Submitted:
14 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Review Methodology
3. Results
3.1. Overview of the Selected Studies
3.1.1. Environmental Impact Categories
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Anaerobic digestion |
| co-AD | Anaerobic co-digestion |
| AP | Acidification potential |
| CC | Climate change |
| CS | Corn Silage |
| CH4 | Methane |
| CHP | Combined heat and power |
| CML | Centrum voor Milieukunde Leiden impact assessment method |
| DEA–LCA | Data Envelopment Analysis–Life Cycle Assessment |
| EIC | Environmental impact category |
| EP | Eutrophication potential |
| FAO | Food and Agriculture Organization of the United Nations |
| FU | Functional unit |
| FW | Food waste |
| GHG | Greenhouse gas |
| GS | Grass silage |
| GWP | Global warming potential |
| HT | Human toxicity |
| ILCD | International Reference Life Cycle Data System |
| IPCC | Intergovernmental Panel on Climate Change |
| ISO | International Organization for Standardization |
| IR | Ionazing Radiation |
| LA | Land application |
| LCA | Life cycle assessment |
| LCC | Life cycle costing |
| LCIA | Life cycle impact assessment |
| LW | Live weight |
| MAE | Marine aquatic ecotoxicity |
| MJ | Megajoule |
| N2O | Nitrous oxide |
| NREU | Non-renewable energy use |
| NRRU | Non-renewable resource use |
| OR | Odour-Related |
| ODP | Ozone depletion potential |
| PBF | Powder Biofertilizer |
| PM | Pig manure/slurry |
| PMF | Particulate matter formation |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| ReCiPe | Harmonised life cycle impact assessment method |
| SLCA | Social life cycle assessment |
| SS | Swine slurry |
| TE | Terrestrial ecotoxicity |
| WU | Water use |
References
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Deng, L.; Zheng, D.; Zhang, J.; Yang, H.; Wang, L.; Wang, W.; He, T.; Zhang, Y. Treatment and utilization of swine wastewater—A review on technologies in full-scale application. Sci. Total Environ. 2023, 880, 163223. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Wang, S.; Wang, Z.; Liu, Y.; Hu, Z.; Zhan, X. Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate. Renew. Sustain. Energy Rev. 2021, 137, 110476. [Google Scholar] [CrossRef]
- Beily, M.; Young, B.J.; Bres, P.A.; Riera, N.I.; Wang, W.; Crespo, D.E.; Komilis, D. Relationships among physicochemical, microbiological, and parasitological parameters of pig slurry. Sustainability 2023, 15, 3172. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Pig meat production dataset. Our World in Data 2025. [Google Scholar]
- Treml, N.; Rudi, A.; Schultmann, F. Evaluating environmental impacts of pork production: A life cycle assessment. J. Clean. Prod. 2025, 503, 145408. [Google Scholar] [CrossRef]
- Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities.
- Sejian, V., Hyder, I., Ezeji, T., Lakritz, J., Bhatta, R., Ravindra, J. P., Prasad, C. S., and Lal, R. (2015). Global Warming: Role of Livestock. Climate Change Impact on Livestock: Adapt. Mitig., 141–169. [CrossRef]
- Food and Agriculture Organization of the United Nations (2017). Livestock solutions for climate change | FAO. Www.fao.org. https://www.fao.org/family-farming/detail/en/c/1634679/.
- Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., Van Grinsven, H., and Grizzetti, B. (2011). The European Nitrogen Assessment Assessing our nitrogen inheritance. https://publications.tno.nl/publication/34627918/45o9AS/b11011.pdf.
- Jiménez-de-Santiago, D. E.; Ovejero, J.; Antúnez, M.; Bosch-Serra, A. D. Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area. Sustainability 2024, 16(1), 238. [Google Scholar] [CrossRef]
- Millati, R.; Wikandari, R.; Ariyanto, T.; Hasniah, N.; Taherzadeh, M. J. Anaerobic digestion biorefinery for circular bioeconomy development. Bioresour. Technol. Rep. 2023, 21, 101315. [Google Scholar] [CrossRef]
- Marami, H.; Khademi, S.; Rafiee, S.; Mobli, H.; Birkved, M.; Li, H.; Angelidaki, I.; Khoshnevisan, B. Upcycling anaerobic digestion streams into feed-grade protein for increased environmental sustainability. Renew. Sustain Energy Rev. 2025, 216, 115638. [Google Scholar] [CrossRef]
- Holm-Nielsen, J. B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100(22), 5478–5484. [Google Scholar] [CrossRef]
- Villavicencio-Gutiérrez, M. R.; Rogers-Montoya, N. A.; Martínez-Campos, R.; Gómez-Tenorio, G.; Martínez-Castañeda, F. E. The environmental performance of different pork production scenarios: a life cycle assessment study. Trop. Anim. Health and Prod. 2022, 54(1). [Google Scholar] [CrossRef]
- Jacob, S., Kundu, D., Anjani Devi Chintagunta, Nunne, S. K., Samanta, P., Chandan Mahata, Dey, S., RG Shibirathna, Arun Barathi, Kumar, S., Wang, Z. D., and Goel, G. (2025). Anaerobic Digestion-derived Digestate Valorization: Green Chemistry Innovations for Resource Recovery and Reutilization. Green Chem. [CrossRef]
- Bacenetti, J.; Fusi, A.; Negri, M.; Fiala, M. Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process. Sci. Total Environ. 2013, 463–464, 541–551. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2006, 98(17), 3204–3212. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R. R. Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere 2020, 255, 126805. [Google Scholar] [CrossRef]
- Freitas, F. F.; Furtado, A. C.; Piñas, J.A.V.; Venturini, O. J.; Barros, R. M.; Lora, E. E. S. Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive. Energy 2022, 261, 125340–125340. [Google Scholar] [CrossRef]
- Styles, D.; Yesufu, J.; Bowman, M.; Prysor Williams, A.; Duffy, C.; Luyckx, K. Climate mitigation efficacy of anaerobic digestion in a decarbonising economy. J. Clean. Prod. 2022, 338, 130441. [Google Scholar] [CrossRef]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Sossidou, E. N.; Banias, G. F.; Batsioula, M.; Termatzidou, Sofia-Afroditi; Simitzis, Panagiotis; Patsios, S. I.; Broom, D. M. Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy. Sustainability 2025, 17(11), 5184–5184. [Google Scholar] [CrossRef]
- ISO. (2006a). ISO 14040: Environmental management — Life cycle assessment — Principles and framework. International Organization for Standardization.
- ISO. (2006b). ISO 14044: Environmental management — Life cycle assessment — Requirements and guidelines. International Organization for Standardization.
- Hurtig, O.; Buffi, M.; Besseau, R.; Scarlat, N.; Carbone, C.; Agostini, A. Mitigating biomethane losses in European biogas plants: A techno-economic assessment. Renew. Sustain.e Energy Rev. 2024, 210, 115187. [Google Scholar] [CrossRef]
- Page, M. J.; McKenzie, J. E.; Bossuyt, P. M.; Boutron, I.; Hoffmann, T. C.; Mulrow, C. D.; Shamseer, L.; Tetzlaff, J. M.; Akl, E. A.; Brennan, S. E.; Chou, R.; Glanville, J.; Grimshaw, J. M.; Hróbjartsson, A.; Lalu, M. M.; Li, T.; Loder, E. W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L. A. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372(71). [Google Scholar] [CrossRef]
- Ouzzani, Mourad; Hammady, Hossam; Fedorowicz, Zbys; Elmagarmid, Ahmed. Rayyan — a web and mobile app for systematic reviews. Systematic Reviews 2016, 5, 210. [Google Scholar] [CrossRef]
- Haddaway, N. R.; Page, M. J.; Pritchard, C. C.; McGuinness, L. A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell. Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef] [PubMed]
- Girón-Rojas, C.; Alcobendas, A. I. P.; Cortés, J. G.; Ribal, J.; Sanjuan, N. Enhancing Energy Self-Sufficiency in Rural Regions: Environmental and Financial Assessment of Anaerobic Digestion of Pig Slurry. Waste and Biomass Valorization 2025. [Google Scholar] [CrossRef]
- Hossain, S.; Akter, S.; Saha, C. K.; Reza, T.; Kabir, K. B.; Kirtania, K. A comparative life cycle assessment of anaerobic mono- and co-digestion of livestock manure in Bangladesh. Waste Management 2022, 157, 100–109. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Wang, S.; Wang, Z.; Liu, Y.; Hu, Z.; Zhan, X. Improved environmental sustainability and bioenergy recovery through pig manure and food waste on-farm co-digestion in Ireland. J. Clean. Prod. 2021, 280, 125034. [Google Scholar] [CrossRef]
- Pexas, G.; Mackenzie, S. G.; Wallace, M.; Kyriazakis, I. Environmental impacts of housing conditions and manure management in European pig production systems through a life cycle perspective: A case study in Denmark. J. Clean. Prod. 2020, 253, 120005. [Google Scholar] [CrossRef]
- Venslauskas, K.; Navickas, K.; Rubežius, M.; Tilvikienė, V.; Supronienė, S.; Doyeni, M. O.; Barčauskaitė, K.; Bakšinskaitė, A.; Bunevičienė, K. Environmental Impact Assessment of Sustainable Pig Farm via Management of Nutrient and Co-Product Flows in the Farm. Agronomy 2022, 12(4), 760. [Google Scholar] [CrossRef]
- Wu, W.; Cheng, L.-C.; Chang, J.-S. Environmental life cycle comparisons of pig farming integrated with anaerobic digestion and algae-based wastewater treatment. J. Env. Manag. 2020, 264, 110512. [Google Scholar] [CrossRef]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- Balcioglu, G.; Jeswani, H. K.; Azapagic, A. Evaluating the environmental and economic sustainability of energy from anaerobic digestion of different feedstocks in Turkey. Sustain. Prod. Consum. 2022, 32, 924–941. [Google Scholar] [CrossRef]
- Mirzaei, M.; Gorji Anari, M.; Saronjic, N.; Sarkar, S.; Kral, I.; Gronauer, A.; Mohammed, S.; Caballero-Calvo, A. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. Environ. Monit. Assess. 2022, 195(1). [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, L.; Ferreira, M.; Ferreira, A.; Domingos, I. Environmental Assessment of Pig Manure Treatment Systems through Life Cycle Assessment: A Mini-Review. Sustainability 2024, 16(9), 3521–3521. [Google Scholar] [CrossRef]
- Tan, W. E.; Liew, P. Y.; Bong; Fan, Y. V.; Tan, L. S.; Jamian, Nor Ruwaida. Life Cycle Assessment and Techno-Economic Assessment of Anaerobic Co-Digestion: A Short Review. Chem. Eng. Transactions 2021, 88, 907–912. [Google Scholar] [CrossRef]
- Marefat, A.; Golzary, A.; Takahashi, F.; Huisingh, D. Financial feasibility and optimization of anaerobic digestion systems for sustainable waste management: A comprehensive global analysis. Clean. Environ. Syst. 2025, 19, 100339. [Google Scholar] [CrossRef]
- Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. Life cycle assessment of orange peel waste management. Resour. Conserv. and Recycl. 2017, 127, 148–158. [Google Scholar] [CrossRef]
- Usack, J. G.; Gerber Van Doren, L.; Posmanik, R.; Labatut, R. A.; Tester, J. W.; Angenent, L. T. An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework. Appl. Energy 2018, 211, 28–40. [Google Scholar] [CrossRef]
- Khan, M. U.; Lee, J. T. E.; Bashir, M. A.; Dissanayake, P. D.; Ok, Y. S.; Tong, Y. W.; Shariati, M. A.; Wu, S.; Ahring, B. K. Current status of biogas upgrading for direct biomethane use: A review. Renew. Sustain. Energy Rev 2021, 149, 111343. [Google Scholar] [CrossRef]
- Hollas, C. E.; Bolsan, A.C.; Chini, A.; Venturin, B.; Bonassa, G.; Cândido, D.; Antes, F. G.; Steinmetz, R. L. R.; Prado, N. V.; Kunz, A. Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach. Renew. Sustain. Energy Rev 2021, 150, 111472–111472. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z. Selection of pig manure management strategies: Case study of Polish farms. J. Clean. Prod 2018, 172, 187–195. [Google Scholar] [CrossRef]
- Azevedo, A., Gominho, J., and Duarte, E. (2020). Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues. Waste and Biomass Valorization. [CrossRef]
- Santos, L.; Ferreira, M.; Domingos, I.; Oliveira, V.; Rodrigues, C.; Ferreira, A.; Ferreira, J. Life Cycle Assessment of Pig Production in Central Portugal: Environmental Impacts and Sustainability Challenges. Sustainability 2025, 17(2), 426. [Google Scholar] [CrossRef]
- Martín-Sanz-Garrido, C.; Revuelta-Aramburu, M.; Santos-Montes, A. M.; Morales-Polo, C. A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective. Appl. Sci. 2025, 15(15), 8635–8635. [Google Scholar] [CrossRef]
- Beyers, M.; Duan, Y.-F.; Jensen, L. S.; Bruun, S. Effect of natural and regulatory conditions on the environmental impacts of pig slurry acidification across different regions in Europe: A life cycle assessment. J. Clean. Prod. 2022, 368, 133072. [Google Scholar] [CrossRef]
- Lee, U.; Bhatt, A.; Hawkins, T. R.; Tao, L.; Benavides, P. T.; Wang, M. Life cycle analysis of renewable natural gas and lactic acid production from waste feedstocks. J. Clean. Prod. 2021, 311, 127653. [Google Scholar] [CrossRef]



| No. | Study (Year) | Country | FU | System Boundary | Method | Software/Database | Ref. |
|---|---|---|---|---|---|---|---|
| 1 | Duan et al. (2020) | China | 1 t manure | Cradle-to-gate | IMPACT2002+ | Ecoinvent 3.3 | [30] |
| 2 | Freitas et al. (2022) | Portugal | 1 kWh / t manure | Cradle-to-gate | CML2 baseline 2000 | SimaPro 8.0 | [20] |
| 3 | Girón- Rojas et al., (2025) | Spain | Waste/year | Gate-to-gate | pLCA MonteCarlo simulation |
‘LCA for Experts 10.7’ EcoInvent 3.8 Sphera |
[31] |
| 4 | Hossain et al. (2023) | Bangladesh | 1 Mj of biogas energy | Cradle-to-gate | CML2 baseline | OpenLCA 1.10.3 | [32] |
| 5 | Jiang et al. (2021) | Ireland | 16 000ton/yr PM | Cradle-to-gate | ReCiPe Midpoint | SimaPro Ecoinvent 3.5 |
[33] |
| 6 | Pexas et al. (2020) | Denmark | 1 kg LW | Cradle-to-gate | CML-IA Baseline 3.05 MonteCarlo simulation |
SimaPro 8.5.0 EcoInvent 3 |
[34] |
| 7 | Venslauskas et al. (2022) | Lituania | 1000 fattening pigs | Cradle-to-gate | CML-I Baseline | SimaPro 9.2 Ecoinvent 3 |
[35] |
| 8 | Wu et al. (2020) | Taiwan China |
1000 kg LW | Cradle-to-gate | ReCiPe 1.13 | SimaPro Agri-foodprint 2.0 |
[36] |
| 9 | Zhang et al. (2021) | Ireland | MJenergy kgnitrogen |
Cradle-to-grave | CML-IA baseline | SimaPro 8.5.2 Ecoinvent |
[3] |
| 10 | Timonen et al. (2019) | Finland | 1 kg live weight | Cradle-to-grave | EU Renewable Energy Directive |
SimaPro v8.4 | [37] |
| No. | Study (Year) | Title | Focus | Scenarios (condensed) | Key Finding | Ref. |
|---|---|---|---|---|---|---|
| 1 | Duan et al. (2020) | LCA of anaerobic digestion of pig manure coupled with digestate treatment technologies | Digestate management | Direct LA; fractionation + MA co-AD; PBF | Fractionation improves performance; direct LA most favorable | [30] |
| 2 | Freitas et al. (2022) | Holistic LCA of a biogas-based electricity generation plant in a pig farm | Mono vs co-AD | PM mono-AD; co-AD with GS, CS, biochar | co-AD + biochar reduces impacts | [20] |
| 3 | Girón-Rojas et al. (2025) | Enhancing energy self-sufficiency in rural regions via AD of pig slurry | Mono vs co-AD | PM mono-AD; co-AD + pepper waste | co-AD improves environmental and economic performance | [31] |
| 4 | Hossain et al. (2023) | Comparative LCA of mono- and co-digestion of livestock manure | co-AD assessment | Mono-AD; co-AD with FW | co-AD reduces most impact categories | [32] |
| 5 | Jiang et al. (2021) | Environmental sustainability of on-farm PM and FW co-digestion | Baseline vs co-AD | Direct LA and composting; co-AD | co-AD outperforms baseline in 9/11 impacts | [33] |
| 6 | Pexas et al. (2020) | Environmental impacts of housing and manure management in pig production | Management pathways | Acidification; separation; AD and co-AD | AD significantly reduces impacts | [34] |
| 7 | Venslauskas et al. (2022) | Environmental impact assessment of a sustainable pig farm | Nutrient and co-product flows | Fertilization; co-product reuse | Digestate substitution lowers impacts | [35] |
| 8 | Wu et al. (2020) | LCA of pig farming integrated with AD and algae treatment | AD–algae systems with co-AD | Composting; AD+CHP; algae systems | Algae-based systems reduce emissions | [36] |
| 9 | Zhang et al. (2021) | Environmental sustainability of PM mono- and co-digestion | AD and co-AD Digestate LA | Direct LA; mono-AD; co-AD + LA | co-AD shows best overall performance | [3] |
| 10 | Timonen et al. (2019) | LCA of AD: emission allocation for energy and digestate | Allocation methods | PM co-AD with GS or FW | Results sensitive to allocation and digestate use | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
