 281 408 600 859 624 984 787 390 796 117 097 2 0.002 850 724 598 750 350 508 947 192 010 831 717 024 657 273 090 638 909 273 824 3 0.002 519 833 705 852 989 769 456 646 616 959 583 115 918 514 515 493 488 667 704 4 0.002 242 472 079 809 639 451 411 365 679 301 979 846 938 560 203 252 087 642 770 5 0.002 007 809 723 446 430 162 712 800 008 826 790 513 921 872 613 041 774 635 720 6 0.001 807 603 759 212 034 148 723 759 649 992 241 321 664 445 796 444 876 548 232 7 0.001 635 494 194 708 533 904 643 339 662 530 135 552 298 921 164 474 423 875 407 8 0.001 486 512 914 708 380 844 006 725 079 571 433 943 574 870 942 888 951 264 542 9 0.001 356 735 334 600 634 188 026 369 610 063 279 531 006 500 977 719 423 540 341 10 0.001 243 029 338 914 927 103 470 201 682 857 268 655 974 661 436 205 812 597 770 11 0.001 142 871 719 185 733 570 974 800 937 135 359 447 075 663 947 370 628 946 546 12 0.001 054 212 189 782 836 396 332 679 250 806 270 132 771 379 959 397 938 861 597
Table A35. Critical binding parameters μ c (au−1) for ECSC potential, l=13
Table A35. Critical binding parameters μ c (au−1) for ECSC potential, l=13
1 0.002 799 813 348 108 756 596 580 361 450 700 373 416 821 682 859 712 520 716 632 2 0.002 478 748 248 620 609 810 194 474 618 769 009 455 673 512 775 390 625 963 520 3 0.002 208 983 326 891 975 807 860 517 984 099 400 083 975 028 210 349 852 950 997 4 0.001 980 264 144 120 451 259 862 985 063 863 875 318 658 836 603 983 657 129 495 5 0.001 784 757 859 394 607 440 438 224 650 297 471 505 812 925 354 190 460 793 693 6 0.001 616 401 185 744 431 112 941 012 366 389 659 534 955 850 635 739 672 905 911 7 0.001 470 443 748 344 769 384 212 622 475 841 165 036 066 330 141 136 723 136 939 8 0.001 343 122 808 723 193 177 821 708 652 020 821 880 979 973 645 649 833 284 605 9 0.001 231 427 963 611 241 890 132 652 612 780 054 940 844 356 702 228 933 950 230 10 0.001 132 928 520 828 451 889 192 431 843 596 553 231 060 467 154 657 656 344 983 11 0.001 045 645 216 618 938 003 020 188 252 628 233 896 935 307 555 677 026 929 963
Table A36. Critical binding parameters μ c (au−1) for ECSC potential, l=14
Table A36. Critical binding parameters μ c (au−1) for ECSC potential, l=14
1 0.002 437 349 536 084 494 173 863 318 672 727 378 235 419 544 055 891 373 778 220 2 0.002 175 093 893 634 695 925 994 361 602 895 887 209 903 395 604 758 437 183 304 3 0.001 952 278 638 804 670 018 422 114 907 849 580 802 460 668 727 459 596 190 765 4 0.001 761 462 536 390 116 180 939 283 427 213 857 050 294 816 771 577 455 767 785 5 0.001 596 867 247 250 923 747 486 390 576 389 059 645 551 381 429 314 641 016 674 6 0.001 453 952 610 776 195 493 836 512 306 007 298 945 686 934 760 773 649 470 484 7 0.001 329 112 920 691 746 381 002 765 091 943 312 431 065 194 284 701 515 436 507 8 0.001 219 456 424 925 153 636 819 719 610 634 428 522 479 671 933 630 666 409 734 9 0.001 122 643 026 009 279 444 612 481 598 919 250 855 020 591 480 843 681 094 939 10 0.001 036 763 303 403 155 590 112 658 531 402 617 123 102 487 113 635 854 864 995
Table A37. Critical binding parameters μ c (au−1) for ECSC potential, l=15
Table A37. Critical binding parameters μ c (au−1) for ECSC potential, l=15
1 0.002 140 978 300 671 255 150 378 468 263 132 365 540 513 665 697 300 760 024 611 2 0.001 924 000 020 536 203 119 115 339 395 347 130 940 846 972 793 195 653 024 195 3 0.001 737 841 088 644 805 468 423 914 473 957 810 456 861 789 633 981 133 337 921 4 0.001 576 995 892 614 913 747 027 709 088 003 802 000 659 030 273 617 787 552 008 5 0.001 437 126 453 770 610 626 321 766 078 673 729 419 589 815 574 930 329 724 757 6 0.001 314 778 798 579 975 621 366 260 048 229 116 815 525 788 118 990 273 593 798 7 0.001 207 176 327 616 260 826 678 270 033 757 454 264 209 338 322 444 004 049 301 8 0.001 112 067 235 827 691 859 035 479 394 919 502 095 932 794 086 336 255 992 047 9 0.001 027 610 442 912 378 492 625 595 582 659 642 224 988 803 535 203 614 798 025
Table A38. Critical binding parameters μ c (au−1) for ECSC potential, l=16
Table A38. Critical binding parameters μ c (au−1) for ECSC potential, l=16
1 0.001 895 554 743 820 182 236 602 813 644 747 572 338 062 922 953 245 045 094 885 2 0.001 714 001 168 784 229 286 124 232 692 722 697 944 085 599 774 073 167 311 222 3 0.001 556 878 609 952 498 031 555 911 687 406 563 282 694 434 541 107 370 787 826 4 0.001 420 042 984 137 036 345 670 406 073 669 197 181 995 377 971 744 249 369 174 5 0.001 300 186 460 888 729 682 072 890 533 629 453 509 544 024 049 610 561 807 518 6 0.001 194 643 807 805 038 837 291 300 014 104 642 088 855 714 063 155 033 668 144 7 0.001 101 248 944 706 931 463 495 252 766 348 811 590 354 717 936 160 704 668 554 8 0.001 018 227 392 668 649 778 408 302 892 248 872 708 430 912 403 010 884 471 841
Table A39. Critical binding parameters μ c (au−1) for ECSC potential, l=17
Table A39. Critical binding parameters μ c (au−1) for ECSC potential, l=17
1 0.001 690 036 195 703 217 602 450 398 592 438 950 966 351 588 124 414 585 646 252 2 0.001 536 595 760 850 885 764 029 489 528 480 121 959 561 235 015 153 478 753 592 3 0.001 402 771 210 694 080 835 552 848 739 991 670 835 553 690 753 659 695 317 968 4 0.001 285 395 125 230 195 910 271 912 641 213 858 090 845 108 442 655 406 966 443 5 0.001 181 909 682 670 574 395 973 748 285 513 449 822 565 463 502 284 761 114 634 6 0.001 090 231 786 183 060 494 328 308 220 332 004 196 843 591 611 979 948 753 500 7 0.001 008 651 654 802 361 811 994 037 859 901 607 967 723 695 979 844 943 293 441
Table A40. Critical binding parameters μ c (au−1) for ECSC potential, l=18
Table A40. Critical binding parameters μ c (au−1) for ECSC potential, l=18
1 0.001 516 217 555 296 588 007 358 346 161 510 889 606 884 202 896 360 986 248 667 2 0.001 385 372 087 154 416 035 314 254 584 181 007 833 400 019 612 040 114 946 767 3 0.001 270 457 617 673 384 234 770 438 997 290 111 061 360 378 405 610 241 922 372 4 0.001 169 019 697 088 757 265 907 141 020 989 628 340 461 519 677 942 201 833 783 5 0.001 079 055 367 541 850 587 996 299 576 207 825 032 637 079 584 015 314 154 094
Table A41. Critical binding parameters μ c (au−1) for ECSC potential, l=19
Table A41. Critical binding parameters μ c (au−1) for ECSC potential, l=19
1 0.001 367 899 196 760 346 971 821 142 186 235 016 094 050 724 336 142 709 066 289 2 0.001 255 420 837 942 988 357 850 268 549 023 665 826 749 282 521 077 735 483 419 3 0.001 156 014 830 962 839 433 278 015 082 531 963 097 620 739 581 455 660 998 324 4 0.001 067 755 464 471 283 125 563 457 135 506 235 155 000 287 293 192 472 591 708
Table A42. Critical binding parameters μ c (au−1) for ECSC potential, l=20
Table A42. Critical binding parameters μ c (au−1) for ECSC potential, l=20
1 0.001 240 326 247 836 695 970 437 680 007 292 257 757 005 814 294 637 568 861 298 2 0.001 142 931 639 750 891 330 714 535 607 684 059 325 519 253 607 324 685 528 157 3 0.001 056 364 253 062 127 800 322 331 780 423 618 393 988 506 958 199 534 076 179

Appendix A.3. Hulthén Potential μ c vs l for D=1/μ≤1000 au

Table A43. Critical binding parameters μ c (au−1) for Hulthén potential, l=0
Table A43. Critical binding parameters μ c (au−1) for Hulthén potential, l=0
1 2.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 4 0.125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 556 7 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 8 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 9 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 10 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 11 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 12 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 13 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 14 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 15 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 16 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 17 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 18 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 19 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 20 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 21 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 22 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 23 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 24 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 25 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 26 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 27 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 28 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 29 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 30 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 31 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 32 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 33 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 34 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 35 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 36 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 37 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 38 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 39 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 40 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 41 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 42 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 43 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 44 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A44. Critical binding parameters μ c (au−1) for Hulthén potential, l=1
Table A44. Critical binding parameters μ c (au−1) for Hulthén potential, l=1
1 0.376 935 996 093 545 491 107 886 597 464 844 838 761 579 551 432 087 617 184 727 2 0.186 485 867 283 101 374 052 164 749 244 161 460 966 114 173 315 966 632 514 078 3 0.110 491 326 325 213 180 032 714 924 883 489 407 635 153 157 132 637 136 893 287 4 0.072 863 392 165 501 752 398 842 628 754 495 660 796 740 132 033 620 730 447 794 5 0.051 579 047 580 589 004 697 833 155 435 049 552 740 550 686 812 299 090 923 664 6 0.038 397 853 255 317 329 655 660 366 268 976 476 735 547 792 099 267 022 102 085 7 0.029 680 504 929 516 179 239 885 158 836 556 355 656 947 587 053 246 129 078 893 8 0.023 620 593 269 990 429 548 115 330 923 291 986 076 184 630 528 102 624 107 156 9 0.019 239 896 704 416 135 155 733 637 773 265 191 249 411 683 501 958 781 364 040 10 0.015 971 644 378 342 323 012 782 360 290 010 550 273 333 032 038 962 876 711 500 11 0.013 469 224 499 088 230 697 011 335 207 393 983 732 497 126 960 009 873 307 130 12 0.011 511 080 781 038 673 209 248 418 741 553 844 109 238 077 429 338 857 438 574 13 0.009 950 272 895 080 997 050 301 410 716 072 355 215 651 930 761 274 896 729 600 14 0.008 686 255 186 915 663 712 556 268 513 564 133 637 085 200 246 071 161 257 937 15 0.007 648 359 227 713 641 812 142 133 027 840 414 564 062 661 571 945 538 325 906 16 0.006 785 747 262 326 645 217 366 320 945 989 351 499 057 833 178 433 419 413 882 17 0.006 061 094 862 950 850 748 580 798 426 549 998 007 755 096 854 491 635 338 956 18 0.005 446 501 456 005 581 147 554 569 791 899 862 170 906 351 991 174 835 058 721 19 0.004 920 774 408 022 750 001 593 223 324 587 832 779 526 138 286 358 523 939 974 20 0.004 467 583 857 510 530 235 021 979 874 339 490 576 331 834 276 002 218 902 165 21 0.004 074 183 387 375 933 310 982 220 306 134 982 609 844 967 197 649 302 181 015 22 0.003 730 506 652 465 256 962 342 320 810 215 861 498 742 342 222 071 967 697 824 23 0.003 428 518 845 917 619 810 239 183 429 707 704 231 157 938 131 486 342 720 608 24 0.003 161 744 065 774 825 139 567 227 530 377 848 900 990 288 171 132 890 970 474 25 0.002 924 916 115 093 780 602 685 842 659 146 090 291 811 367 576 623 378 511 149 26 0.002 713 717 234 893 886 175 583 431 149 436 608 932 026 795 562 950 516 661 309 27 0.002 524 580 353 007 623 118 597 009 423 300 838 519 187 423 333 957 699 431 794 28 0.002 354 537 800 849 113 213 629 761 358 881 620 090 965 373 112 410 810 090 261 29 0.002 201 104 428 993 606 688 431 768 223 620 441 387 466 531 189 159 847 891 604 30 0.002 062 186 466 961 366 660 074 934 606 475 107 982 775 991 714 521 286 642 588 31 0.001 936 009 846 787 804 876 814 621 667 707 696 669 893 553 640 246 062 991 971 32 0.001 821 063 382 089 777 587 247 945 246 937 653 765 586 303 905 467 614 498 933 33 0.001 716 053 386 151 907 780 214 487 538 507 264 950 051 680 796 444 489 696 205 34 0.001 619 867 171 547 411 228 798 733 668 787 922 196 756 087 834 767 346 549 105 35 0.001 531 543 499 411 270 812 472 271 356 835 939 257 014 430 498 717 034 589 524 36 0.001 450 248 506 591 002 002 517 960 275 522 685 247 890 219 508 225 408 278 376 37 0.001 375 255 980 417 887 763 353 310 437 284 347 562 225 627 732 880 181 653 768 38 0.001 305 931 106 539 748 147 391 272 016 692 178 928 687 954 615 467 762 360 067 39 0.001 241 717 008 270 621 080 801 992 059 758 910 636 989 088 025 049 386 679 078 40 0.001 182 123 542 738 806 611 283 358 655 293 644 496 894 452 396 020 311 226 569 41 0.001 126 717 931 624 165 222 863 093 650 421 144 578 818 383 530 632 998 525 169 42 0.001 075 116 891 087 849 949 108 349 255 735 698 389 901 681 477 126 570 016 101 43 0.001 026 979 992 923 595 493 215 991 916 564 006 635 658 405 295 906 399 750 934
Table A45. Critical binding parameters μ c (au−1) for Hulthén potential, l=2
Table A45. Critical binding parameters μ c (au−1) for Hulthén potential, l=2
1 0.157 661 961 178 778 425 498 625 370 069 028 696 347 905 265 451 547 879 382 454 2 0.097 563 839 410 455 548 278 003 397 488 269 988 802 316 153 716 393 199 566 658 3 0.066 107 804 499 688 993 265 888 276 794 309 163 673 134 575 363 382 357 666 706 4 0.047 661 373 617 471 335 758 539 936 090 871 992 438 407 290 770 359 952 955 176 5 0.035 947 712 541 582 816 042 971 172 122 333 603 216 138 436 938 432 827 733 168 6 0.028 057 828 859 884 349 808 723 878 225 968 871 390 859 771 787 710 719 125 864 7 0.022 496 537 924 176 529 934 365 948 498 052 457 262 288 354 918 071 340 754 878 8 0.018 432 554 082 212 985 468 669 397 301 716 223 022 137 937 492 952 122 918 598 9 0.015 374 264 206 131 270 035 821 673 144 600 845 412 717 130 620 923 757 463 873 10 0.013 016 059 892 763 463 626 325 690 027 958 485 288 551 426 305 752 867 318 012 11 0.011 159 973 920 111 125 783 502 705 288 690 089 496 105 817 391 470 065 721 453 12 0.009 673 253 675 081 053 448 786 591 445 674 919 475 834 349 779 799 121 020 385 13 0.008 464 215 631 972 013 466 389 082 989 882 459 340 886 370 746 386 593 035 183 14 0.007 467 910 190 556 668 918 042 467 153 715 516 834 988 136 754 021 386 583 920 15 0.006 637 296 118 280 532 939 688 496 229 296 345 780 154 879 021 646 169 872 893 16 0.005 937 632 899 039 621 757 032 069 666 960 315 773 680 219 194 399 491 665 140 17 0.005 342 817 768 042 205 033 863 782 174 718 511 326 828 527 977 106 093 354 565 18 0.004 832 933 786 709 055 281 555 105 113 649 603 910 271 940 489 507 670 109 298 19 0.004 392 572 414 816 363 937 310 499 659 289 907 338 412 635 568 133 116 282 172 20 0.004 009 663 300 324 298 603 343 241 300 289 764 412 176 005 471 250 565 935 082 21 0.003 674 643 408 261 172 623 663 891 791 740 136 117 119 568 469 498 262 206 532 22 0.003 379 857 592 267 337 859 780 987 195 524 149 896 892 868 074 247 087 317 795 23 0.003 119 119 805 819 373 978 522 192 325 036 777 951 027 017 334 512 660 745 279 24 0.002 887 387 604 131 931 880 923 261 974 602 263 520 636 104 358 204 380 805 596 25 0.002 680 517 720 574 364 455 540 491 912 755 577 211 363 849 428 203 281 606 297 26 0.002 495 080 447 683 777 080 502 997 297 351 181 330 075 606 114 503 436 447 967 27 0.002 328 217 202 157 082 476 555 588 087 912 665 560 754 180 538 949 531 043 250 28 0.002 177 530 168 565 441 287 469 528 155 817 927 639 015 054 984 872 963 313 496 29 0.002 040 996 027 505 865 626 848 555 073 718 657 557 673 800 712 882 349 751 840 30 0.001 916 897 946 257 899 197 776 690 085 381 012 617 591 959 671 660 132 731 118 31 0.001 803 771 546 000 852 950 013 189 586 353 438 819 643 448 666 485 710 945 883 32 0.001 700 361 658 403 690 628 952 595 210 185 423 443 474 897 107 045 631 658 729 33 0.001 605 587 478 986 959 798 466 897 751 936 135 061 603 163 812 258 086 592 509 34 0.001 518 514 305 165 668 371 481 654 615 631 105 096 117 827 624 497 249 051 324 35 0.001 438 330 475 069 051 189 839 407 223 511 144 188 040 190 908 525 612 344 713 36 0.001 364 328 441 922 366 203 276 726 978 644 056 714 004 580 197 500 044 623 535 37 0.001 295 889 157 989 195 818 683 700 762 565 784 548 459 339 280 507 335 905 142 38 0.001 232 469 123 073 862 871 571 356 020 149 346 135 526 986 613 478 095 725 054 39 0.001 173 589 590 579 292 242 644 937 234 339 547 384 657 204 482 078 961 187 469 40 0.001 118 827 530 081 040 612 930 273 834 574 419 179 679 494 770 306 979 034 666 41 0.001 067 808 027 303 094 136 050 805 770 830 495 755 096 578 332 282 343 162 526 42 0.001 020 197 866 129 873 221 063 434 847 186 137 810 858 687 788 357 474 857 707
Table A46. Critical binding parameters μ c (au−1) for Hulthén potential, l=3
Table A46. Critical binding parameters μ c (au−1) for Hulthén potential, l=3
1 0.086 405 096 614 817 001 538 179 150 178 328 470 460 135 032 986 826 524 615 533 2 0.059 972 727 178 598 238 870 943 325 346 790 972 010 662 201 597 237 692 867 088 3 0.043 974 596 528 002 885 683 701 182 153 296 444 179 103 540 205 537 376 330 940 4 0.033 581 035 287 150 212 054 631 215 897 241 683 116 098 448 479 246 772 483 656 5 0.026 459 140 877 676 336 814 255 707 700 692 212 060 172 972 797 687 912 207 470 6 0.021 371 943 601 701 091 642 880 435 641 138 980 686 240 084 041 298 807 291 129 7 0.017 614 900 537 112 554 460 865 444 608 078 958 862 310 248 095 107 942 469 392 8 0.014 763 254 194 157 383 219 198 115 756 916 029 959 389 230 174 874 061 442 166 9 0.012 548 789 945 696 628 341 782 946 745 320 230 166 112 540 321 816 191 024 223 10 0.010 795 498 630 418 072 001 627 163 638 711 727 477 048 191 049 036 576 008 865 11 0.009 384 062 499 480 151 152 189 632 186 093 516 647 483 622 918 850 534 491 055 12 0.008 231 312 316 504 425 792 442 955 063 381 624 230 542 632 676 059 776 787 231 13 0.007 277 861 269 073 402 442 858 877 171 278 975 190 314 518 848 725 848 049 382 14 0.006 480 400 686 493 034 320 982 433 778 957 516 309 759 553 908 661 912 845 823 15 0.005 806 754 115 273 674 714 038 861 866 154 698 981 697 959 293 986 050 266 150 16 0.005 232 617 341 045 858 830 178 074 667 484 915 654 926 086 692 358 620 448 468 17 0.004 739 358 813 124 009 668 639 926 898 293 264 926 859 978 896 816 311 138 232 18 0.004 312 504 217 875 814 512 290 247 480 471 974 435 080 957 450 279 874 856 332 19 0.003 940 672 619 620 654 904 761 033 644 842 111 253 267 229 673 245 125 503 821 20 0.003 614 816 831 742 394 283 241 821 201 085 161 546 312 432 014 830 299 473 897 21 0.003 327 672 595 292 695 787 328 599 656 511 342 983 521 069 526 489 301 594 850 22 0.003 073 353 513 386 683 111 397 132 585 652 362 144 027 974 207 399 025 593 169 23 0.002 847 049 311 347 006 604 619 664 428 499 504 554 677 317 306 106 975 764 546 24 0.002 644 798 388 551 763 761 981 711 456 233 290 516 451 564 101 002 538 034 578 25 0.002 463 314 487 251 591 876 394 928 298 016 192 513 247 867 657 790 096 292 081 26 0.002 299 853 259 875 642 744 555 522 982 739 587 336 411 465 527 343 842 921 996 27 0.002 152 108 582 124 325 430 654 595 158 966 020 572 689 193 577 444 960 831 313 28 0.002 018 131 273 779 553 742 961 611 702 717 905 164 112 111 656 453 926 544 840 29 0.001 896 264 863 271 429 840 554 451 691 636 396 911 355 786 345 950 170 949 832 30 0.001 785 094 433 563 521 380 167 878 017 639 678 392 195 377 335 385 753 368 839 31 0.001 683 405 593 290 029 853 069 742 504 918 738 520 505 463 115 055 881 976 603 32 0.001 590 151 347 421 635 234 174 065 271 048 727 896 785 656 046 835 492 035 620 33 0.001 504 425 177 064 513 875 148 295 348 054 630 497 393 922 098 915 970 599 291 34 0.001 425 439 034 069 402 815 772 117 418 595 949 160 557 147 807 368 887 646 709 35 0.001 352 505 251 760 943 822 981 718 538 146 467 105 052 467 115 643 189 964 159 36 0.001 285 021 595 601 950 520 993 321 698 625 095 350 108 016 497 227 138 252 050 37 0.001 222 458 846 390 942 903 503 235 135 000 060 120 568 852 488 038 677 860 663 38 0.001 164 350 437 578 213 687 688 887 920 288 418 957 921 829 901 092 024 417 088 39 0.001 110 283 767 555 043 112 676 193 720 122 177 283 466 647 192 255 576 066 250 40 0.001 059 892 884 680 728 844 445 376 371 838 594 100 978 318 795 219 921 190 670 41 0.001 012 852 302 778 103 100 067 039 996 921 174 354 095 192 040 589 337 003 889
Table A47. Critical binding parameters μ c (au−1) for Hulthén potential, l=4
Table A47. Critical binding parameters μ c (au−1) for Hulthén potential, l=4
1 0.054 505 312 003 928 964 795 033 324 451 558 559 066 139 790 357 625 415 390 557 2 0.040 584 641 358 619 093 952 746 643 345 908 436 650 849 996 893 926 267 824 538 3 0.031 352 735 402 136 863 494 619 870 487 407 837 349 459 694 974 570 654 501 478 4 0.024 925 898 377 099 133 909 739 342 757 072 494 371 332 066 842 478 610 225 585 5 0.020 277 419 479 252 237 233 536 241 372 554 531 446 765 706 160 025 861 291 221 6 0.016 809 565 155 222 614 170 443 102 927 594 396 358 479 034 590 807 118 005 294 7 0.014 155 508 968 015 191 404 443 207 516 242 483 132 089 686 137 161 542 190 991 8 0.012 080 191 130 320 871 157 514 271 431 007 355 951 393 534 011 380 657 556 204 9 0.010 427 449 501 136 319 384 558 825 513 067 812 156 321 418 298 838 254 422 344 10 0.009 090 309 283 748 304 193 891 780 996 901 841 933 881 114 187 194 191 871 141 11 0.007 993 533 679 786 680 913 365 471 962 441 892 190 314 806 248 502 625 154 926 12 0.007 082 981 587 350 802 635 828 320 973 404 034 692 669 387 931 533 371 516 894 13 0.006 318 901 474 727 743 402 686 036 787 709 783 688 812 825 355 319 263 329 697 14 0.005 671 583 197 155 590 904 985 273 215 586 511 392 371 175 906 652 645 540 389 15 0.005 118 466 754 133 650 278 306 391 215 671 247 780 902 864 274 956 577 261 948 16 0.004 642 176 263 655 782 853 041 565 967 872 005 594 192 193 066 069 760 723 561 17 0.004 229 155 999 564 532 118 528 646 142 850 754 964 795 441 021 931 274 889 030 18 0.003 868 706 875 753 917 784 650 139 975 607 035 047 581 093 937 121 605 407 883 19 0.003 552 294 588 450 123 880 149 569 824 297 978 248 760 897 454 262 559 868 464 20 0.003 273 045 377 703 409 618 549 475 517 201 187 514 798 028 585 970 011 667 545 21 0.003 025 373 498 813 966 273 505 824 135 639 297 577 376 055 238 927 039 748 474 22 0.002 804 702 546 021 851 011 132 616 819 395 908 658 460 165 471 899 722 989 991 23 0.002 607 254 576 011 143 801 744 989 920 794 498 694 179 391 421 650 048 733 474 24 0.002 429 888 834 032 470 034 786 413 261 327 496 997 487 011 366 047 839 623 601 25 0.002 269 977 196 472 032 710 089 779 705 052 952 554 715 981 384 853 502 257 172 26 0.002 125 307 087 885 566 189 181 223 581 803 365 262 816 179 176 950 934 813 589 27 0.001 994 005 165 410 750 057 916 661 013 211 526 445 111 905 599 918 663 475 397 28 0.001 874 476 849 287 359 510 042 586 635 399 155 159 372 826 267 939 393 856 077 29 0.001 765 358 051 294 288 327 547 129 938 943 317 655 023 071 518 939 574 302 301 30 0.001 665 476 370 566 662 307 374 775 022 870 539 959 053 583 355 252 194 613 348 31 0.001 573 819 694 602 041 593 836 108 215 331 089 827 856 135 081 526 659 456 077 32 0.001 489 510 634 789 262 330 722 873 250 531 080 224 256 940 467 391 276 475 198 33 0.001 411 785 590 596 920 740 842 757 744 299 422 794 702 332 101 557 230 314 152 34 0.001 339 977 509 652 625 190 670 392 568 817 226 269 181 511 379 557 519 052 949 35 0.001 273 501 617 052 193 756 837 151 454 772 857 577 909 429 595 200 898 551 073 36 0.001 211 843 543 990 168 411 074 969 668 194 582 477 492 074 092 577 948 711 733 37 0.001 154 549 405 888 560 550 822 688 960 558 670 900 925 634 399 117 081 434 484 38 0.001 101 217 472 833 055 188 441 966 803 502 168 964 115 828 995 534 056 139 955 39 0.001 051 491 147 050 535 730 343 680 223 588 927 753 482 317 777 399 929 124 349 40 0.001 005 053 018 356 590 769 645 531 696 350 478 419 837 356 467 410 077 550 358
Table A48. Critical binding parameters μ c (au−1) for Hulthén potential, l=5
Table A48. Critical binding parameters μ c (au−1) for Hulthén potential, l=5
1 0.037 504 157 621 261 599 307 845 788 022 415 895 089 450 727 673 238 904 349 593 2 0.029 284 239 280 935 389 926 843 831 608 091 634 776 943 028 525 570 541 873 992 3 0.023 478 284 055 737 125 891 270 601 819 997 266 473 277 867 725 747 717 159 593 4 0.019 229 718 918 348 832 646 193 673 618 760 760 702 612 086 841 212 795 755 263 5 0.016 029 897 746 104 609 487 926 858 324 187 823 452 890 039 297 706 201 399 638 6 0.013 561 536 957 329 614 186 118 990 102 112 450 170 014 491 358 291 406 609 377 7 0.011 618 531 604 616 622 343 650 430 452 274 094 954 008 041 476 467 166 913 823 8 0.010 062 363 634 696 395 081 820 028 866 124 255 055 906 263 688 506 769 898 654 9 0.008 797 200 097 400 931 532 111 365 469 337 755 733 686 501 460 121 413 749 744 10 0.007 755 060 116 992 438 023 930 335 502 027 671 235 078 662 285 691 016 075 142 11 0.006 886 656 719 143 153 939 565 111 912 127 657 563 924 933 594 549 296 397 275 12 0.006 155 563 631 290 797 078 364 650 192 671 992 997 263 465 492 528 225 021 953 13 0.005 534 397 108 481 620 199 076 473 560 212 248 269 839 752 902 489 661 176 578 14 0.005 002 255 672 271 580 675 446 449 390 404 053 194 438 420 445 637 524 748 389 15 0.004 542 966 027 539 938 021 636 847 327 154 510 263 244 394 060 687 871 273 432 16 0.004 143 857 907 138 104 000 926 218 724 862 640 328 748 632 904 207 326 246 592 17 0.003 794 893 332 394 222 634 478 574 909 696 310 497 047 655 190 972 118 789 696 18 0.003 488 037 920 476 581 284 086 293 111 626 815 611 647 012 333 316 884 376 329 19 0.003 216 800 380 585 424 926 184 836 714 851 340 494 664 228 343 833 401 975 866 20 0.002 975 890 737 031 802 481 569 530 928 016 395 479 429 114 910 210 905 523 818 21 0.002 760 963 584 186 488 217 343 928 302 155 872 440 269 867 432 765 278 339 815 22 0.002 568 423 056 523 572 472 026 069 952 745 040 201 148 773 851 070 374 592 360 23 0.002 395 273 144 060 570 474 297 325 063 078 295 739 400 422 696 429 244 392 626 24 0.002 239 001 706 422 136 601 665 860 291 575 027 802 282 985 108 403 268 370 178 25 0.002 097 489 795 959 044 183 935 368 099 096 492 756 238 167 271 068 179 740 035 26 0.001 968 940 176 783 028 499 694 058 590 854 897 840 175 284 785 255 529 830 715 27 0.001 851 820 537 357 190 813 505 196 997 288 184 340 417 330 320 484 363 702 212 28 0.001 744 818 047 282 174 959 294 744 233 936 631 458 840 374 126 061 658 520 024 29 0.001 646 802 743 192 964 139 071 945 369 167 695 078 967 923 447 713 861 185 124 30 0.001 556 797 838 470 757 614 682 140 183 894 042 543 934 594 764 963 422 794 383 31 0.001 473 955 501 435 542 192 782 091 791 600 779 111 284 731 882 051 597 035 123 32 0.001 397 536 981 689 374 378 321 658 880 597 942 988 196 165 959 864 821 470 329 33 0.001 326 896 215 807 069 893 942 944 411 314 621 542 566 648 108 055 027 233 202 34 0.001 261 466 233 929 354 560 333 485 296 653 957 369 075 828 178 984 913 360 111 35 0.001 200 747 833 966 898 243 137 581 622 114 198 130 831 607 473 279 686 450 495 36 0.001 144 300 101 598 626 941 457 928 728 405 998 652 172 678 780 623 435 219 734 37 0.001 091 732 440 439 095 784 931 866 190 177 129 700 577 504 082 121 587 946 662 38 0.001 042 697 843 821 469 059 943 861 371 684 223 054 049 909 130 024 464 135 700
Table A49. Critical binding parameters μ c (au−1) for Hulthén potential, l=6
Table A49. Critical binding parameters μ c (au−1) for Hulthén potential, l=6
1 0.027 379 013 517 405 846 064 398 896 350 665 094 972 629 911 949 503 570 496 062 2 0.022 124 129 661 551 987 334 946 457 760 417 306 047 552 439 966 037 206 169 011 3 0.018 237 095 442 474 674 549 231 234 389 348 998 935 947 072 974 389 263 054 569 4 0.015 283 319 964 880 668 003 081 679 671 959 113 224 800 015 559 623 266 932 879 5 0.012 987 638 690 650 220 344 360 591 323 278 056 326 586 227 964 672 442 102 783 6 0.011 169 036 747 172 108 065 141 041 805 660 271 243 083 263 664 905 424 749 049 7 0.009 704 537 522 417 551 145 572 681 740 337 611 624 706 705 503 750 682 473 888 8 0.008 508 262 432 372 513 462 138 871 742 302 888 200 218 723 685 910 766 457 360 9 0.007 518 794 132 701 856 927 709 981 360 653 799 584 361 082 771 140 709 066 858 10 0.006 691 284 812 901 979 112 407 669 188 853 040 070 201 088 018 369 546 543 389 11 0.005 992 378 786 734 917 960 844 198 018 960 654 013 694 323 607 283 525 205 265 12 0.005 396 859 164 251 311 832 420 354 394 326 545 233 085 466 310 726 244 302 217 13 0.004 885 381 247 434 406 382 826 534 098 505 679 235 053 311 424 692 664 958 230 14 0.004 442 908 448 971 898 372 625 749 278 991 892 237 084 522 147 881 952 790 262 15 0.004 057 612 745 565 883 704 751 632 839 908 428 047 646 684 668 249 865 944 091 16 0.003 720 088 609 189 701 983 906 359 902 575 578 660 524 812 044 783 861 046 242 17 0.003 422 782 408 593 538 744 272 880 702 979 803 948 432 674 330 511 779 139 926 18 0.003 159 572 414 415 089 653 624 997 278 921 762 631 835 162 427 824 603 663 571 19 0.002 925 455 690 873 757 527 266 362 716 733 807 320 861 643 376 209 294 987 544 20 0.002 716 311 918 583 961 763 138 138 063 907 310 995 757 081 829 503 061 700 852 21 0.002 528 723 307 881 402 720 126 255 141 802 046 791 600 253 809 183 647 801 230 22 0.002 359 835 898 639 188 493 141 978 861 202 570 217 048 889 270 244 640 026 670 23 0.002 207 251 736 745 544 942 521 020 177 695 295 448 442 604 574 383 343 943 432 24 0.002 068 944 324 309 350 490 410 990 897 986 523 232 417 828 963 261 228 824 238 25 0.001 943 191 781 623 207 475 328 683 836 799 312 679 161 134 166 454 825 659 744 26 0.001 828 523 609 283 217 730 180 416 699 645 709 077 391 068 875 902 047 934 779 27 0.001 723 677 981 208 445 259 521 750 586 747 532 458 877 969 850 158 723 707 192 28 0.001 627 567 256 341 352 004 871 797 862 652 424 391 135 011 343 703 679 014 966 29 0.001 539 249 952 093 688 293 838 341 107 384 900 327 949 259 691 917 255 975 851 30 0.001 457 907 833 697 497 084 894 351 769 569 283 527 010 096 555 770 075 327 036 31 0.001 382 827 080 640 203 787 782 013 591 144 097 019 862 892 373 437 614 502 986 32 0.001 313 382 722 552 752 782 361 306 720 141 421 853 141 486 592 359 099 555 299 33 0.001 249 025 712 370 374 232 797 524 437 082 882 512 599 885 888 122 341 724 037 34 0.001 189 272 138 720 505 428 961 688 934 867 612 929 545 832 650 448 894 303 562 35 0.001 133 694 182 759 715 838 806 810 214 400 738 028 173 653 477 974 938 040 559 36 0.001 081 912 504 713 480 586 090 622 734 865 734 105 311 107 299 705 486 494 383 37 0.001 033 589 807 789 423 793 379 831 211 853 198 009 174 823 405 431 750 283 112
Table A50. Critical binding parameters μ c (au−1) for Hulthén potential, l=7
Table A50. Critical binding parameters μ c (au−1) for Hulthén potential, l=7
1 0.020 864 266 780 860 078 453 789 576 568 801 545 166 757 672 002 014 256 083 290 2 0.017 302 662 672 912 724 217 396 842 592 514 441 185 768 197 066 929 730 631 594 3 0.014 573 499 347 129 790 545 729 337 116 516 248 532 045 322 450 931 523 379 295 4 0.012 437 355 932 937 240 387 071 504 039 857 991 230 613 863 277 613 923 250 967 5 0.010 734 882 615 914 135 072 290 314 925 339 198 434 068 438 954 073 558 699 275 6 0.009 356 726 039 620 790 591 969 303 618 247 576 622 312 304 247 735 689 542 142 7 0.008 225 848 855 412 973 199 003 079 125 896 063 287 081 707 205 921 723 432 100 8 0.007 286 731 192 668 955 177 899 149 807 407 228 168 617 868 580 501 805 997 873 9 0.006 498 555 090 812 662 621 443 289 966 181 653 656 435 402 480 253 915 179 170 10 0.005 830 777 972 336 346 952 723 297 034 365 281 119 278 097 685 580 811 857 436 11 0.005 260 184 475 893 616 227 823 109 764 810 556 102 588 732 937 600 549 259 723 12 0.004 768 878 585 684 606 287 351 743 439 256 286 842 571 378 118 157 316 435 588 13 0.004 342 888 600 363 741 065 050 211 194 836 518 906 135 006 274 338 244 362 864 14 0.003 971 180 339 985 109 895 604 257 086 152 666 146 599 195 501 699 785 955 353 15 0.003 644 947 699 806 933 221 397 696 000 730 834 113 178 713 874 922 089 376 712 16 0.003 357 095 014 236 458 561 451 451 553 453 790 169 304 689 037 186 720 251 244 17 0.003 101 854 244 064 403 800 459 358 527 686 983 316 914 846 936 474 639 405 502 18 0.002 874 498 347 279 404 208 266 300 710 371 219 475 512 697 781 770 572 898 351 19 0.002 671 124 208 787 956 447 237 265 887 242 189 199 130 477 215 131 176 551 326 20 0.002 488 486 509 860 974 689 166 505 310 920 169 048 708 560 461 939 635 501 016 21 0.002 323 869 337 599 601 171 368 486 035 554 919 445 887 989 879 102 137 700 027 22 0.002 174 986 057 782 945 936 943 557 848 707 487 054 428 031 323 072 510 597 570 23 0.002 039 900 567 153 304 863 718 050 132 356 186 201 560 267 143 914 843 173 997 24 0.001 916 964 869 663 852 678 444 815 190 066 412 835 123 886 208 293 288 255 229 25 0.001 804 769 225 990 206 558 610 092 968 868 943 554 497 953 887 234 975 467 665 26 0.001 702 102 066 974 364 193 965 681 957 792 014 028 818 661 509 158 284 852 190 27 0.001 607 917 547 871 692 123 018 725 360 517 712 057 910 845 146 512 449 683 933 28 0.001 521 309 125 327 616 444 568 160 898 077 989 296 358 234 386 110 393 972 154 29 0.001 441 487 914 130 998 005 984 658 521 390 097 485 459 787 266 254 140 724 994 30 0.001 367 764 861 797 920 293 286 823 179 119 945 367 525 614 063 013 620 149 317 31 0.001 299 535 991 251 101 105 053 547 099 706 382 432 498 284 198 221 245 980 362 32 0.001 236 270 123 346 289 397 399 000 825 552 145 779 049 240 888 772 731 614 173 33 0.001 177 498 614 773 932 264 264 176 865 178 835 203 255 841 469 133 414 365 499 34 0.001 122 806 742 389 968 170 515 979 852 529 066 456 902 857 965 530 427 407 882 35 0.001 071 826 439 233 225 494 868 150 823 637 487 182 577 577 220 790 920 375 202 36 0.001 024 230 145 485 462 987 850 442 214 148 623 612 854 665 391 068 231 741 781
Table A51. Critical binding parameters μ c (au−1) for Hulthén potential, l=8
Table A51. Critical binding parameters μ c (au−1) for Hulthén potential, l=8
1 0.016 426 477 708 284 253 716 039 512 289 537 027 778 748 663 643 396 283 933 126 2 0.013 901 745 603 033 588 659 913 515 333 553 312 665 897 795 071 886 616 551 198 3 0.011 912 427 705 033 935 436 130 377 643 611 050 402 459 122 704 083 423 718 267 4 0.010 317 865 003 358 436 159 078 783 254 460 839 525 773 331 486 492 694 039 154 5 0.009 020 620 723 983 738 034 735 095 944 017 780 866 780 904 650 656 461 972 083 6 0.007 951 485 846 988 744 664 272 765 117 565 311 792 564 705 211 067 533 310 155 7 0.007 060 218 971 524 948 914 568 091 313 687 639 125 186 864 371 527 338 313 859 8 0.006 309 643 893 282 880 030 629 786 432 750 072 601 355 423 302 419 495 753 152 9 0.005 671 782 268 073 125 270 707 330 426 847 750 550 890 391 397 141 615 160 490 10 0.005 125 257 438 519 974 399 038 439 740 668 711 952 277 846 615 269 775 533 360 11 0.004 653 513 627 551 853 781 549 857 234 299 590 392 364 937 915 122 813 335 794 12 0.004 243 570 633 766 217 020 751 232 155 876 016 398 688 323 806 374 065 935 815 13 0.003 885 137 743 370 860 690 865 413 285 831 511 540 811 287 206 724 860 152 239 14 0.003 569 973 245 502 691 753 475 915 535 344 543 927 231 227 519 843 261 142 621 15 0.003 291 414 800 031 162 576 002 251 582 911 875 358 170 752 127 538 054 155 327 16 0.003 044 030 545 051 615 002 898 964 074 872 298 528 444 044 442 405 405 686 591 17 0.002 823 356 769 048 613 983 988 528 023 824 617 345 187 075 864 488 029 376 033 18 0.002 625 698 473 637 969 901 845 030 762 198 170 148 145 818 508 499 959 853 362 19 0.002 447 976 189 081 513 748 073 318 139 261 957 613 022 741 929 327 716 274 630 20 0.002 287 607 193 196 770 393 034 781 101 989 955 687 792 504 536 183 491 838 033 21 0.002 142 412 589 979 948 260 468 563 645 123 198 829 639 589 415 378 946 236 537 22 0.002 010 544 016 847 366 307 758 458 668 520 917 296 834 711 989 549 112 320 161 23 0.001 890 425 387 318 629 154 383 705 304 986 367 023 729 810 428 766 354 108 152 24 0.001 780 706 249 461 451 956 518 621 891 748 471 117 929 451 959 185 871 616 900 25 0.001 680 224 190 263 119 518 618 010 960 575 298 957 852 682 414 930 683 872 592 26 0.001 587 974 337 778 823 176 569 135 492 793 308 851 325 866 990 059 693 263 784 27 0.001 503 084 472 006 243 626 342 410 234 060 334 361 271 430 725 863 740 649 683 28 0.001 424 794 597 497 033 297 918 113 308 723 233 478 924 563 182 082 963 583 372 29 0.001 352 440 087 720 383 281 836 121 925 588 195 091 346 246 696 418 700 246 797 30 0.001 285 437 705 825 645 796 356 064 267 882 860 078 698 791 787 489 655 492 333 31 0.001 223 273 954 954 383 444 423 957 257 627 717 158 167 058 919 108 774 168 469 32 0.001 165 495 325 365 747 052 074 335 392 677 013 693 622 687 446 909 780 061 071 33 0.001 111 700 093 918 174 900 979 358 758 660 228 685 952 088 997 202 055 545 830 34 0.001 061 531 400 181 362 671 404 348 928 196 212 397 524 301 337 177 427 636 945 35 0.001 014 671 377 290 018 923 777 196 831 300 966 773 504 104 408 659 127 171 329
Table A52. Critical binding parameters μ c (au−1) for Hulthén potential, l=9
Table A52. Critical binding parameters μ c (au−1) for Hulthén potential, l=9
1 0.013 267 906 420 725 144 574 647 282 768 382 611 429 273 303 426 274 429 186 765 2 0.011 413 421 334 621 675 146 916 186 131 900 161 206 354 774 402 963 048 052 670 3 0.009 918 850 966 560 703 100 254 443 126 319 870 204 204 566 800 538 427 253 063 4 0.008 697 178 224 793 057 247 829 782 964 377 166 909 002 068 128 451 951 828 892 5 0.007 686 116 669 584 659 418 132 257 261 695 894 264 510 665 113 331 048 345 614 6 0.006 840 139 804 375 214 466 410 124 968 934 979 776 419 349 767 451 638 160 159 7 0.006 125 353 819 712 897 883 644 641 395 141 761 862 027 846 115 746 242 135 249 8 0.005 516 110 425 931 965 797 175 257 753 513 563 407 214 507 913 589 438 628 996 9 0.004 992 716 085 612 111 843 472 268 692 188 323 071 201 102 550 543 408 205 679 10 0.004 539 850 086 531 347 423 131 957 705 495 773 479 738 617 508 073 045 378 200 11 0.004 145 451 513 169 736 362 614 191 090 367 218 258 112 682 884 814 798 505 530 12 0.003 799 922 831 564 635 989 457 131 755 996 890 497 122 664 400 858 888 774 472 13 0.003 495 551 258 479 411 171 135 357 244 613 468 025 540 865 308 748 301 441 984 14 0.003 226 082 474 235 911 266 857 184 895 878 579 017 235 587 868 000 591 657 465 15 0.002 986 402 548 298 757 418 622 401 005 078 728 848 131 721 862 914 343 945 181 16 0.002 772 297 817 094 937 643 073 319 415 781 391 770 521 556 177 189 073 945 112 17 0.002 580 271 645 070 371 514 688 523 135 579 677 482 974 317 050 170 900 765 643 18 0.002 407 403 191 951 319 100 840 355 951 565 537 710 197 021 129 938 429 996 119 19 0.002 251 237 544 120 857 774 765 237 643 976 145 035 280 100 660 761 275 303 672 20 0.002 109 699 505 299 982 364 199 741 608 570 481 508 074 614 561 131 256 791 713 21 0.001 981 025 405 578 350 456 394 752 733 615 535 121 148 642 365 380 482 070 181 22 0.001 863 708 755 599 330 244 152 777 326 702 516 447 898 481 635 526 042 165 652 23 0.001 756 456 628 350 799 603 094 159 662 536 203 017 291 471 462 305 076 234 076 24 0.001 658 154 418 290 152 772 634 752 537 108 953 637 022 545 283 367 310 886 957 25 0.001 567 837 190 739 138 042 632 450 124 566 273 818 574 255 802 893 880 369 218 26 0.001 484 666 251 743 427 802 184 424 649 492 730 042 664 352 919 550 040 792 346 27 0.001 407 909 880 429 511 930 257 312 139 990 518 458 910 956 007 827 119 300 933 28 0.001 336 927 400 865 411 135 007 827 548 050 451 618 653 576 731 050 556 578 798 29 0.001 271 155 948 867 135 944 404 985 644 790 781 269 730 131 053 020 148 306 650 30 0.001 210 099 425 692 375 230 266 222 034 783 214 735 454 300 231 103 217 178 510 31 0.001 153 319 235 711 354 966 526 960 841 027 948 112 459 434 178 792 807 948 468 32 0.001 100 426 486 679 390 432 503 677 668 813 019 115 345 735 375 993 359 289 472 33 0.001 051 075 394 857 394 656 809 177 015 130 795 908 510 659 639 944 689 008 125 34 0.001 004 957 687 168 143 839 713 400 635 578 079 217 435 536 693 355 109 140 346
Table A53. Critical binding parameters μ c (au−1) for Hulthén potential, l=10
Table A53. Critical binding parameters μ c (au−1) for Hulthén potential, l=10
1 0.010 940 150 741 123 942 885 437 022 519 230 806 251 723 125 475 167 207 052 796 2 0.009 538 085 282 915 766 756 426 287 864 741 414 208 894 606 684 746 635 192 003 3 0.008 386 847 442 849 003 488 203 984 928 427 705 908 175 945 359 901 455 997 598 4 0.007 430 271 861 880 216 111 443 779 686 598 715 359 889 674 797 223 659 819 861 5 0.006 627 040 319 801 375 359 475 957 798 804 697 148 057 733 236 899 585 201 483 6 0.005 946 213 549 071 392 656 357 738 521 367 271 965 863 466 703 515 338 902 491 7 0.005 364 256 679 073 837 109 106 362 775 258 479 913 754 855 828 678 991 953 963 8 0.004 863 013 451 695 590 817 279 656 098 199 317 876 986 061 101 199 517 376 816 9 0.004 428 298 378 995 018 296 218 375 328 485 007 197 548 305 971 627 766 985 776 10 0.004 048 900 439 222 124 399 211 303 913 193 791 887 192 995 572 341 002 808 326 11 0.003 715 866 382 010 817 828 854 942 887 183 920 775 214 856 451 330 838 895 578 12 0.003 421 977 464 538 813 981 664 390 772 628 329 041 279 550 817 573 889 731 226 13 0.003 161 362 210 312 654 177 341 019 492 424 160 656 136 242 143 651 561 683 163 14 0.002 929 206 259 840 335 293 075 283 676 079 094 193 064 201 840 355 910 001 176 15 0.002 721 532 479 776 942 128 134 041 883 050 559 383 446 407 600 924 693 977 742 16 0.002 535 032 557 354 659 398 341 880 493 233 873 041 486 684 305 677 848 220 853 17 0.002 366 936 764 378 666 406 807 725 490 152 596 695 121 808 109 843 768 726 706 18 0.002 214 912 325 412 838 133 832 855 987 859 459 765 115 653 180 299 652 795 852 19 0.002 076 983 437 541 424 063 964 223 887 188 695 374 755 822 217 258 336 610 555 20 0.001 951 467 832 609 415 629 626 583 465 943 561 805 300 326 478 315 046 069 873 21 0.001 836 926 089 062 045 240 920 869 601 994 946 840 472 479 852 015 679 685 650 22 0.001 732 120 850 665 142 448 810 118 111 789 708 854 737 001 470 513 204 560 493 23 0.001 635 983 802 407 862 734 717 190 932 066 564 213 016 687 936 225 864 112 366 24 0.001 547 588 764 267 841 704 249 616 723 569 228 885 940 862 851 815 472 108 629 25 0.001 466 129 642 819 387 203 547 264 717 749 364 976 559 939 829 254 481 335 298 26 0.001 390 902 264 972 371 724 705 543 811 061 098 469 573 746 731 951 067 802 891 27 0.001 321 289 332 958 908 733 662 009 375 351 565 803 079 628 735 675 744 992 416 28 0.001 256 747 903 256 773 451 327 041 488 081 492 901 230 822 061 564 937 462 215 29 0.001 196 798 917 583 968 783 512 976 135 187 199 313 520 438 783 120 698 258 797 30 0.001 141 018 410 964 361 600 955 303 024 779 062 888 936 708 765 456 258 828 133 31 0.001 089 030 097 148 038 500 043 874 560 870 468 014 566 279 213 054 555 217 297 32 0.001 040 499 090 542 356 790 573 430 790 789 872 348 344 713 322 425 494 977 036
Table A54. Critical binding parameters μ c (au−1) for Hulthén potential, l=11
Table A54. Critical binding parameters μ c (au−1) for Hulthén potential, l=11
1 0.009 175 399 777 847 996 054 292 131 437 865 215 270 842 725 031 414 289 869 002 2 0.008 089 727 823 409 438 031 415 919 331 805 869 803 705 080 585 233 643 988 457 3 0.007 184 189 989 084 538 382 750 649 417 301 090 267 788 395 212 953 857 371 266 4 0.006 421 224 462 381 906 755 184 557 754 363 833 658 845 161 041 000 807 701 595 5 0.005 772 550 239 624 205 616 648 678 082 512 671 973 114 215 863 078 736 581 341 6 0.005 216 547 671 638 180 809 042 293 316 745 475 460 814 705 476 598 897 822 525 7 0.004 736 462 789 558 044 080 199 074 085 779 372 924 472 032 192 883 538 497 235 8 0.004 319 151 888 725 189 519 765 745 606 834 712 440 035 064 981 050 668 831 491 9 0.003 954 188 205 282 343 513 846 368 758 359 777 576 186 260 637 082 455 055 580 10 0.003 633 216 048 813 722 739 027 704 571 534 556 267 035 311 139 008 500 785 437 11 0.003 349 477 048 776 486 310 044 665 566 701 442 316 486 153 854 908 882 147 146 12 0.003 097 458 039 288 512 664 184 908 805 238 458 768 726 866 544 548 164 141 152 13 0.002 872 626 172 080 571 231 615 551 311 296 264 295 055 078 385 904 566 572 749 14 0.002 671 227 423 295 246 315 268 474 127 202 505 513 509 993 305 026 980 030 339 15 0.002 490 131 742 575 540 032 598 384 310 480 136 450 640 351 749 268 816 433 895 16 0.002 326 712 911 615 820 061 775 041 857 395 245 227 329 742 834 140 095 979 552 17 0.002 178 754 505 700 485 300 135 845 698 335 611 343 907 482 400 488 708 612 652 18 0.002 044 375 678 962 846 940 321 175 537 793 124 793 083 559 090 181 544 996 333 19 0.001 921 972 142 682 530 292 515 079 535 227 153 940 737 388 697 926 399 310 667 20 0.001 810 168 887 408 183 000 683 003 972 261 310 458 568 559 552 224 776 694 807 21 0.001 707 782 055 606 197 022 291 083 956 365 483 383 235 522 764 196 395 748 297 22 0.001 613 787 997 908 203 981 545 697 183 107 012 391 538 489 927 139 793 015 201 23 0.001 527 298 008 789 404 408 779 780 348 810 830 641 766 511 346 549 526 806 726 24 0.001 447 537 582 454 984 995 765 617 745 610 923 018 010 356 564 410 481 967 109 25 0.001 373 829 289 005 118 286 366 352 221 775 432 684 305 128 266 068 177 003 466 26 0.001 305 578 567 408 128 975 244 263 232 116 466 404 216 734 681 741 697 027 107 27 0.001 242 261 881 781 271 806 673 028 080 149 365 526 150 927 780 480 880 662 505 28 0.001 183 416 802 774 326 270 095 615 807 837 338 084 063 574 880 503 343 906 191 29 0.001 128 633 665 087 301 300 550 969 757 023 513 016 522 797 789 215 688 998 535 30 0.001 077 548 521 662 093 963 299 408 343 242 597 951 354 589 288 492 210 672 509 31 0.001 029 837 169 559 558 615 242 186 528 988 305 172 717 703 840 969 921 995 396
Table A55. Critical binding parameters μ c (au−1) for Hulthén potential, l=12
Table A55. Critical binding parameters μ c (au−1) for Hulthén potential, l=12
1 0.007 805 680 448 079 473 729 754 614 222 651 204 908 074 296 661 521 164 218 917 2 0.006 947 903 863 263 270 107 372 428 092 992 915 719 434 352 100 569 367 946 832 3 0.006 222 820 856 841 459 096 504 787 530 366 973 233 786 073 872 279 331 217 199 4 0.005 604 542 570 229 372 311 574 230 843 302 865 243 053 876 947 571 895 621 725 5 0.005 073 184 568 404 756 622 473 101 644 704 559 533 449 674 650 958 178 423 743 6 0.004 613 271 283 147 811 312 883 737 742 920 432 415 503 775 678 746 159 992 454 7 0.004 212 614 183 306 725 078 817 557 033 313 431 241 743 947 010 944 603 619 827 8 0.003 861 509 348 959 851 695 394 075 651 988 440 682 888 163 784 289 774 773 846 9 0.003 552 154 534 733 388 347 996 757 011 302 432 153 432 922 141 154 073 699 898 10 0.003 278 219 676 444 111 036 249 855 987 574 369 578 893 383 069 930 612 186 574 11 0.003 034 526 356 361 139 007 890 080 568 632 205 145 622 075 291 781 387 218 434 12 0.002 816 805 749 354 204 521 509 304 083 278 388 529 063 050 648 072 607 913 249 13 0.002 621 513 840 953 738 413 094 718 832 394 931 105 982 213 800 157 123 938 248 14 0.002 445 688 945 886 729 194 681 118 043 888 647 874 513 648 712 732 386 223 071 15 0.002 286 840 818 686 136 310 619 975 254 206 341 741 255 106 714 685 254 813 408 16 0.002 142 863 603 338 866 087 015 942 116 437 354 413 548 778 317 502 835 649 224 17 0.002 011 966 944 933 688 930 848 364 181 120 018 266 163 392 378 484 637 076 628 18 0.001 892 621 062 493 112 622 360 763 240 949 073 213 322 242 129 820 245 027 920 19 0.001 783 512 643 916 451 954 422 296 389 172 798 020 598 622 702 846 663 536 344 20 0.001 683 509 195 752 725 112 902 122 227 985 960 380 843 590 501 389 570 623 356 21 0.001 591 630 047 148 035 786 897 755 419 447 047 542 838 387 654 379 312 143 591 22 0.001 507 022 627 207 600 267 655 831 005 209 900 968 244 060 036 084 402 793 017 23 0.001 428 942 948 912 286 526 337 006 226 020 652 372 411 315 730 897 039 228 624 24 0.001 356 739 469 334 758 015 200 928 985 495 327 191 103 082 602 873 674 524 437 25 0.001 289 839 675 638 137 627 184 426 363 659 487 994 588 104 341 948 914 285 585 26 0.001 227 738 883 887 184 729 359 023 510 917 668 965 683 114 276 267 997 048 813 27 0.001 169 990 843 698 143 823 398 083 696 640 483 029 059 233 070 150 275 874 400 28 0.001 116 199 823 977 589 300 162 803 547 395 233 137 383 196 666 942 184 219 056 29 0.001 066 013 919 185 810 696 135 549 319 613 781 364 073 323 017 254 795 476 499 30 0.001 019 119 365 964 092 053 671 546 629 088 935 060 424 732 970 913 789 163 223
Table A56. Critical binding parameters μ c (au−1) for Hulthén potential, l=13
Table A56. Critical binding parameters μ c (au−1) for Hulthén potential, l=13
1 0.006 721 302 533 478 393 861 554 123 643 261 883 113 028 655 934 565 283 962 623 2 0.006 031 831 976 293 947 919 329 485 374 436 962 213 819 790 079 569 822 760 982 3 0.005 442 259 939 061 199 303 065 008 484 153 687 235 297 695 774 833 817 623 591 4 0.004 934 274 498 792 487 257 548 579 115 601 077 687 560 591 394 512 985 673 080 5 0.004 493 565 440 722 609 889 756 582 140 834 520 282 676 831 395 204 080 453 845 6 0.004 108 819 663 589 784 691 472 254 535 653 127 149 785 982 935 761 678 099 268 7 0.003 770 999 061 640 172 415 184 485 081 454 779 905 170 317 405 642 686 208 076 8 0.003 472 813 533 957 477 616 776 126 544 287 431 337 317 677 263 212 654 585 847 9 0.003 208 331 067 216 457 820 754 277 208 956 694 171 998 400 238 064 797 417 486 10 0.002 972 685 591 998 912 440 601 807 174 037 448 575 336 201 597 420 771 910 044 11 0.002 761 855 559 893 844 088 683 405 268 542 180 651 141 658 259 344 193 432 042 12 0.002 572 494 332 481 167 049 461 928 634 009 670 448 790 369 489 085 039 402 551 13 0.002 401 798 979 015 853 147 284 505 734 333 744 519 367 838 464 473 617 825 336 14 0.002 247 407 858 757 097 841 869 137 929 555 769 604 407 680 448 854 941 690 822 15 0.002 107 319 994 443 555 636 113 146 520 000 842 780 085 369 386 872 686 441 581 16 0.001 979 831 098 340 850 687 812 070 546 749 455 026 795 733 357 401 986 537 050 17 0.001 863 482 436 090 995 863 662 518 282 238 359 797 921 769 437 366 846 804 803 18 0.001 757 019 668 978 137 165 775 000 835 485 821 466 835 032 372 624 528 727 921 19 0.001 659 359 511 960 111 185 592 696 277 561 011 033 703 774 157 449 881 330 775 20 0.001 569 562 557 913 736 101 890 786 665 905 902 542 051 705 858 404 476 871 167 21 0.001 486 810 999 883 659 892 462 211 599 705 471 518 533 165 202 136 286 747 663 22 0.001 410 390 268 996 050 947 231 815 508 620 171 850 459 854 396 258 563 916 831 23 0.001 339 673 821 747 555 555 889 411 819 097 600 532 504 200 809 801 422 702 612 24 0.001 274 110 474 916 218 595 780 915 736 193 546 382 526 768 890 997 002 474 771 25 0.001 213 213 812 557 739 767 199 124 806 063 634 714 928 087 040 096 382 015 010 26 0.001 156 553 287 038 451 737 498 531 412 272 748 221 256 865 610 603 450 939 716 27 0.001 103 746 711 846 378 501 374 936 409 924 325 246 504 946 314 258 322 234 369 28 0.001 054 453 903 208 363 039 214 886 177 074 601 651 750 863 712 510 881 067 585 29 0.001 008 371 274 191 653 083 527 731 540 875 653 903 477 194 266 955 762 776 359
Table A57. Critical binding parameters μ c (au−1) for Hulthén potential, l=14
Table A57. Critical binding parameters μ c (au−1) for Hulthén potential, l=14
1 0.005 848 170 260 304 191 129 434 529 886 533 876 845 851 756 102 010 282 081 323 2 0.005 285 691 643 260 854 305 249 821 373 278 460 123 944 201 547 134 894 577 226 3 0.004 799 854 224 723 587 993 222 514 660 518 447 064 730 336 862 414 416 125 061 4 0.004 377 410 387 298 584 593 331 815 641 129 117 657 447 037 298 301 349 457 698 5 0.004 007 849 376 322 934 745 151 544 606 717 836 331 623 343 500 202 209 240 376 6 0.003 682 746 224 085 920 814 513 645 323 860 247 155 687 251 511 500 946 310 191 7 0.003 395 284 541 802 898 806 697 763 328 166 780 396 164 452 691 113 228 815 252 8 0.003 139 902 011 910 541 612 733 812 879 130 808 834 114 468 861 605 869 581 370 9 0.002 912 023 776 780 307 767 239 158 711 839 948 199 364 268 681 328 686 992 718 10 0.002 707 859 658 617 159 767 048 613 627 094 729 650 307 327 201 170 983 529 398 11 0.002 524 248 319 178 367 728 532 724 778 533 676 799 095 532 209 160 486 498 905 12 0.002 358 536 338 977 430 542 183 102 847 490 326 396 370 649 005 172 956 998 549 13 0.002 208 483 552 814 032 756 798 219 747 214 305 747 436 825 443 539 121 403 800 14 0.002 072 188 324 350 870 309 897 081 217 819 925 178 573 852 040 073 987 186 422 15 0.001 948 028 102 688 043 510 316 826 680 832 716 851 178 207 821 226 589 571 932 16 0.001 834 611 792 837 557 091 071 882 778 957 293 972 627 415 109 070 700 918 118 17 0.001 730 741 332 874 670 093 149 484 994 869 316 449 277 401 671 295 959 946 922 18 0.001 635 380 500 305 798 349 757 080 302 168 585 058 081 213 756 284 708 095 601 19 0.001 547 629 435 340 361 767 789 064 906 051 577 883 056 368 919 416 078 115 222 20 0.001 466 703 715 429 217 221 210 872 353 494 023 173 292 814 694 169 201 203 439 21 0.001 391 917 076 011 014 967 996 424 986 830 926 958 159 228 161 398 842 355 718 22 0.001 322 667 069 843 671 060 978 099 598 450 437 447 713 561 056 667 098 791 242 23 0.001 258 423 108 024 661 725 061 978 528 870 902 294 768 330 601 651 052 884 434 24 0.001 198 716 441 695 365 621 520 513 525 031 559 277 150 001 024 079 979 798 723 25 0.001 143 131 733 136 249 651 396 341 160 070 421 824 302 605 890 455 180 392 638 26 0.001 091 299 934 852 010 261 952 064 417 145 480 002 856 883 204 116 964 901 195 27 0.001 042 892 250 030 015 294 631 105 774 814 945 681 595 470 822 460 602 387 841
Table A58. Critical binding parameters μ c (au−1) for Hulthén potential, l=15
Table A58. Critical binding parameters μ c (au−1) for Hulthén potential, l=15
1 0.005 134 768 727 032 822 157 152 289 141 536 478 436 108 022 696 012 145 756 602 2 0.004 669 908 072 412 689 495 653 781 643 208 976 253 190 265 521 420 041 843 139 3 0.004 264 824 627 626 486 580 044 996 043 162 561 015 214 592 133 907 362 885 009 4 0.003 909 743 216 984 214 721 746 502 530 394 136 502 084 313 778 443 537 005 714 5 0.003 596 803 539 012 726 924 687 612 536 247 336 238 021 174 288 709 659 179 741 6 0.003 319 627 309 147 502 925 069 225 475 191 568 839 683 757 197 985 690 939 150 7 0.003 072 995 462 034 127 947 598 721 894 637 159 366 809 087 158 430 883 123 558 8 0.002 852 604 516 434 504 202 087 207 466 249 053 868 537 647 521 903 763 779 369 9 0.002 654 880 648 156 551 953 428 391 440 887 402 811 360 436 329 964 505 930 275 10 0.002 476 836 351 954 926 195 609 299 771 811 534 272 967 672 625 661 939 601 898 11 0.002 315 958 892 883 274 100 239 336 443 999 120 197 840 034 808 081 581 297 811 12 0.002 170 122 736 234 700 746 819 323 023 815 718 931 924 687 059 831 114 160 715 13 0.002 037 520 241 255 020 575 643 614 257 786 441 845 238 296 822 343 035 051 682 14 0.001 916 606 392 393 587 774 963 100 448 599 755 573 280 888 763 108 177 018 183 15 0.001 806 054 411 399 911 493 755 545 568 166 949 411 479 031 491 526 177 810 516 16 0.001 704 719 870 413 860 331 893 200 786 850 370 878 078 709 051 921 669 110 394 17 0.001 611 611 496 176 324 550 851 535 477 728 472 048 704 558 777 339 143 154 757 18 0.001 525 867 277 669 623 694 947 204 119 177 343 565 020 863 380 438 575 469 686 19 0.001 446 734 804 998 315 760 343 672 350 169 586 133 722 589 805 454 854 544 874 20 0.001 373 555 005 077 349 389 375 562 061 781 924 628 585 489 346 331 293 973 792 21 0.001 305 748 620 280 018 602 791 866 619 290 681 959 670 034 529 760 336 212 713 22 0.001 242 804 914 383 754 477 284 402 798 245 543 903 965 678 488 263 527 436 136 23 0.001 184 272 196 638 697 331 290 716 814 256 134 698 739 166 104 614 074 456 153 24 0.001 129 749 837 392 088 627 268 351 954 717 485 917 639 870 983 596 881 193 605 25 0.001 078 881 513 191 731 244 703 440 516 817 970 458 121 025 660 155 299 789 376 26 0.001 031 349 469 941 022 932 804 749 174 224 674 444 562 004 439 588 958 076 341
Table A59. Critical binding parameters μ c (au−1) for Hulthén potential, l=16
Table A59. Critical binding parameters μ c (au−1) for Hulthén potential, l=16
1 0.004 544 381 589 213 360 268 437 099 084 629 317 607 706 416 321 391 692 121 112 2 0.004 155 791 409 361 078 906 075 727 475 047 994 475 172 163 150 140 165 685 278 3 0.003 814 509 407 261 109 047 818 358 211 940 027 705 947 888 636 503 510 890 995 4 0.003 513 195 461 518 907 185 723 108 033 837 783 726 999 698 485 499 059 491 855 5 0.003 245 876 503 432 514 262 542 864 258 078 627 864 018 742 483 809 081 877 543 6 0.003 007 652 147 491 532 927 614 933 017 643 893 020 072 063 767 923 946 072 297 7 0.002 794 471 749 911 808 602 409 722 668 746 342 967 665 350 606 308 190 865 898 8 0.002 602 963 726 378 937 806 055 255 520 228 062 100 645 568 369 240 135 835 197 9 0.002 430 303 569 432 124 795 007 163 173 063 158 246 261 788 981 448 031 255 674 10 0.002 274 110 845 246 116 520 125 905 076 756 047 414 604 831 854 319 140 361 016 11 0.002 132 368 115 793 475 198 976 888 949 639 861 937 209 910 775 650 399 553 328 12 0.002 003 356 608 828 225 910 997 922 487 769 162 724 514 047 430 160 723 291 698 13 0.001 885 604 795 183 992 380 455 206 691 900 216 338 306 548 032 039 471 152 818 14 0.001 777 846 996 575 419 098 074 095 886 583 158 891 778 173 211 081 615 216 499 15 0.001 678 989 849 146 065 974 929 991 572 679 077 834 836 758 671 818 699 394 780 16 0.001 588 084 964 581 089 028 428 173 735 573 077 177 685 085 017 072 715 831 041 17 0.001 504 306 514 267 436 300 848 806 448 722 455 308 217 487 884 723 933 879 730 18 0.001 426 932 749 442 645 582 407 696 234 889 842 055 001 223 599 670 234 817 697 19 0.001 355 330 687 431 968 686 370 649 666 858 551 781 913 647 874 306 469 992 911 20 0.001 288 943 359 403 592 079 332 268 070 468 201 935 867 073 490 549 702 629 506 21 0.001 227 279 141 869 217 280 130 457 460 586 899 395 034 442 359 208 787 692 807 22 0.001 169 902 792 079 505 257 859 580 623 482 412 181 191 026 401 159 234 185 115 23 0.001 116 427 883 585 063 070 267 927 679 606 553 717 647 454 695 606 596 650 252 24 0.001 066 510 397 777 554 496 539 905 614 516 284 404 993 029 668 825 387 312 451 25 0.001 019 843 274 079 042 157 310 711 819 336 130 144 301 717 612 042 017 738 255
Table A60. Critical binding parameters μ c (au−1) for Hulthén potential, l=17
Table A60. Critical binding parameters μ c (au−1) for Hulthén potential, l=17
1 0.004 050 267 510 053 082 753 715 203 223 514 187 788 061 076 207 262 366 361 696 2 0.003 722 131 894 208 185 493 458 134 511 396 270 279 520 071 437 791 495 030 384 3 0.003 431 924 441 284 654 518 144 143 698 201 661 184 578 157 950 347 520 141 687 4 0.003 174 046 988 778 816 376 579 070 226 905 588 040 342 170 054 959 814 199 258 5 0.002 943 895 056 999 114 741 534 906 627 862 083 436 142 620 796 029 571 491 674 6 0.002 737 653 564 432 901 501 113 506 420 976 564 269 097 379 149 638 304 515 097 7 0.002 552 139 946 793 035 303 757 472 085 641 632 619 272 933 018 914 389 437 834 8 0.002 384 682 494 846 754 177 166 149 790 495 115 445 801 428 335 423 977 158 695 9 0.002 233 025 146 409 391 812 004 734 591 348 290 491 373 844 256 543 774 639 971 10 0.002 095 252 351 459 583 079 396 991 451 275 751 696 869 353 267 035 828 832 963 11 0.001 969 729 312 459 119 120 621 594 785 308 365 501 032 232 713 312 055 299 780 12 0.001 855 054 105 051 825 336 778 067 694 743 310 739 827 799 669 244 378 246 648 13 0.001 750 019 054 066 613 143 645 520 126 152 494 522 050 708 020 572 760 673 097 14 0.001 653 579 375 179 432 589 455 955 223 331 336 460 961 411 795 173 644 824 846 15 0.001 564 827 561 416 690 640 585 430 992 755 776 767 828 980 196 492 050 727 563 16 0.001 482 972 342 790 941 546 861 453 071 450 504 982 096 586 825 940 050 063 024 17 0.001 407 321 309 576 901 427 155 361 104 223 710 279 550 815 969 991 739 339 214 18 0.001 337 266 488 296 623 683 939 504 590 617 280 220 271 134 639 445 455 888 920 19 0.001 272 272 310 996 940 416 527 750 657 935 581 622 908 734 494 252 354 114 666 20 0.001 211 865 534 856 663 391 075 245 897 234 600 148 868 161 126 715 933 360 148 21 0.001 155 626 759 282 982 230 936 710 387 382 164 186 926 131 474 785 794 034 078 22 0.001 103 183 257 853 990 215 576 338 248 123 444 872 198 947 636 982 936 053 513 23 0.001 054 202 897 479 807 094 657 862 520 981 221 771 067 714 553 156 374 260 595 24 0.001 008 388 960 524 756 531 707 541 913 988 701 653 761 599 815 524 818 019 394
Table A61. Critical binding parameters μ c (au−1) for Hulthén potential, l=18
Table A61. Critical binding parameters μ c (au−1) for Hulthén potential, l=18
1 0.003 632 576 150 723 927 620 969 570 265 835 732 468 964 087 337 213 258 784 290 2 0.003 352 975 858 661 256 096 397 526 709 565 068 712 416 153 177 810 139 252 791 3 0.003 104 138 032 609 516 194 742 756 674 346 476 224 700 726 679 964 750 976 419 4 0.002 881 733 030 822 310 518 433 849 469 582 330 754 700 789 706 282 966 659 828 5 0.002 682 165 272 050 661 847 080 346 467 747 431 766 072 979 666 445 638 068 264 6 0.002 502 428 860 898 752 375 087 825 765 312 888 537 714 176 207 965 017 374 305 7 0.002 339 995 312 644 869 107 399 496 666 417 653 770 222 696 462 105 196 263 863 8 0.002 192 725 460 444 893 639 464 972 302 192 073 173 801 002 184 852 941 235 821 9 0.002 058 799 763 134 523 253 487 233 698 935 017 106 965 642 631 301 795 958 713 10 0.001 936 662 744 454 024 336 895 188 729 114 272 908 393 344 237 935 059 954 731 11 0.001 824 978 378 993 386 647 504 069 924 931 926 556 884 030 650 819 437 547 669 12 0.001 722 594 026 410 353 061 618 370 680 509 597 041 734 538 944 014 349 890 261 13 0.001 628 511 091 476 814 182 330 598 618 925 305 880 097 318 720 991 924 722 667 14 0.001 541 861 013 602 582 533 506 500 151 477 179 598 543 300 417 718 295 057 277 15 0.001 461 885 507 564 405 076 955 251 004 644 660 381 830 652 570 161 535 039 646 16 0.001 387 920 216 649 215 939 028 019 193 478 028 106 207 872 826 496 538 118 611 17 0.001 319 381 121 178 915 131 055 866 448 071 375 033 461 176 027 605 491 069 079 18 0.001 255 753 184 380 171 274 366 305 255 130 667 159 653 055 038 950 099 019 182 19 0.001 196 580 824 619 619 582 095 623 204 576 335 092 629 120 716 990 888 912 686 20 0.001 141 459 886 040 749 692 271 728 924 824 502 464 521 520 491 851 595 571 528 21 0.001 090 030 844 426 041 656 010 023 791 862 375 491 323 900 048 623 301 573 022 22 0.001 041 973 035 977 424 263 230 840 965 230 596 045 910 550 967 993 275 663 971
Table A62. Critical binding parameters μ c (au−1) for Hulthén potential, l=19
Table A62. Critical binding parameters μ c (au−1) for Hulthén potential, l=19
1 0.003 276 321 942 295 284 268 927 346 710 599 961 692 559 938 887 886 267 507 461 2 0.003 036 136 670 807 694 535 338 788 641 143 946 192 629 911 499 134 992 765 490 3 0.002 821 163 654 617 121 035 696 050 680 549 029 110 800 693 838 222 453 595 830 4 0.002 628 011 902 612 244 952 584 533 370 548 634 167 720 319 612 145 316 406 449 5 0.002 453 840 670 588 978 023 266 328 479 526 857 345 357 626 878 931 195 695 195 6 0.002 296 255 731 555 489 270 712 307 005 295 473 942 882 740 427 160 037 589 697 7 0.002 153 227 782 202 233 169 259 832 716 810 923 242 365 232 799 292 725 639 642 8 0.002 023 027 738 184 566 249 701 371 629 941 711 992 731 659 278 401 743 938 036 9 0.001 904 175 032 797 214 495 334 956 453 299 862 196 189 374 365 538 395 891 571 10 0.001 795 396 012 888 863 426 655 957 308 212 880 406 437 434 718 646 566 285 265 11 0.001 695 590 237 800 424 707 198 050 240 777 420 878 888 282 501 774 579 937 687 12 0.001 603 803 010 037 974 396 995 753 558 182 128 636 886 073 895 831 395 239 853 13 0.001 519 202 854 192 996 958 669 310 094 524 280 510 838 974 995 501 941 211 027 14 0.001 441 062 950 810 662 933 982 426 012 127 980 947 127 906 014 059 320 559 732 15 0.001 368 745 750 890 362 764 804 165 133 741 860 180 455 709 531 997 376 302 042 16 0.001 301 690 163 269 152 074 253 243 316 383 716 537 444 335 129 828 536 471 414 17 0.001 239 400 834 785 573 998 130 549 269 020 973 090 273 419 204 135 893 708 504 18 0.001 181 439 141 635 368 560 084 213 495 510 605 364 378 308 438 518 473 216 062 19 0.001 127 415 586 870 252 853 498 479 702 304 814 172 608 648 446 585 062 238 641 20 0.001 076 983 358 835 347 217 584 477 485 999 835 635 406 755 616 405 848 600 841 21 0.001 029 832 852 413 496 719 956 585 166 272 963 894 189 146 192 669 287 771 666
Table A63. Critical binding parameters μ c (au−1) for Hulthén potential, l=20
Table A63. Critical binding parameters μ c (au−1) for Hulthén potential, l=20
1 0.002 970 020 408 554 037 412 595 886 756 347 445 583 998 031 122 194 854 341 056 2 0.002 762 175 598 866 848 723 052 246 494 686 428 430 597 632 245 439 068 551 174 3 0.002 575 190 231 886 158 542 169 863 335 592 657 160 425 870 907 184 188 193 083 4 0.002 406 377 988 957 387 743 659 673 172 133 758 068 494 798 132 614 005 957 287 5 0.002 253 470 516 189 183 645 371 211 050 510 437 890 025 746 620 142 485 284 388 6 0.002 114 541 772 432 972 158 064 328 425 995 874 829 227 660 433 453 847 537 377 7 0.001 987 947 898 060 277 720 433 566 352 656 948 737 202 153 564 880 560 532 202 8 0.001 872 279 063 091 162 566 685 730 643 217 623 236 768 040 185 610 387 928 412 9 0.001 766 320 639 027 081 507 299 055 838 942 042 369 512 776 297 895 750 415 159 10 0.001 669 021 684 423 584 148 862 618 667 866 216 977 136 225 604 293 335 168 663 11 0.001 579 469 209 696 681 426 086 692 616 120 732 150 623 880 236 376 351 741 418 12 0.001 496 867 040 104 491 113 449 075 300 222 702 646 001 438 348 698 549 725 952 13 0.001 420 518 360 936 608 288 296 992 592 932 352 631 713 800 430 211 669 867 232 14 0.001 349 811 229 429 515 597 816 964 557 984 284 441 458 983 060 469 828 344 629 15 0.001 284 206 490 745 413 847 337 290 823 995 785 147 121 539 225 050 499 196 747 16 0.001 223 227 652 701 146 367 700 489 525 874 971 845 912 183 906 393 328 923 880 17 0.001 166 452 364 677 088 982 853 353 739 447 739 241 974 398 703 047 912 343 888 18 0.001 113 505 216 770 061 999 473 959 932 355 228 449 065 840 459 560 276 029 007 19 0.001 064 051 630 580 795 466 747 954 538 691 099 456 141 086 134 275 226 083 800 20 0.001 017 792 656 620 823 989 279 679 497 927 270 798 619 696 685 319 233 148 552

Appendix A.4. Pseudo-Hulthén Potential μ c vs l for D=1/μ≤1000 au

Table A64. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=0
Table A64. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=0
1 2.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 4 0.125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 556 7 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 8 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 9 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 10 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 11 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 12 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 13 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 14 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 15 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 16 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 17 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 18 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 19 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 20 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 21 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 22 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 23 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 24 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 25 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 26 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 27 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 28 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 29 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 30 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 31 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 32 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 33 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 34 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 35 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 36 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 37 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 38 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 39 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 40 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 41 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 42 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 43 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 44 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A65. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=1
Table A65. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=1
1 0.499 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 2 0.222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 3 0.124 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 4 0.080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 6 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 7 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 9 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 10 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 11 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 12 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 13 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 14 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 15 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 16 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 17 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 18 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 19 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 20 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 21 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 22 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 23 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 24 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 25 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 26 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 27 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 28 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 29 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 30 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 31 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 32 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 33 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 34 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 35 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 36 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 37 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 38 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 39 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 40 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 41 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 42 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 43 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A66. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=2
Table A66. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=2
1 0.222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 2 0.124 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 3 0.080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 4 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 5 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 6 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 7 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 8 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 9 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 10 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 11 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 12 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 13 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 14 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 15 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 16 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 17 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 18 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 19 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 20 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 21 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 22 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 23 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 24 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 25 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 26 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 27 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 28 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 29 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 30 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 31 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 32 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 33 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 34 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 35 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 36 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 37 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 38 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 39 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 40 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 41 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 42 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A67. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=3
Table A67. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=3
1 0.125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 4 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 5 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 7 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 9 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 10 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 11 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 12 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 13 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 14 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 15 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 16 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 17 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 18 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 19 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 20 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 21 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 22 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 23 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 24 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 25 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 26 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 27 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 28 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 29 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 30 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 31 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 32 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 33 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 34 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 35 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 36 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 37 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 38 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 39 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 40 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 41 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A68. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=4
Table A68. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=4
1 0.080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 3 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 4 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 6 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 7 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 8 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 9 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 10 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 11 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 12 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 13 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 14 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 15 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 16 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 17 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 18 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 19 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 20 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 21 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 22 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 23 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 24 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 25 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 26 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 27 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 28 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 29 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 30 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 31 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 32 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 33 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 34 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 35 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 36 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 37 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 38 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 39 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 40 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A69. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=5
Table A69. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=5
1 0.055 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 555 2 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 3 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 4 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 5 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 7 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 8 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 9 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 10 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 11 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 12 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 13 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 14 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 15 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 16 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 17 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 18 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 19 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 20 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 21 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 22 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 23 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 24 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 25 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 26 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 27 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 28 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 29 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 30 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 31 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 32 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 33 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 34 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 35 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 36 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 37 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 38 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 39 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A70. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=6
Table A70. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=6
1 0.040 816 326 530 612 244 897 959 183 673 469 387 755 102 040 816 326 530 612 245 2 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 4 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 6 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 7 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 8 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 9 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 10 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 11 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 12 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 13 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 14 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 15 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 16 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 17 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 18 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 19 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 20 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 21 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 22 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 23 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 24 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 25 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 26 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 27 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 28 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 29 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 30 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 31 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 32 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 33 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 34 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 35 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 36 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 37 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 38 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A71. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=7
Table A71. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=7
1 0.031 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 3 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 4 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 5 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 6 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 7 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 8 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 9 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 10 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 11 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 12 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 13 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 14 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 15 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 16 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 17 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 18 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 19 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 20 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 21 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 22 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 23 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 24 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 25 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 26 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 27 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 28 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 29 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 30 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 31 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 32 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 33 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 34 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 35 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 36 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 37 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A72. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=8
Table A72. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=8
1 0.024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 358 024 691 2 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 4 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 5 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 6 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 7 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 8 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 9 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 10 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 11 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 12 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 13 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 14 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 15 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 16 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 17 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 18 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 19 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 20 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 21 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 22 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 23 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 24 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 25 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 26 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 27 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 28 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 29 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 30 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 31 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 32 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 33 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 34 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 35 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 36 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A73. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=9
Table A73. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=9
1 0.020 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 3 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 4 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 5 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 6 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 7 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 9 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 10 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 11 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 12 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 13 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 14 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 15 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 16 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 17 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 18 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 19 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 20 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 21 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 22 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 23 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 24 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 25 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 26 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 27 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 28 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 29 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 30 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 31 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 32 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 33 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 34 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 35 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A74. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=10
Table A74. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=10
1 0.016 528 925 619 834 710 743 801 652 892 561 983 471 074 380 165 289 256 198 347 2 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 3 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 4 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 5 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 6 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 7 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 8 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 9 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 10 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 11 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 12 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 13 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 14 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 15 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 16 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 17 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 18 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 19 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 20 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 21 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 22 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 23 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 24 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 25 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 26 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 27 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 28 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 29 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 30 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 31 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 32 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 33 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 34 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A75. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=11
Table A75. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=11
1 0.013 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 2 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 3 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 4 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 5 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 7 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 8 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 9 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 10 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 11 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 12 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 13 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 14 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 15 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 16 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 17 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 18 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 19 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 20 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 21 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 22 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 23 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 24 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 25 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 26 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 27 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 28 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 29 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 30 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 31 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 32 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 33 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A76. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=12
Table A76. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=12
1 0.011 834 319 526 627 218 934 911 242 603 550 295 857 988 165 680 473 372 781 065 2 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 3 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 4 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 6 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 7 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 8 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 9 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 10 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 11 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 12 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 13 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 14 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 15 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 16 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 17 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 18 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 19 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 20 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 21 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 22 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 23 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 24 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 25 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 26 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 27 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 28 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 29 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 30 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 31 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 32 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A77. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=13
Table A77. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=13
1 0.010 204 081 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 2 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 3 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 4 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 5 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 6 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 7 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 9 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 10 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 11 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 12 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 13 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 14 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 15 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 16 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 17 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 18 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 19 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 20 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 21 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 22 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 23 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 24 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 25 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 26 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 27 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 28 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 29 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 30 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 31 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A78. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=14
Table A78. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=14
1 0.008 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 888 889 2 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 4 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 5 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 6 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 7 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 8 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 9 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 10 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 11 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 12 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 13 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 14 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 15 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 16 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 17 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 18 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 19 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 20 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 21 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 22 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 23 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 24 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 25 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 26 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 27 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 28 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 29 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 30 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A79. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=15
Table A79. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=15
1 0.007 812 500 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 3 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 4 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 5 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 7 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 8 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 9 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 10 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 11 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 12 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 13 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 14 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 15 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 16 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 17 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 18 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 19 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 20 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 21 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 22 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 23 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 24 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 25 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 26 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 27 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 28 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 29 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A80. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=16
Table A80. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=16
1 0.006 920 415 224 913 494 809 688 581 314 878 892 733 564 013 840 830 449 826 990 2 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 3 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 4 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 6 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 7 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 8 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 9 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 10 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 11 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 12 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 13 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 14 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 15 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 16 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 17 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 18 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 19 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 20 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 21 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 22 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 23 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 24 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 25 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 26 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 27 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 28 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A81. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=17
Table A81. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=17
1 0.006 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 172 839 506 173 2 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 3 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 4 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 5 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 6 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 7 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 8 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 9 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 10 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 11 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 12 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 13 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 14 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 15 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 16 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 17 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 18 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 19 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 20 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 21 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 22 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 23 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 24 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 25 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 26 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 27 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A82. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=18
Table A82. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=18
1 0.005 540 166 204 986 149 584 487 534 626 038 781 163 434 903 047 091 412 742 382 2 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 3 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 4 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 5 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 6 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 7 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 9 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 10 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 11 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 12 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 13 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 14 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 15 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 16 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 17 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 18 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 19 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 20 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 21 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 22 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 23 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 24 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 25 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 26 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A83. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=19
Table A83. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=19
1 0.005 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 3 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 4 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 5 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 6 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 7 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 8 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 9 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 10 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 11 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 12 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 13 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 14 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 15 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 16 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 17 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 18 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 19 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 20 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 21 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 22 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 23 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 24 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 25 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397
Table A84. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=20
Table A84. Critical binding parameters μ c (au−1) for PseudoHulthén potential, l=20
1 0.004 535 147 392 290 249 433 106 575 963 718 820 861 678 004 535 147 392 290 249 2 0.004 132 231 404 958 677 685 950 413 223 140 495 867 768 595 041 322 314 049 587 3 0.003 780 718 336 483 931 947 069 943 289 224 952 741 020 793 950 850 661 625 709 4 0.003 472 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 5 0.003 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 6 0.002 958 579 881 656 804 733 727 810 650 887 573 964 497 041 420 118 343 195 266 7 0.002 743 484 224 965 706 447 187 928 669 410 150 891 632 373 113 854 595 336 077 8 0.002 551 020 408 163 265 306 122 448 979 591 836 734 693 877 551 020 408 163 265 9 0.002 378 121 284 185 493 460 166 468 489 892 984 542 211 652 794 292 508 917 955 10 0.002 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222 11 0.002 081 165 452 653 485 952 133 194 588 969 823 100 936 524 453 694 068 678 460 12 0.001 953 125 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 13 0.001 836 547 291 092 745 638 200 183 654 729 109 274 563 820 018 365 472 910 927 14 0.001 730 103 806 228 373 702 422 145 328 719 723 183 391 003 460 207 612 456 747 15 0.001 632 653 061 224 489 795 918 367 346 938 775 510 204 081 632 653 061 224 490 16 0.001 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 209 876 543 17 0.001 460 920 379 839 298 758 217 677 136 596 055 514 974 433 893 352 812 271 731 18 0.001 385 041 551 246 537 396 121 883 656 509 695 290 858 725 761 772 853 185 596 19 0.001 314 924 391 847 468 770 545 693 622 616 699 539 776 462 853 385 930 309 007 20 0.001 250 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 21 0.001 189 767 995 240 928 019 036 287 923 854 848 304 580 606 781 677 572 873 290 22 0.001 133 786 848 072 562 358 276 643 990 929 705 215 419 501 133 786 848 072 562 23 0.001 081 665 765 278 528 934 559 221 200 648 999 459 167 117 360 735 532 720 389 24 0.001 033 057 851 239 669 421 487 603 305 785 123 966 942 148 760 330 578 512 397

References

  1. Bunker, G.B.; Bunker, G. B. The Phase Method: for Numerical Solution of the Schrödinger Equation; Kindle Edition: Oak Park, Illinois, 2024. [Google Scholar]
  2. Demiralp, M. Rapidly converging threshold value calculations in screened coulomb potential systems: Critical values of the screening parameter for the Yukawa case Theor. Chim. Acta 1989, 75, 223–232. [Google Scholar] [CrossRef]
  3. Jiao, L.G.; Xie, H.H.; Liu, A.; Montgomery, H.E., Jr.; Ho, Y. K. Critical screening parameters and critical behaviors of one-electron systems with screened Coulomb potentials J. Phys. B: At. Mol. Opt. Phys. 2021, 54, 175002–175015. [Google Scholar] [CrossRef]
  4. Lam, C.S.; Varshni, Y.P. Energies of s Eigenstates in a Static Screened Coulomb. Phys. Rev. A 1971, 4(5), 1875–1881. [Google Scholar] [CrossRef]
  5. Hulthén; Hulthsn, L. L.; Arkiv Mat. Astron. Fysik 1942, 23A(No. 5), 12. [Google Scholar]
  6. Flügge, S. Practical Quantum Mechanics; Springer-Verlag: Berlin, Heidelberg, New York, 1971. [Google Scholar]
  7. Greene, R.L.; Aldrich, C. Variational wave functions for a screened Coulomb potential. Phys. Rev. A 1976, 14(6), 2363–2366. [Google Scholar] [CrossRef]
  8. Landau, L.D.; Lifshitz, E.M. Quantum Mechanics Non-Relativistic Theory; Pergamon Press Inc.: Elmsford, New York, 1977. [Google Scholar]
  9. Qi, Y.Y.; Wang, J.G.; Janev, R.K. Dynamics of photoionization of hydrogenlike ions in Debye plasmas. Phys. Rev. A 2009, 80, 063404-1–15. [Google Scholar] [CrossRef]
  10. Janev, R.K; Zhang, S.; Wang, J. Review of quantum collision dynamics in Debye Plasmas, Matter Radiat. Extremes 2016, 1, 237–248. [Google Scholar]
  11. Roy, A. K. Critical Parameters and Spherical Confinement of H Atom in Screened Coulomb Potential. Int. J. Quantum Chem. 2016, 116, 953–960. [Google Scholar] [CrossRef]
  12. Stubbins, C. Bound states of the Hulthén and Yukawa potentials. Phys. Rev. A 1993, 48, 220–227. [Google Scholar] [CrossRef] [PubMed]
  13. Vrscay, E. R Hydrogen atom with a Yukawa potential: Perturbation theory and continued-fractions-Padé approximants at large order. Phys. Rev. A 1986, 33(2), 1433–1436. [Google Scholar] [CrossRef] [PubMed]
  14. Edwards, J.P.; Gerber, U.; Schubert, C.; Trejo, M.A.; Weber, A. The Yukawa potential: ground state energy and critical screening Prog. Theor. Exp. Phys. 2017, 8, 083A01. [Google Scholar] [CrossRef]
  15. Rogers, F. J; Graboske, H. C., Jr.; Harwood, D. J Bound Eigenstates of the Static Screened Coulomb. Phys. Rev. A 1970, 6, 1577–1586. [Google Scholar] [CrossRef]
  16. Singh, D.; Varshni, Y.P. Accurate eigenvalues and oscillator strengths for the exponential-cosine screened Coulomb potential. Phys. Rev. A. 1983, 28(5), 2606–2610. [Google Scholar] [CrossRef]
  17. Napsuciale, M.; Rodríguez, S. Complete analytical solution to the quantum Yukawa potential Phys. Lett. B 2021 816, 136218-1–5. [Google Scholar]
  18. del Valle, J.C.; Nader, D.J. Toward the theory of the Yukawa potential J. Math. Phys. 2018, 59, 102103-1–19. [Google Scholar] [CrossRef]
  19. Gomes, O.A.; Chacham, H.; Mohallem, J. R. Variational calculations for the bound-unbound transition of the Yukawa potential. Phys. Rev. A 1994, 50, 228–231. [Google Scholar] [CrossRef] [PubMed]
  20. Diaz, C.G.; Fernández, F. M.; Castro, E. A. Critical screening parameters for screened Coulomb potentials J. Phys. A 1991, 24, 2061–2068. [Google Scholar] [CrossRef]
  21. Bylicki, M; Stachów, A.; Karawowski, J.; Mukherjee, P. K. The resonance levels of the Yukawa potential Chem. Phys. 2007, 331, 346–350. [Google Scholar]
  22. Schey, H.M; Schwartz, J.L. Counting the Bound States in Short-Range Central Potentials. Phys. Rev. 1965, 138(5), B1428–1432. [Google Scholar] [CrossRef]
  23. Wolfram Research; Inc. Mathematica, Version 14.3; Champaign, IL, 2025. [Google Scholar]
Figure 1. Number of Bound States vs D for Yukawa potential. The inset rectangle shows the range covered by Rogers et al [15].
Figure 1. Number of Bound States vs D for Yukawa potential. The inset rectangle shows the range covered by Rogers et al [15].
Preprints 194564 g001
Figure 2. Contour map of interpolated values of D c for the Yukawa Potential as a function of l + 1 and n, for ranges ( n | l + 1 ) = 1 17 . The nearly equally-spaced parallel contours show that D c is approximately a linear function of both l and n, but with unequal coefficients. Each contour is labeled with the value of D c .
Figure 2. Contour map of interpolated values of D c for the Yukawa Potential as a function of l + 1 and n, for ranges ( n | l + 1 ) = 1 17 . The nearly equally-spaced parallel contours show that D c is approximately a linear function of both l and n, but with unequal coefficients. Each contour is labeled with the value of D c .
Preprints 194564 g002
Figure 3. Log-log Plots of D c = 1 / μ c vs n for ECSC, Yukawa, Hulthén, and Pseudo-Hulthén potentials vs n for all 21 values of l. The correct ordering of all n and l values is evident.
Figure 3. Log-log Plots of D c = 1 / μ c vs n for ECSC, Yukawa, Hulthén, and Pseudo-Hulthén potentials vs n for all 21 values of l. The correct ordering of all n and l values is evident.
Preprints 194564 g003
Figure 4. D c vs n l for Yukawa potential up to D = 10 5 au calculated to 30 digits.
Figure 4. D c vs n l for Yukawa potential up to D = 10 5 au calculated to 30 digits.
Preprints 194564 g004
Figure 5. D c vs n l for ECSC potential up to D = 10 5 au calculated to 30 digits.
Figure 5. D c vs n l for ECSC potential up to D = 10 5 au calculated to 30 digits.
Preprints 194564 g005
Figure 6. D c / n 2 vs n l for Yukawa potential up to D = 10 5 au calculated to 30 digits.
Figure 6. D c / n 2 vs n l for Yukawa potential up to D = 10 5 au calculated to 30 digits.
Preprints 194564 g006
Figure 7. D c / n 2 vs n l for ECSC potential up to D = 10 5 au calculated to 30 digits.
Figure 7. D c / n 2 vs n l for ECSC potential up to D = 10 5 au calculated to 30 digits.
Preprints 194564 g007
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated