Submitted:
14 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Combined sewer overflow (CSO) pollution has consequently become a critical challenge, yet its formation depends on tightly coupled dry-and-wet weather processes. This study aims to integrate high-resolution field monitoring with statistical analysis to characterize the full “accumulation-transport-discharge” cycle of CSO pollution. Results indicated that during dry periods, domestic sewage exhibited strong enrichment, with concentrations of TIN, COD, and TP being 2.1-, 2.3-, and 1.9-fold higher, respectively, than the Chinese secondary discharge standards (GB 18918-2002). Surface sediment showed pronounced spatial heterogeneity, with greater loads in residential than transportation areas and substantial fine-particle accumulation on roofs (particle size <150 μm, accounting for 73% by mass). Sewer sediments, dominated by coarse inorganic particles (over 77% by mass), represented the main pollutant reservoir. Rainfall produced distinct hydrodynamic and water-quality responses. Light rain following long antecedent dry periods generated a high-concentration but low-load regime with a strong first flush, whereas moderate rain yielded lower concentrations but higher loads. Overflow occurred when rainfall exceeded ~14 mm, with pollutant peaks lagging rainfall by 20–45 min in the studied area. TIN and TP peaked sharply at rainfall event onset, and first-flush intensities followed TIN > TP > COD > SS. Source apportionment identified sewer sediments as the dominant CSO source, followed by surface runoff and domestic sewage. These findings clarify the mechanisms linking dry-weather accumulation to wet-weather transport and support targeted CSO pollution control and urban water-quality management.
