Submitted:
14 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1. Limitations of Existing Yeast Biosensors for Synthetic Design
2. Emerging Opportunity: Mining Response Elements from Filamentous Fungi
3. Native Biosensor in Filamentous Fungi
3.1. Small Molecule-Induction Systems
3.1.1. Signaling Pathway of Small Molecules
3.1.2. Small-Molecule Responsive TFs
3.2. Environmental Cues Responsive Systems
3.2.1. Responsive GPCR to Environmental Cues
3.2.2. Signaling Pathway of Environmental Cues
3.2.3. Responsive TFs to Environmental Cues
4. Mining Strategies of Sensing Elements in Filamentous Fungi
4.1. Genome Mining
- (1)
- Sequence-Based Genome Mining
- (2)
- Structure-guided genome mining
4.2. Transcriptome-Guided Mining
4.3. Deciphering Protein-Ligand Interaction Landscapes
4.4. AI-Assisted Ligand Binding Site (LBS) Prediction
5. Concluding Remark and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, L.; Liu, X.; Xu, K.; Li, C. Mining and design of biosensors for engineering microbial cell factory. Curr Opin Biotechnol 2022, 75, 102694. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Lei, Q.Y. Metabolite sensing and signaling in cell metabolism. Signal Transduct Target Ther 2018, 3, 30. [Google Scholar] [CrossRef]
- Newman, R.H.; Fosbrink, M.D.; Zhang, J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011, 111, 3614–3666. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Z.H.; Ye, B.C. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors. Biotechnol J 2013, 8, 1280–1291. [Google Scholar] [CrossRef] [PubMed]
- Mo, G.C.; Ross, B.; Hertel, F.; Manna, P.; Yang, X.; Greenwald, E.; Booth, C.; Plummer, A.M.; Tenner, B.; Chen, Z.; et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat Methods 2017, 14, 427–434. [Google Scholar] [CrossRef]
- Huang, C.W.; Lin, C.; Nguyen, M.K.; Hussain, A.; Bui, X.T.; Ngo, H.H. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023, 14, 58–80. [Google Scholar] [CrossRef]
- Wang, B.; Barahona, M.; Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 2013, 40, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.D.; Garruss, A.S.; Moretti, R.; Chan, S.; Arbing, M.A.; Cascio, D.; Rogers, J.K.; Isaacs, F.J.; Kosuri, S.; Baker, D.; et al. Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 2016, 13, 177–183. [Google Scholar] [CrossRef]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens Bioelectron 2005, 20, 2424–2434. [Google Scholar] [CrossRef]
- Sefah, K.; Phillips, J.A.; Xiong, X.; Meng, L.; Van Simaeys, D.; Chen, H.; Martin, J.; Tan, W. Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 2009, 134, 1765–1775. [Google Scholar] [CrossRef]
- Beier, D.; Gross, R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 2006, 9, 143–152. [Google Scholar] [CrossRef]
- Bahn, Y.S.; Xue, C.; Idnurm, A.; Rutherford, J.C.; Heitman, J.; Cardenas, M.E. Sensing the environment: lessons from fungi. Nat Rev Microbiol 2007, 5, 57–69. [Google Scholar] [CrossRef]
- Prole, D.L.; Taylor, C.W. Identification and analysis of cation channel homologues in human pathogenic fungi. PLoS One 2012, 7, e42404. [Google Scholar] [CrossRef]
- Naar, A.M.; Thakur, J.K. Nuclear receptor-like transcription factors in fungi. Genes Dev 2009, 23, 419–432. [Google Scholar] [CrossRef] [PubMed]
- D'Ambrosio, V.; Jensen, M.K. Lighting up yeast cell factories by transcription factor-based biosensors. FEMS Yeast Res 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Kondo, A.; Ishii, J. Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022, 12. [Google Scholar] [CrossRef]
- Meng, F.; Shaw, W.M.; Kam, Y.K.K.; Ellis, T. Engineering yeast multicellular behaviors via synthetic adhesion and contact signaling. Cell 2025, 188, 4936–4949 e4914. [Google Scholar] [CrossRef]
- Qiao, L.; Niu, L.; Wang, Z.; Dai, D.; Tang, S.; Ma, X.; Deng, Z.; Yu, G.; Zhou, Y.; Yan, T.; et al. Optogenetic-Controlled iPSC-Based Vaccines for Prophylactic and Therapeutic Tumor Suppression in Mice. Adv Sci (Weinh) 2025, 12, e16115. [Google Scholar] [CrossRef] [PubMed]
- Krueger, D.; Izquierdo, E.; Viswanathan, R.; Hartmann, J.; Pallares Cartes, C.; De Renzis, S. Principles and applications of optogenetics in developmental biology. Development 2019, 146. [Google Scholar] [CrossRef]
- Gligorovski, V.; Sadeghi, A.; Rahi, S.J. Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor. Nat Commun 2023, 14, 3810. [Google Scholar] [CrossRef]
- Acar, M.; Becskei, A.; van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 2005, 435, 228–232. [Google Scholar] [CrossRef]
- Endalur Gopinarayanan, V.; Nair, N.U. A semi-synthetic regulon enables rapid growth of yeast on xylose. Nat Commun 2018, 9, 1233. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Zhao, H. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol Bioeng 2016, 113, 206–215. [Google Scholar] [CrossRef]
- Skjoedt, M.L.; Snoek, T.; Kildegaard, K.R.; Arsovska, D.; Eichenberger, M.; Goedecke, T.J.; Rajkumar, A.S.; Zhang, J.; Kristensen, M.; Lehka, B.J.; et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 2016, 12, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Snoek, T.; Chaberski, E.K.; Ambri, F.; Kol, S.; Bjorn, S.P.; Pang, B.; Barajas, J.F.; Welner, D.H.; Jensen, M.K.; Keasling, J.D. Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Res 2020, 48, e3. [Google Scholar] [CrossRef] [PubMed]
- Stanton, B.C.; Nielsen, A.A.; Tamsir, A.; Clancy, K.; Peterson, T.; Voigt, C.A. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol 2014, 10, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Du, J.; Li, D.; Xiong, J.; Chen, Y. Versatile xylose and arabinose genetic switches development for yeasts. Metab Eng 2025, 87, 21–36. [Google Scholar] [CrossRef]
- Naseri, G.; Koffas, M.A.G. Application of combinatorial optimization strategies in synthetic biology. Nat Commun 2020, 11, 2446. [Google Scholar] [CrossRef]
- Belli, G.; Gari, E.; Piedrafita, L.; Aldea, M.; Herrero, E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 1998, 26, 942–947. [Google Scholar] [CrossRef]
- Liu, Z.; Salamov, A.; Grigoriev, I.V. Identification and classification of fungal GPCR gene families 2011. 2025.625238. bioRxiv 2024, 2024. [Google Scholar]
- Pardee, K.; Necakov, A.S.; Krause, H. Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Subcell Biochem 2011, 52, 123–153. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Wu, K.; Liu, S.; Li, X.; Zhu, C.; Xiao, Y.; Fang, Z.; Liu, J. Two Zn(2)Cys(6)-type transcription factors respond to aromatic compounds and regulate the expression of laccases in the white-rot fungus Trametes hirsuta. Appl Environ Microbiol 2024, 90, e0054524. [Google Scholar] [CrossRef]
- Zhang, Y.; Cortez, J.D.; Hammer, S.K.; Carrasco-Lopez, C.; Garcia Echauri, S.A.; Wiggins, J.B.; Wang, W.; Avalos, J.L. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat Commun 2022, 13, 270. [Google Scholar] [CrossRef]
- Kerkaert, J.D.; Huberman, L.B. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023, 107, 5873–5898. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 2019, 17, 167–180. [Google Scholar] [CrossRef]
- Mozsik, L.; Iacovelli, R.; Bovenberg, R.A.L.; Driessen, A.J.M. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022, 10, 901037. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Cubero, B.; Cecchetto, G.; Scazzocchio, C. PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol Microbiol 2002, 44, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, J. How light affects the life of Botrytis. Fungal Genet Biol 2017, 106, 26–41. [Google Scholar] [CrossRef]
- Catlett, N.L.; Yoder, O.C.; Turgeon, B.G. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2003, 2, 1151–1161. [Google Scholar] [CrossRef]
- Macheleidt, J.; Mattern, D.J.; Fischer, J.; Netzker, T.; Weber, J.; Schroeckh, V.; Valiante, V.; Brakhage, A.A. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016, 50, 371–392. [Google Scholar] [CrossRef]
- Banuett, F. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 1998, 62, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Kraakman, L.; Lemaire, K.; Ma, P.; Teunissen, A.W.; Donaton, M.C.; Van Dijck, P.; Winderickx, J.; de Winde, J.H.; Thevelein, J.M. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 1999, 32, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Sze, J.Y.; Woontner, M.; Jaehning, J.A.; Kohlhaw, G.B. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science 1992, 258, 1143–1145. [Google Scholar] [CrossRef] [PubMed]
- Lengeler, K.B.; Davidson, R.C.; D'Souza, C.; Harashima, T.; Shen, W.C.; Wang, P.; Pan, X.; Waugh, M.; Heitman, J. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000, 64, 746–785. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Qin, Q.; Lin, G.; Hu, T.; Xu, Z.; Wang, S. G Protein alpha Subunit GpaB is Required for Asexual Development, Aflatoxin Biosynthesis and Pathogenicity by Regulating cAMP Signaling in Aspergillus flavus. Toxins (Basel) 2018, 10. [Google Scholar] [CrossRef]
- Yang, K.; Qin, Q.; Liu, Y.; Zhang, L.; Liang, L.; Lan, H.; Chen, C.; You, Y.; Zhang, F.; Wang, S. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus. Front Cell Infect Microbiol 2016, 6, 190. [Google Scholar] [CrossRef]
- van Peij, N.N.; Visser, J.; de Graaff, L.H. Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 1998, 27, 131–142. [Google Scholar] [CrossRef]
- Battaglia, E.; Hansen, S.F.; Leendertse, A.; Madrid, S.; Mulder, H.; Nikolaev, I.; de Vries, R.P. Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 2011, 91, 387–397. [Google Scholar] [CrossRef]
- Ogawa, M.; Kobayashi, T.; Koyama, Y. ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the beta-mannan utilization system in Aspergillus oryzae. Fungal Genet Biol 2012, 49, 987–995. [Google Scholar] [CrossRef]
- Yuan, X.L.; Roubos, J.A.; van den Hondel, C.A.; Ram, A.F. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 2008, 279, 11–26. [Google Scholar] [CrossRef]
- Pardo, E.; Orejas, M. The Aspergillus nidulans Zn(II)2Cys6 transcription factor AN5673/RhaR mediates L-rhamnose utilization and the production of α-L-rhamnosidases. Microbial cell factories 2014, 13, 161. [Google Scholar] [PubMed]
- Kunitake, E.; Tani, S.; Sumitani, J.; Kawaguchi, T. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus. Appl Microbiol Biotechnol 2013, 97, 2017–2028. [Google Scholar] [CrossRef]
- Alazi, E.; Niu, J.; Kowalczyk, J.E.; Peng, M.; Aguilar Pontes, M.V.; van Kan, J.A.; Visser, J.; de Vries, R.P.; Ram, A.F. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin. FEBS Lett 2016, 590, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- Makita, T.; Katsuyama, Y.; Tani, S.; Suzuki, H.; Kato, N.; Todd, R.B.; Hynes, M.J.; Tsukagoshi, N.; Kato, M.; Kobayashi, T. Inducer-dependent nuclear localization of a Zn(II)(2)Cys(6) transcriptional activator, AmyR, in Aspergillus nidulans. Biosci Biotechnol Biochem 2009, 73, 391–399. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, L.; Xu, N.; Zhang, X.; Qin, Y.; Qu, Y.; Liu, G. An l-fucose-responsive transcription factor cross-regulates the expression of a diverse array of carbohydrate-active enzymes in Trichoderma reesei. Plos Genetics 2025, 21, e1011815. [Google Scholar] [CrossRef] [PubMed]
- Arentshorst, M.; Reijngoud, J.; van Tol, D.J.C.; Reid, I.D.; Arendsen, Y.; Pel, H.J.; van Peij, N.; Visser, J.; Punt, P.J.; Tsang, A.; et al. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II)(2)Cys(6) domain. Front Fungal Biol 2022, 3, 978845. [Google Scholar] [CrossRef]
- Choi, H.; Cho, S.H.; Park, J.H.; Seok, Y.J. Fructose-responsive regulation by FruR in Faecalibacterium prausnitzii for its intestinal colonization. Commun Biol 2025, 8, 426. [Google Scholar] [CrossRef]
- Mira, N.P.; Henriques, S.F.; Keller, G.; Teixeira, M.C.; Matos, R.G.; Arraiano, C.M.; Winge, D.R.; Sa-Correia, I. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res 2011, 39, 6896–6907. [Google Scholar] [CrossRef]
- Punt, P.J.; Strauss, J.; Smit, R.; Kinghorn, J.R.; van den Hondel, C.A.; Scazzocchio, C. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol Cell Biol 1995, 15, 5688–5699. [Google Scholar] [CrossRef]
- Keller, S.; Macheleidt, J.; Scherlach, K.; Schmaler-Ripcke, J.; Jacobsen, I.D.; Heinekamp, T.; Brakhage, A.A. Pyomelanin formation in Aspergillus fumigatus requires HmgX and the transcriptional activator HmgR but is dispensable for virulence. PLoS One 2011, 6, e26604. [Google Scholar] [CrossRef]
- Long, N.; Orasch, T.; Zhang, S.; Gao, L.; Xu, X.; Hortschansky, P.; Ye, J.; Zhang, F.; Xu, K.; Gsaller, F.; et al. The Zn2Cys6-type transcription factor LeuB cross-links regulation of leucine biosynthesis and iron acquisition in Aspergillus fumigatus. PLoS Genet 2018, 14, e1007762. [Google Scholar] [CrossRef]
- Dzikowska, A.; Kacprzak, M.; Tomecki, R.; Koper, M.; Scazzocchio, C.; Weglenski, P. Specific induction and carbon/nitrogen repression of arginine catabolism gene of Aspergillus nidulans--functional in vivo analysis of the otaA promoter. Fungal Genet Biol 2003, 38, 175–186. [Google Scholar] [CrossRef]
- Natorff, R.; Sienko, M.; Brzywczy, J.; Paszewski, A. The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol 2003, 49, 1081–1094. [Google Scholar] [CrossRef]
- Wong Sak Hoi, J.; Dumas, B. Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. Eukaryot Cell 2010, 9, 480–485. [Google Scholar] [CrossRef]
- Kulmburg, P.; Mathieu, M.; Dowzer, C.; Kelly, J.; Felenbok, B. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 1993, 7, 847–857. [Google Scholar] [CrossRef]
- Miyamoto, K.; Murakami, T.; Kakumyan, P.; Keller, N.P.; Matsui, K. Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ 2014, 2, e395. [Google Scholar] [CrossRef]
- Ahn, C.H.; Lee, S.; Cho, E.; Kim, H.; Chung, B.; Park, W.; Shin, J.; Oh, K.B. A farnesoic acid-responsive transcription factor, Hot1, regulates yeast-hypha morphogenesis in Candida albicans. FEBS Lett 2017, 591, 1225–1235. [Google Scholar] [CrossRef]
- Hernday, A.D.; Lohse, M.B.; Fordyce, P.M.; Nobile, C.J.; DeRisi, J.L.; Johnson, A.D. Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol Microbiol 2013, 90, 22–35. [Google Scholar] [CrossRef]
- Lee, K.; Hahn, J.S. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae. Mol Microbiol 2013, 88, 1120–1134. [Google Scholar] [CrossRef]
- Tian, X.; He, G.J.; Hu, P.; Chen, L.; Tao, C.; Cui, Y.L.; Shen, L.; Ke, W.; Xu, H.; Zhao, Y.; et al. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat Microbiol 2018, 3, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.J.; Tasic, B.; Russler, E.V.; Liang, L.; Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 2010, 141, 536–548. [Google Scholar] [CrossRef]
- Affeldt, K.J.; Carrig, J.; Amare, M.; Keller, N.P. Global survey of canonical Aspergillus flavus G protein-coupled receptors. mBio 2014, 5, e01501-01514. [Google Scholar] [CrossRef]
- Cabrera, I.E.; Pacentine, I.V.; Lim, A.; Guerrero, N.; Krystofova, S.; Li, L.; Michkov, A.V.; Servin, J.A.; Ahrendt, S.R.; Carrillo, A.J.; et al. Global Analysis of Predicted G Protein-Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa. G3 (Bethesda) 2015, 5, 2729–2743. [Google Scholar] [CrossRef]
- Velazhahan, V.; Ma, N.; Vaidehi, N.; Tate, C.G. Activation mechanism of the class D fungal GPCR dimer Ste2. Nature 2022, 603, 743–748. [Google Scholar] [CrossRef]
- Hoffman, C.S. Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem Soc Trans 2005, 33, 257–260. [Google Scholar] [CrossRef]
- Li, L.; Borkovich, K.A. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell 2006, 5, 1287–1300. [Google Scholar] [CrossRef]
- de Souza, W.R.; Morais, E.R.; Krohn, N.G.; Savoldi, M.; Goldman, M.H.; Rodrigues, F.; Caldana, C.; Semelka, C.T.; Tikunov, A.P.; Macdonald, J.M.; et al. Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS One 2013, 8, e62088. [Google Scholar] [CrossRef]
- Xue, C.; Bahn, Y.S.; Cox, G.M.; Heitman, J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 2006, 17, 667–679. [Google Scholar] [CrossRef]
- Jung, M.G.; Kim, S.S.; Yu, J.H.; Shin, K.S. Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS One 2016, 11, e0161312. [Google Scholar] [CrossRef]
- Brown, N.A.; Dos Reis, T.F.; Ries, L.N.; Caldana, C.; Mah, J.H.; Yu, J.H.; Macdonald, J.M.; Goldman, G.H. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans. Mol Microbiol 2015, 98, 420–439. [Google Scholar] [CrossRef]
- Chung, K.S.; Won, M.; Lee, S.B.; Jang, Y.J.; Hoe, K.L.; Kim, D.U.; Lee, J.W.; Kim, K.W.; Yoo, H.S. Isolation of a novel gene from Schizosaccharomyces pombe: stm1+ encoding a seven-transmembrane loop protein that may couple with the heterotrimeric Galpha 2 protein, Gpa2. J Biol Chem 2001, 276, 40190–40201. [Google Scholar] [CrossRef]
- Blumer, K.; Reneke, J.; Thorner, J. The STE2 gene product is the ligand-binding component of the alpha-factor receptor of Saccharomyces cerevisiae. Journal of Biological Chemistry 1988, 263, 10836–10842. [Google Scholar] [CrossRef]
- Seo, J.A.; Han, K.H.; Yu, J.H. The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 2004, 53, 1611–1623. [Google Scholar] [CrossRef]
- Kim, H.; Borkovich, K.A. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular microbiology 2004, 52, 1781–1798. [Google Scholar] [CrossRef]
- Xue, C.; Wang, Y.; Hsueh, Y.P. Assessment of constitutive activity of a G protein-coupled receptor, CPR2, in Cryptococcus neoformans by heterologous and homologous methods. Methods Enzymol 2010, 484, 397–412. [Google Scholar] [CrossRef]
- McClelland, C.M.; Fu, J.; Woodlee, G.L.; Seymour, T.S.; Wickes, B.L. Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene. Genetics 2002, 160, 935–947. [Google Scholar] [CrossRef]
- Nakayama, N.; Miyajima, A.; Arai, K. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 1985, 4, 2643–2648. [Google Scholar] [CrossRef]
- Kim, H.; Borkovich, K.A. Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell 2006, 5, 544–554. [Google Scholar] [CrossRef]
- Moore, T.D.; Edman, J.C. The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 1993, 13, 1962–1970. [Google Scholar] [CrossRef]
- Lara-Martinez, D.; Tristan-Flores, F.E.; Cervantes-Montelongo, J.A.; Silva-Martinez, G.A. Fungal Stress Responses and the Importance of GPCRs. J Fungi (Basel) 2025, 11. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Li, N.; Li, J.; Trail, F.; Dunlap, J.C.; Townsend, J.P. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 2018, 27, 216–232. [Google Scholar] [CrossRef]
- Garcia-Martinez, J.; Brunk, M.; Avalos, J.; Terpitz, U. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 2015, 5, 7798. [Google Scholar] [CrossRef]
- Bieszke, J.A. Characterization of the NOP-1 opsin photoreceptor in the filamentous fungus Neurospora crassa; The University of Texas Graduate School of Biomedical Sciences at Houston, 2002. [Google Scholar]
- Herranz, S.; Rodriguez, J.M.; Bussink, H.J.; Sanchez-Ferrero, J.C.; Arst, H.N., Jr.; Penalva, M.A.; Vincent, O. Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci U S A 2005, 102, 12141–12146. [Google Scholar] [CrossRef]
- Gao, J.; Xu, X.; Huang, K.; Liang, Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021, 12, 631392. [Google Scholar] [CrossRef]
- Gehrke, A.; Heinekamp, T.; Jacobsen, I.D.; Brakhage, A.A. Heptahelical receptors GprC and GprD of Aspergillus fumigatus Are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol 2010, 76, 3989–3998. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Tay, R.J.; Lin, H.C.; Juan, S.C.; Vidal-Diez de Ulzurrun, G.; Chang, Y.C.; Hoki, J.; Schroeder, F.C.; Hsueh, Y.P. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol 2024, 9, 1738–1751. [Google Scholar] [CrossRef]
- Hu, X.; Hoffmann, D.S.; Wang, M.; Schuhmacher, L.; Stroe, M.C.; Schreckenberger, B.; Elstner, M.; Fischer, R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat Microbiol 2024, 9, 1752–1763. [Google Scholar] [CrossRef]
- Ballou, E.R.; Avelar, G.M.; Childers, D.S.; Mackie, J.; Bain, J.M.; Wagener, J.; Kastora, S.L.; Panea, M.D.; Hardison, S.E.; Walker, L.A.; et al. Lactate signalling regulates fungal beta-glucan masking and immune evasion. Nat Microbiol 2016, 2, 16238. [Google Scholar] [CrossRef]
- Affeldt, K.J.; Brodhagen, M.; Keller, N.P. Aspergillus oxylipin signaling and quorum sensing pathways depend on g protein-coupled receptors. Toxins (Basel) 2012, 4, 695–717. [Google Scholar] [CrossRef]
- Kulkarni, R.D.; Thon, M.R.; Pan, H.; Dean, R.A. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 2005, 6, R24. [Google Scholar] [CrossRef]
- Brown, N.A.; Schrevens, S.; van Dijck, P.; Goldman, G.H. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 2018, 3, 402–414. [Google Scholar] [CrossRef]
- Shang, J.; Shang, Y.; Tang, G.; Wang, C. Identification of a key G-protein coupled receptor in mediating appressorium formation and fungal virulence against insects. Sci China Life Sci 2021, 64, 466–477. [Google Scholar] [CrossRef]
- Fuchs, B.B.; Mylonakis, E. Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryotic cell 2009, 8, 1616–1625. [Google Scholar] [CrossRef]
- Yu, Z.; Armant, O.; Fischer, R. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 2016, 1, 16019. [Google Scholar] [CrossRef]
- Cornet, M.; Gaillardin, C. pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 2014, 13, 342–352. [Google Scholar] [CrossRef]
- Tilburn, J.; Sarkar, S.; Widdick, D.A.; Espeso, E.A.; Orejas, M.; Mungroo, J.; Penalva, M.A.; Arst, H.N., Jr. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 1995, 14, 779–790. [Google Scholar] [CrossRef]
- Zadrąg-Tęcza, R.; Maślanka, R.; Bednarska, S.; Kwolek-Mirek, M. Response mechanisms to oxidative stress in yeast and filamentous fungi. Stress response mechanisms in fungi: theoretical and practical aspects 2018, 1–34. [Google Scholar]
- Yaakoub, H.; Mina, S.; Calenda, A.; Bouchara, J.P.; Papon, N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022, 79, 333. [Google Scholar] [CrossRef]
- Yu, Z.; Fischer, R. Light sensing and responses in fungi. Nat Rev Microbiol 2019, 17, 25–36. [Google Scholar] [CrossRef]
- Liu, H.; Yu, X.; Li, K.; Klejnot, J.; Yang, H.; Lisiero, D.; Lin, C. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 2008, 322, 1535–1539. [Google Scholar] [CrossRef]
- Avelar, G.M.; Schumacher, R.I.; Zaini, P.A.; Leonard, G.; Richards, T.A.; Gomes, S.L. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 2014, 24, 1234–1240. [Google Scholar] [CrossRef]
- Mishra, R.; Minc, N.; Peter, M. Cells under pressure: how yeast cells respond to mechanical forces. Trends in Microbiology 2022, 30, 495–510. [Google Scholar] [CrossRef]
- Froehlich, A.C.; Liu, Y.; Loros, J.J.; Dunlap, J.C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 2002, 297, 815–819. [Google Scholar] [CrossRef]
- Guerrero, M.; Ruiz, C.; Romero, A.; Robeson, L.; Ruiz, D.; Salinas, F. The N-Terminal Region of the BcWCL1 Photoreceptor Is Necessary for Self-Dimerization and Transcriptional Activation upon Light Stimulation in Yeast. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, P.; Lu, Z.; Qu, Y.; Huang, L.; Zheng, N.; Wang, Y.; Nie, H.; Jiang, Y.; Xu, L. The Photoreceptor Components FaWC1 and FaWC2 of Fusarium asiaticum Cooperatively Regulate Light Responses but Play Independent Roles in Virulence Expression. Microorganisms 2020, 8. [Google Scholar] [CrossRef]
- Qi, Y.; Sun, X.; Ma, L.; Wen, Q.; Qiu, L.; Shen, J. Identification of two Pleurotus ostreatus blue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system. Fungal Biol 2020, 124, 8–14. [Google Scholar] [CrossRef]
- Krobanan, K.; Liang, S.W.; Chiu, H.C.; Shen, W.C. The Blue-Light Photoreceptor Sfwc-1 Gene Regulates the Phototropic Response and Fruiting-Body Development in the Homothallic Ascomycete Sordaria fimicola. Appl Environ Microbiol 2019, 85. [Google Scholar] [CrossRef]
- Casas-Flores, S.; Rios-Momberg, M.; Bibbins, M.; Ponce-Noyola, P.; Herrera-Estrella, A. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology (Reading) 2004, 150, 3561–3569. [Google Scholar] [CrossRef]
- Purschwitz, J.; Muller, S.; Kastner, C.; Schoser, M.; Haas, H.; Espeso, E.A.; Atoui, A.; Calvo, A.M.; Fischer, R. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 2008, 18, 255–259. [Google Scholar] [CrossRef]
- Schuhmacher, L.; Heck, S.; Pitz, M.; Mathey, E.; Lamparter, T.; Blumhofer, A.; Leister, K.; Fischer, R. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor. J Biol Chem 2024, 300, 107238. [Google Scholar] [CrossRef]
- Sanz, C.; Rodriguez-Romero, J.; Idnurm, A.; Christie, J.M.; Heitman, J.; Corrochano, L.M.; Eslava, A.P. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci U S A 2009, 106, 7095–7100. [Google Scholar] [CrossRef]
- Schwerdtfeger, C.; Linden, H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 2003, 22, 4846–4855. [Google Scholar] [CrossRef]
- Foley, B.J.; Stutts, H.; Schmitt, S.L.; Lokhandwala, J.; Nagar, A.; Zoltowski, B.D. Characterization of a Vivid Homolog in Botrytis cinerea. Photochem Photobiol 2018, 94, 985–993. [Google Scholar] [CrossRef]
- Schmoll, M.; Franchi, L.; Kubicek, C.P. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 2005, 4, 1998–2007. [Google Scholar] [CrossRef]
- Losi, A.; Gartner, W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021, 20, 451–473. [Google Scholar] [CrossRef]
- Bieszke, J.A.; Braun, E.L.; Bean, L.E.; Kang, S.; Natvig, D.O.; Borkovich, K.A. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A 1999, 96, 8034–8039. [Google Scholar] [CrossRef]
- Panzer, S.; Brych, A.; Batschauer, A.; Terpitz, U. Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps. Front Microbiol 2019, 10, 735. [Google Scholar] [CrossRef]
- Ahrendt, S.R.; Medina, E.M.; Chang, C.A.; Stajich, J.E. Exploring the binding properties and structural stability of an opsin in the chytrid Spizellomyces punctatus using comparative and molecular modeling. PeerJ 2017, 5, e3206. [Google Scholar] [CrossRef]
- Kihara, J.; Tanaka, N.; Ueno, M.; Arase, S. Cloning and expression analysis of two opsin-like genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 2009, 295, 289–294. [Google Scholar] [CrossRef]
- Fan, Y.; Solomon, P.; Oliver, R.P.; Brown, L.S. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. Biochim Biophys Acta 2011, 1807, 1457–1466. [Google Scholar] [CrossRef]
- Panzer, S.; Zhang, C.; Konte, T.; Brauer, C.; Diemar, A.; Yogendran, P.; Yu-Strzelczyk, J.; Nagel, G.; Gao, S.; Terpitz, U. Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates. Front Mol Biosci 2021, 8, 750528. [Google Scholar] [CrossRef]
- Adam, A.; Deimel, S.; Pardo-Medina, J.; García-Martínez, J.; Konte, T.; Limón, M.C.; Avalos, J.; Terpitz, U. Protein activity of the Fusarium fujikuroi rhodopsins CarO and OpsA and their relation to fungus–plant interaction. International Journal of Molecular Sciences 2018, 19, 215. [Google Scholar] [CrossRef]
- Avelar, G.M.; Glaser, T.; Leonard, G.; Richards, T.A.; Ulrich, H.; Gomes, S.L. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii. Eukaryot Cell 2015, 14, 958–963. [Google Scholar] [CrossRef]
- Broser, M.; Spreen, A.; Konold, P.E.; Schiewer, E.; Adam, S.; Borin, V.; Schapiro, I.; Seifert, R.; Kennis, J.T.M.; Bernal Sierra, Y.A.; et al. NeoR, a near-infrared absorbing rhodopsin. Nat Commun 2020, 11, 5682. [Google Scholar] [CrossRef]
- Froehlich, A.C.; Chen, C.H.; Belden, W.J.; Madeti, C.; Roenneberg, T.; Merrow, M.; Loros, J.J.; Dunlap, J.C. Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 2010, 9, 738–750. [Google Scholar] [CrossRef]
- Garcia-Esquivel, M.; Esquivel-Naranjo, E.U.; Hernandez-Onate, M.A.; Ibarra-Laclette, E.; Herrera-Estrella, A. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 2016, 120, 500–512. [Google Scholar] [CrossRef]
- Guzman-Moreno, J.; Flores-Martinez, A.; Brieba, L.G.; Herrera-Estrella, A. The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6–4 photoproduct repair activity. PLoS One 2014, 9, e100625. [Google Scholar] [CrossRef]
- Bayram, O.; Biesemann, C.; Krappmann, S.; Galland, P.; Braus, G.H. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 2008, 19, 3254–3262. [Google Scholar] [CrossRef]
- Castrillo, M.; Garcia-Martinez, J.; Avalos, J. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 2013, 79, 2777–2788. [Google Scholar] [CrossRef]
- Cohrs, K.C.; Schumacher, J. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea. Appl Environ Microbiol 2017, 83. [Google Scholar] [CrossRef]
- Tagua, V.G.; Pausch, M.; Eckel, M.; Gutierrez, G.; Miralles-Duran, A.; Sanz, C.; Eslava, A.P.; Pokorny, R.; Corrochano, L.M.; Batschauer, A. Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci U S A 2015, 112, 15130–15135. [Google Scholar] [CrossRef]
- Bonomi, H.R.; Toum, L.; Sycz, G.; Sieira, R.; Toscani, A.M.; Gudesblat, G.E.; Leskow, F.C.; Goldbaum, F.A.; Vojnov, A.A.; Malamud, F. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep 2016, 17, 1565–1577. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Cai, Y.; Wu, L.F.; Song, T. Bacteriophytochrome from Magnetospirillum magneticum affects phototactic behavior in response to light. FEMS Microbiol Lett 2020, 367. [Google Scholar] [CrossRef]
- Xue, P.; El Kurdi, A.; Kohler, A.; Ma, H.; Kaeser, G.; Ali, A.; Fischer, R.; Krauss, N.; Lamparter, T. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum. FEBS Lett 2019, 593, 926–941. [Google Scholar] [CrossRef]
- Blumenstein, A.; Vienken, K.; Tasler, R.; Purschwitz, J.; Veith, D.; Frankenberg-Dinkel, N.; Fischer, R. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 2005, 15, 1833–1838. [Google Scholar] [CrossRef]
- Igbalajobi, O.; Yu, Z.; Fischer, R. Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA. mBio 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Arreguin, J.A.; Cabrera-Ponce, J.L.; Leon-Ramirez, C.G.; Camargo-Escalante, M.O.; Ruiz-Herrera, J. Analysis of the photoreceptors involved in the light-depending basidiocarp formation in Ustilago maydis. Arch Microbiol 2020, 202, 93–103. [Google Scholar] [CrossRef]
- Froehlich, A.C.; Noh, B.; Vierstra, R.D.; Loros, J.; Dunlap, J.C. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 2005, 4, 2140–2152. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Guo, L.; Luo, Y.; Li, J.; Zhou, Y.; Wang, J.; Huang, X.; Tan, X.; Fu, M.; Yu, B.; et al. Peroxiredoxin PrxA and thioredoxin TrxA mediate the redox signal to the transcription factor NapA in the fungus Aspergillus nidulans. Int J Biol Macromol 2025, 310, 143434. [Google Scholar] [CrossRef] [PubMed]
- Balazs, A.; Pocsi, I.; Hamari, Z.; Leiter, E.; Emri, T.; Miskei, M.; Olah, J.; Toth, V.; Hegedus, N.; Prade, R.A.; et al. AtfA bZIP-type transcription factor regulates oxidative and osmotic stress responses in Aspergillus nidulans. Mol Genet Genomics 2010, 283, 289–303. [Google Scholar] [CrossRef]
- Bastakis, E.; Gerke, J.; Ozkan, S.; Harting, R.; Lienard, T.; Sasse, C.; Xylakis, E.S.; Aden, M.; Strohdiek, A.; Heinrich, G.; et al. Molecular circuit between Aspergillus nidulans transcription factors MsnA and VelB to coordinate fungal stress and developmental responses. PLoS Genet 2025, 21, e1011578. [Google Scholar] [CrossRef]
- Hagiwara, D.; Asano, Y.; Marui, J.; Furukawa, K.; Kanamaru, K.; Kato, M.; Abe, K.; Kobayashi, T.; Yamashino, T.; Mizuno, T. The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Biosci Biotechnol Biochem 2007, 71, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.; Barker, B.M.; Carey, C.C.; Merriman, B.; Werner, E.R.; Lechner, B.E.; Dhingra, S.; Cheng, C.; Xu, W.; Blosser, S.J.; et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 2014, 10, e1004487. [Google Scholar] [CrossRef]
- Vaknin, Y.; Hillmann, F.; Iannitti, R.; Ben Baruch, N.; Sandovsky-Losica, H.; Shadkchan, Y.; Romani, L.; Brakhage, A.; Kniemeyer, O.; Osherov, N. Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infect Immun 2016, 84, 1866–1878. [Google Scholar] [CrossRef] [PubMed]
- Tilburn, J.; Sarkar, S.; Widdick, D.; Espeso, E.; Orejas, M.; Mungroo, J.; Penalva, M.; Arst, H., Jr. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-and alkaline-expressed genes by ambient pH. The EMBO journal 1995, 14, 779–790. [Google Scholar] [CrossRef]
- Veri, A.O.; Robbins, N.; Cowen, L.E. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2018, 18. [Google Scholar] [CrossRef]
- Zhou, J.; Long, H.; Guo, Y.; Lu, J.; Wang, N.; Liu, H.; Zhou, X.; Cai, M. Glutamate-related nitrogen metabolism regulates cold-adaptive synthesis of red pigment in polar fungus Geomyces sp. WNF-15A. J Biotechnol 2025, 404, 121–131. [Google Scholar] [CrossRef]
- Hagiwara, D.; Kondo, A.; Fujioka, T.; Abe, K. Functional analysis of C2H2 zinc finger transcription factor CrzA involved in calcium signaling in Aspergillus nidulans. Curr Genet 2008, 54, 325–338. [Google Scholar] [CrossRef]
- Cai, Z.; Du, W.; Zeng, Q.; Long, N.; Dai, C.; Lu, L. Cu-sensing transcription factor Mac1 coordinates with the Ctr transporter family to regulate Cu acquisition and virulence in Aspergillus fumigatus. Fungal Genet Biol 2017, 107, 31–43. [Google Scholar] [CrossRef]
- Antsotegi-Uskola, M.; Markina-Inarrairaegui, A.; Ugalde, U. Copper Resistance in Aspergillus nidulans Relies on the P(I)-Type ATPase CrpA, Regulated by the Transcription Factor AceA. Front Microbiol 2017, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.S.; Sobering, A.K.; Romeo, M.J.; Levin, D.E. Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol 2002, 46, 781–789. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Zhang, C.; Chen, L.; Yin, Y.; Chen, Y.; Liu, Z.; Ma, Z. The Mgv1-Rlm1 axis orchestrates SAGA and SWI/SNF complexes at target promoters. Nucleic Acids Res 2025, 53. [Google Scholar] [CrossRef] [PubMed]
- Ries, L.N.A.; Rocha, M.C.; de Castro, P.A.; Silva-Rocha, R.; Silva, R.N.; Freitas, F.Z.; de Assis, L.J.; Bertolini, M.C.; Malavazi, I.; Goldman, G.H. The Aspergillus fumigatus CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Martinez, A.E.; Cano-Dominguez, N.; Aguirre, J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2020, 124, 253–262. [Google Scholar] [CrossRef]
- Peng, S.; Hu, L.; Ge, W.; Deng, J.; Yao, L.; Li, H.; Xu, D.; Mo, H. ChIP-Seq Analysis of AtfA Interactions in Aspergillus flavus Reveals Its Involvement in Aflatoxin Metabolism and Virulence Under Oxidative Stress. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Leach, M.D.; Farrer, R.A.; Tan, K.; Miao, Z.; Walker, L.A.; Cuomo, C.A.; Wheeler, R.T.; Brown, A.J.; Wong, K.H.; Cowen, L.E. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nat Commun 2016, 7, 11704. [Google Scholar] [CrossRef] [PubMed]
- Martins-Santana, L.; Paula, R.G.; Silva, A.G.; Lopes, D.C.B.; Silva, R.D.N.; Silva-Rocha, R. CRZ1 regulator and calcium cooperatively modulate holocellulases gene expression in Trichoderma reesei QM6a. Genet Mol Biol 2020, 43, e20190244. [Google Scholar] [CrossRef]
- de Castro, P.A.; Chen, C.; de Almeida, R.S.; Freitas, F.Z.; Bertolini, M.C.; Morais, E.R.; Brown, N.A.; Ramalho, L.N.; Hagiwara, D.; Mitchell, T.K.; et al. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol Microbiol 2014, 94, 655–674. [Google Scholar] [CrossRef]
- Xu, H.; Fang, T.; Omran, R.P.; Whiteway, M.; Jiang, L. RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans. Cell Commun Signal 2020, 18, 1. [Google Scholar] [CrossRef]
- Moreno, M.A.; Ibrahim-Granet, O.; Vicentefranqueira, R.; Amich, J.; Ave, P.; Leal, F.; Latge, J.P.; Calera, J.A. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol 2007, 64, 1182–1197. [Google Scholar] [CrossRef]
- Singhal, V.; Rathore, V. Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology 2001, 17, 235–240. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Young, E.M.; Jones, T.S.; Densmore, D.; Voigt, C.A. Genetic circuit design automation for yeast. Nat Microbiol 2020, 5, 1349–1360. [Google Scholar] [CrossRef]
- Hannigan, G.D.; Prihoda, D.; Palicka, A.; Soukup, J.; Klempir, O.; Rampula, L.; Durcak, J.; Wurst, M.; Kotowski, J.; Chang, D.; et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res 2019, 47, e110. [Google Scholar] [CrossRef]
- Hanko, E.K.R.; Paiva, A.C.; Jonczyk, M.; Abbott, M.; Minton, N.P.; Malys, N. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat Commun 2020, 11, 1213. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, H.; Ang, E.L. A New Biosensor for Stilbenes and a Cannabinoid Enabled by Genome Mining of a Transcriptional Regulator. ACS Synth Biol 2020, 9, 698–705. [Google Scholar] [CrossRef]
- Ba, F.; Ji, X.; Huang, S.; Zhang, Y.; Liu, W.Q.; Liu, Y.; Ling, S.; Li, J. Engineering Escherichia coli to Utilize Erythritol as Sole Carbon Source. Adv Sci (Weinh) 2023, 10, e2207008. [Google Scholar] [CrossRef]
- Illergård, K.; Ardell, D.H.; Elofsson, A. Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins: Structure, Function, and Bioinformatics 2009, 77, 499–508. [Google Scholar] [CrossRef]
- Holm, L.; Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res 2010, 38, W545–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005, 33, 2302–2309. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, M.; Kim, S.S.; Tumescheit, C.; Mirdita, M.; Lee, J.; Gilchrist, C.L.M.; Soding, J.; Steinegger, M. Fast and accurate protein structure search with Foldseek. Nat Biotechnol 2024, 42, 243–246. [Google Scholar] [CrossRef]
- Dahl, R.H.; Zhang, F.; Alonso-Gutierrez, J.; Baidoo, E.; Batth, T.S.; Redding-Johanson, A.M.; Petzold, C.J.; Mukhopadhyay, A.; Lee, T.S.; Adams, P.D.; et al. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 2013, 31, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Choi, Y.W.; Zhao, H.; Tan, M.H.; Ang, E.L. Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. Bioresour Technol 2017, 245, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Kotelnikov, S.; Egbert, M.E.; Ofaim, S.; Stevens, G.C.; Phanse, S.; Saccon, T.; Ignatov, M.; Dutta, S.; Istace, Z.; et al. Ligand interaction landscape of transcription factors and essential enzymes in E. coli. Cell 2025, 188, 1441–1455 e1415. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Kim, D.; Kim, B.; Choi, J.; Lee, J. Recent advances in AI-driven protein-ligand interaction predictions. Curr Opin Struct Biol 2025, 92, 103020. [Google Scholar] [CrossRef]





| Inducer | Responsive TF | UAS | Species | Ref |
|---|---|---|---|---|
| Plant biomass degradation monomer | ||||
| xylose | XlnR | GGCTAAA |
Aspergillus spp.; Penicillium spp.. |
[47] |
| arabinose | AraR | N/A* | Aspergillus spp. | [48] |
| maltose | MalR | N/A | A. oryzae | [49] |
| sucrose/inulin | InuR | CGG-X8-CGG | A. niger | [50] |
| rhamnose | RhaR | CGG-X11-CCG | A. nidulans | [51] |
| cellobiose | ClbR | CGG or CCG | A. aculeatus | [52] |
| D-galacturonic acid | GaaR | TCC-X1-CCAAT | A. niger | [53] |
| isomaltose | AmyR | CGG-X8-CGG or CGGAAATTTAA | A. nidulans | [54] |
| L-fucose | FUR1 | CCGACGG | T. reesei | [55] |
| β-mannan | ManR | CAGAAT | A. oryzae | [49] |
| ferulic acid | FarA | CCTCGG | A. niger | [56] |
| d-Fructose | FruR | TGAWWGWTTT | F. prausnitzii | [57] |
| l-acetic acid | Haa1 | SMGGSG | S. cerevisiae | [58] |
| NO3- or NO2- | NirA | CTCCGHGG | Aspergillus spp. | [59] |
| Amino Acids | ||||
| proline | PrnA | CCGG-N-CCGG | A. nidulans | [37] |
| tyrosine | HmgR | N/A | A. fumigatus | [60] |
| valine/leucine/isoleucine | LeuB | CCG-X4-CGG | Aspergillus spp. | [61] |
| arginine | ARCA | CTGCACTTAGAG | Aspergillus nidulans | [62] |
| methionine | MetR | ATGRYRYCAT | Aspergillus nidulans | [63] |
| Pheromone | ||||
| pheromone | Ste12, SteA | TGAAACA |
Aspergillus spp. C.albicans |
[64] |
| Volatile Compounds (VOC) | ||||
| aromatic compounds(o-toluidine, guaiacol) | TH8421/TH4300 | TH8421: CGG-X10-CCG,CGG-X5-CGG; TH4300:CGG-X6-CGG |
T. hirsuta | [32] |
| acetaldehyde | AlcR | half site:TGCGG | A. nidulans | [65] |
| 1-octen-3-ol | N/A | N/A | A. flavus | [66] |
| Quorum Sensing Molecule (QSM) | ||||
| Farnesoic acid | Hot1 | TTAATAATCAAAAACAATTTAATCGT | C. albicans | [67] |
| Oxylipin | NosA | N/A | A. nidulans | |
| Farnesol | Czf1/Efg1(APSES TF) | CZF1: TTWRSCGCCG; Efg1:TGCAT |
Candida spp. | [68] |
| Isoamyl alcohol | Aro80 | CCG-X7-CCG | C. albicans | [69] |
| 1-dodecanol | Sfl1 | AGAA-X-TTCT | C. albicans | |
| QSP1 (QS peptide) | Cqs2 | N/A | C. neoformans | [70] |
| Other | ||||
| Quinic acid | QF-QS | GGRTAARYRYTTATCC | N. crassa | [71] |
| N/A*: Not Available | ||||
| GPCR | Signal | Physiological role/ evidence | Species | Ref |
|---|---|---|---|---|
| Nutrition | ||||
| Gpr1, Git3, GPR-4, GprC, GprD | carbon source | sense the carbon source and further affect growth and metabolism |
S. cerevisiae, S. pombe, N. crassa, Aspergillus spp. |
[42,75,76,77] |
| CnGpr4 | methionine | upstream of the cAMP–PKA pathway and regulates methionine-induced mating and contributes to capsule formation | C. neoformans | [78] |
| AfGprK, GPR-7 (NCU09883) | pentose | ΔgprK mutant is restricted on the medium when pentose is the sole carbon source |
A. fumigatus, N. crassa |
[79] |
| GprH | tryptophan, glucose | The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells | A. nidulans | [80] |
| Stm1, GPR-5 (NCU00300), GPR-6 (NCU09195),GprR | nitrogen source (e.g., arginine, ornithine) | expression was induced by N starvation signal thorough Gpa2(Gα) |
S. pombe, N. crassa, A. flavus |
[72,73,81] |
| Hormone | ||||
| Ste2, GprA, PRE-1 (NCU00138), Cpr2, Ste3a |
α-factor pheromone | mediate cell cycle arrest and cell fusion with the opposite mating type |
S. cerevisiae, A. nidulans, N. crassa, C. neoformans |
[82,83,84,85,86] |
| Ste3, GprB, PRE-2(NCU05758), Ste3α | a-factor pheromone | mediate cell cycle arrest and cell fusion with the opposite mating type |
S. cerevisiae, A. nidulans, N. crassa, C. neoformans |
[83,87,88,89] |
| Gpr-12 | abscisic acid (ABA) | could be involved in signaling related to abscisic acid | N. crassa | [73,90] |
| Light | ||||
| NOP-1, CarO | green light (534&561 nm) | light controlled sexual development |
N. crassa, F. fujikuroi |
[91,92] |
| ORP-1 (NCU01735) | N/A | N/A | N. crassa | [91,93] |
| Oxidative stress | ||||
| GprH | N/A | loss of gprH rendered the fungus more resistant to H2O2 | A. flavus | [72] |
| pH | ||||
| PalH/Rim21, GprM, GprR | alkalne pH | palH GPCR-arrestin(Rim8) signaling; null mutant of GprM and GprR result in remarkable morphogentically alteration |
A. flavus | [72,94] |
| GprD, GprF, GprG, GprK, GprM | acid pH | null mutant of these GPCRs were more resistatnt to acidic pH | A. flavus | [72] |
| Osmotic stress | ||||
| GprK, GprM, GprR | null mutant of gprK, gprM, and gprR were more sensitive than the wild-type to the hyperosmotic condition | A. flavus | [72] | |
| Temperature | ||||
| GprC, GprD, GprF, GprG, GprO | thermal stress | the expression of these GPCRs were significantly different at three temperatures (20◦C, 28◦C, and 37◦C); The growth defect of null mutant of GprC or GprD was found to be temperature dependent |
A. flavus, A. fumigatus |
[95,96] |
| Inter-communication signal | ||||
| Gpr1, Gpr2, Gpr3, GprC |
ascaroside | trigger nematode-trapping |
A.oligospora, A. flagrans |
[97,98] |
| CaGpr1 | l-lactic acid | Involved in Lactate signalling and regulates fungal β-glucan masking and immune evasion | Candida albicans | [99] |
| GprC, GprD | linoleic acid derivates (e.g., 9-HODE, 13-HODE) | quorum-sensing receptors | Aspergillus spp. | [72,100] |
| GprO, GprP | 13(S)-HpODE | oxylipin sensing | A. flavus | [72] |
| Pth11, MrGpr8 (Class X); GPR-15~39 | hydrophobic surfaces | the CFEM domain is essential for sensing the hydrophobic surfaces and fungal virulence to plant and insect | Magnaporthe spp., Neurospora crassa | [73,101,102,103] |
| Photoreceptor | Protein domain | Chromophore | Species | Ref |
|---|---|---|---|---|
| LOV | ||||
| WC-1,WC-2 | LOV, PAS, GATA DBD,AD | FMN, FAD | N. crassa | [114] |
| BcWCL1, BcWCL2 | LOV, PAS, GATA DBD,AD | FMN, FAD | B. cinerea | [115] |
| FaWC1, FaWC2 | FaWC1: LOV, PAS, NLS, ZnF, Poly-Q FaWC2: PAS, NLS, ZnF |
FAD(FaWC1) | F. asiaticum | [116] |
| PoWC-1, PoWC-2 | PoWC1: PAS, ZnF, LOV PoWC2: PAS, GATA-ZnF |
FAD(PoWC-1) | P. ostreatus | [117] |
| SfWC-1 | LOV, PAS, GATA-ZnF, Poly-Q, NLS | FAD | S. fimicola | [118] |
| BLR-1, BLR-2 | BLR-1: LOV, PAS, GATA-ZnF,NLS, Poly-Q PoWC2: PAS, GATA-ZnF |
FMN | T. atroviride | [119] |
| LreA, LreB | LreA: LOV, PAS, GATA-ZnF,NLS LreB: PAS, GATA-ZnF |
FAD (LreA) | A. ndiulans | [120] |
| LreA | LOV, PAS, GATA-ZnF, NLS | FAD,FMN | A. alternata | [121] |
| MadA,MadB | MadA: LOV, PAS, GATA-ZnF, MAPK MadB: PAS, GATA-ZnF, WRKY |
FAD (MadA) | P. blakesleeanus | [122] |
| Vivid | N/C-cap, LOV | FAD,FMN |
N. crassa, B cinerea, T reesei |
[123,124,125] |
| BCLOV3, BCLOV4 | BCLOV3: short-LOV BCLOV4: RGS, LOV |
FAD,FMN | B. cinerea | [126] |
| Opsin/Rhodopsin | ||||
| NOP-1 | Seven transmembrane, helix retinal-binding protein, low pump activity | Retinal (11-cis-Retinal) | N. crassa | [127] |
| CarO | Seven transmembrane, Green light-driven proton pump |
all-trans-retinal |
F. fujikuroi | [92] |
| Opsin-1,Opsin-2 | Green Light-Driven Proton Pumps | U. maydis | [128] | |
| Opsin | Seven transmembrane, pump activity |
9- cis-retinal isomer | S. punctatus | [129] |
| BcOPs (BOP1, BOP2) | Seven transmembrane | all-trans-retinal | B. cinerea | [38] |
| Opsin-1,Opsin-2 | B. oryzae | [130] | ||
| PhaeoRD1,PhaeoRD2 | Seven transmembrane; pump activity |
P. nodorum | [131] | |
| ApOps1, ApOps2, ApOps3 | A. pullulans | [132] | ||
| OpsA | no pump activity | F. fujikuroi | [133] | |
| Rhodopsin-guanylyl cyclases (RhoGCs) | ||||
| BeGC1 | Rhodopsin domain, Guanylyl cyclase domain | retinal | B. emersonii | [134] |
| RGC1,RGC2,RGC3(NeoR) | R. globosum | [135] | ||
| Cryptochromes | ||||
| Neurospora CRY | photosensing;FAD binding domain; PHR;CCE | FAD, MTHF | N. crassa | [136] |
| Cry1 | N-terminal DNA photolyase, FAD-binding domain, C-terminal extension domain |
FAD | T. atroviride | [137] |
| Cry1 | FAD | T. reesei | [138] | |
| CryA | The PHR domain, FAD-binding domain, C-terminal extension domain |
FAD | A. nidulans | [139] |
| CryD | FAD binding domain, The photolyase domain |
FAD, MTHF | F. fujikuroi | [140] |
| BcCRY1 ,BcCRY2 | FAD | B. cinerea | [141] | |
| CryA | FAD, MTHF | P. blakesleeanus | [142] | |
| Phytochromes | ||||
| XccBphP | PAS2,GAF, PHY,PAS9 |
bilin,biliverdin, phycoerythrobilin, phytochromobilin |
X. campestris | [143] |
| MmBphP | PAS,GAF,PHY | M. magneticum | [144] | |
| Agp1,Agp2 | Agp1;PAS,GAF,PHY,HisK,ATPase Agp2:PAS,GAF,PHY,HWE-HK |
A. fabrum | [145] | |
| FphA | P2,GAF,PHY,HKD,RRD | A. nidulans | [146] | |
| FphA | A. alternata | [147] | ||
| Phy1 | PAS,GAF,PHY,HKD,RRD | U. maydis | [148] | |
| PHY-1,PHY-2 | PLD,GAF,PHY,HKD,RRD | N. crassa | [149] | |
| BcPHY-1,BcPHY-2,BcPHY-3 | PAS,GAF,PHY,HK,ATP,RRD | B. cinerea | [38] | |
| Inducer | Responsive TF | UAS | Species | Ref |
|---|---|---|---|---|
| Oxidative stress | ||||
| ROS: NADPH | NapA | (T/TT)ACTAA/TKASTAA | Filamentous fungal species | [165] |
| AtfA | DRTGTTGCAA | A. flavus | [166] | |
| MsnA | GCTGAGTCAGC | A. nidulans | [152] | |
| Low oxygen | SrbA | (A/G)TCA(T/C/G)(C/G)CCAC(T/C) | Aspergillus spp. | [154] |
| pH | ||||
| Alkaline pH | PacC | GCCARG | A. nidulans | [107] |
| Temperature | ||||
| Thermal stress | Hsf1 | TTCnnGAAnnTTC |
C. albicans; Aspergillus spp. |
[167] |
| Cold | Scaffold5.t61 | N/A | Geomyces sp. WNF-15A | [158] |
| metal ion | ||||
| Ca2+ | CrzA | GDGGCKBNB; A[GT][CG]CA[AC][AG]; GGAGGC(G/A)C(T/A)G |
T. reesei; A. fumigatus; C. albicans |
[168,169,170] |
| Zn2+ | ZafA | CAAGGT | A. fumigatus | [171] |
| Cu2+ | AceA | H(T)HNNGCTGD | P. chrysosporium | [172] |
| Mechanical Forces | ||||
| Ca2+ | Crz1 | G[T/G]GGC[T/A]G[T/G]G | Aspergillus spp. | [159] |
| Rlm1 | TGATGCTGTTGATGT,TGCTATTTTTGG | F. graminearum | [163] | |
| Water Availability | ||||
| Hog1 signaling | AtfA | DRTGTTGCAA | A. flavus | [166] |
| Electromagnetic Fields | ||||
| Not any fungi was identified to be able to sense electromagnetic Fields | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).