Submitted:
12 January 2026
Posted:
13 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Observational Methods and Air-Sea Flux Computation
2.1. The WHOTS ORS Site and the Surface Mooring
2.2. The Quality of ORS Surface Meteorological Observations
| Observable | Sensor make and model | Typical height above sea surface | Notes |
|---|---|---|---|
| Wind (WSPD) | RM Young 5103 | 3.3 m | Propeller-vane anemometer, stock propeller bearing upgraded |
| Wind (WDIR) | Gill Instruments WindObserver II Ultrasonic Anemometer | 3.3 m | Sonic anemometer, used at times to mitigate data loss due to birds |
| Air temperature/humidity (Ta/RH) |
Rotronic MP-101A | 2.95 m | Porous Teflon filter and multiplate radiation shield |
| Incoming shortwave radiation (DSWR) | Eppley Precision Spectral Pyranometer | 3.43 m | Case adapted to ASIMET module tubing |
| Incoming longwave radiation (DLWR) | Eppley Precision Infrared Radiometer | 3.43 m | Case adapted to ASIMET module tubing |
| Barometric pressure (SLP) | Heise DXD | 3.0 m | With parallel plate pressure port |
| Precipitation (P) | RM Young 50202 | 3.12 m | Self-siphoning rain gauge |
| Sea surface temperature and salinity (SST, SSS) |
SeaBird 37 MicroCAT |
-.75 to -.85 m | Mounted on buoy bridle |
2.3. Air-Sea Flux Computation and Quality Assessment
| Sensor | WHOTS mean | One-minute | Daily | Annual |
|---|---|---|---|---|
| Downward longwave (W m−2) (DLWR) |
388.8 | 7.5 | 4 | 4 |
| Downward shortwave (W m−2) (DSWR) |
238.1 | 20 | 6 | 5 |
| Relative Humidity (%RH) (RH) |
75.6 | 1 3 (low winds) |
1 3 |
1 |
| Air temperature (°C) (Ta) |
24.26 | 0.2 (more in low wind) | 0.1 | 0.1 |
| Barometric pressure (hPa) (SLP) |
1017.0 | 0.3 | 0.2 | 0.2 |
| SST (°C) | 25.15 | 0.1 | 0.1 | 0.004 |
| Wind speed (m s−1) (WSPD) |
6.77 | 1.5% or 0.1 (more in low wind) |
1%, 0.1 (max of these) |
1%, 0.1 (max of these) |
| Wind direction (°) (WDIR) |
264.0 | 6 (more in low wind) | 5 | 5 |
| Rainfall (% under catchment) (Prate, mm hr−1) |
.06 | 10% | 10% | 10% |
3. An Overview of Surface Meteorology and Air-Sea Fluxes at WHOTS
3.1. Surface Meteorology Time Series—An Overview Using Daily-Averages
3.2. Air-Sea Flux Time Series—An Overview Using Daily Averages
4. The One-Minute Time Series
4.1. Statistics of One-Minute Surface Meteorology and Fluxes
4.2. Frequency Spectra of One-Minute Time Series
4.3. Strong Transient Signals in One-Minute Surface Meteorology and Air-Sea Fluxes
5. The Mean Daily Cycle
5.1. Surface Meteorology
5.2. Air-Sea Fluxes
6. Energetic Events—Time Scales of Days to Months
6.1. Ocean Heating During a Low Wind Period (Low Wind 2)
6.2. A Period of Heat Loss November-December 2012 (Heat Loss 1)
6.3. A Period of Ocean Heat Loss January 9 to February 28, 2010 (Heat Loss 2)
6.4. Summer Heating and Hurricane Darby July 10 to 28, 2016 (Heat Gain + Darby)
7. The Mean Annual Cycle
7.1. The Mean Annual Cycle in Surface Meteorology
7.2. The Mean Annual Cycle in Air-Sea Fluxes
8. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACO | Aloha Cabled Observatory |
| ASIMET | Air-Sea Interaction METeorological system |
| BP | Barometric pressure |
| ASTEX | Atlantic Stratocumulus Transition Experiment |
| COARE | Coupled Ocean Atmosphere Response Experiment |
| Cph | cycle per hour |
| DLWR | Downwelling longwave radiation |
| DSWR | Downwelling shortwave radiation |
| E | Evaporation |
| E-P | Evaporation minus precipitation |
| ECMWF | European Centre for Medium-Range Weather Forecasts |
| ERA5 | ECMWF Reanalysis version 5 |
| GTS | Global Telecommunications System |
| HOT | Hawaii Ocean Timeseries |
| HST | Hawaii Standard Time |
| MERRA2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 from NASA |
| NASA | National Aeronautics and Space Administration |
| NCEP | National Centers for Environmental Prediction |
| NCEP2 | NCEL Reanalysis version 2 |
| NDBC | National Data Buoy Center |
| NOAA | National Oceanic and Atmospheric Administration |
| NEW | Nighttime warm event |
| ORS | Ocean Reference Station |
| P | Precipitation |
| Prate | Rate of rainfall |
| PMEL | Pacific Marine Environmental Laboratory |
| Psu | Practical salinity units |
| QC | Quality Control |
| QB | Sensible heat flux |
| QH | Latent heat flux |
| Ql | Net longwave radiation |
| QN | Net air-sea heat flux |
| Qr | Rain heat flux |
| Qs | Net shortwave radiation |
| RH | Relative humidity |
| SH | Specific humidity |
| SLP | Sea level pressure |
| SST | Sea surface temperature |
| SSS | Sea surface salinity |
| Ta | Air temperature |
| |τ| | Magnitude of wind stress |
| τDIR | Wind stress direction |
| τE | Eastward wind stress |
| τN | Norhwward wind stress |
| TWE | Transient warm event |
| UOPG | Upper Ocean Processes group at WHOI |
| UTC | Coordinated Universal Time |
| VAMOS | Variability of the American Monsoon Systems |
| VOCALS-ReX | VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment |
| WHOI | Woods Hole Oceanographic Institution |
| WHOTS | WHOI Hawaii Ocean Timeseries Station |
| WDIR | Wind direction |
| WNDE | Eastward wind component |
| WNDN | Northward wind component |
| WSPD | Wind speed |
Appendix
| Deployment | Recovery | Latitude | Longitude | |
| Mon/day/yr hh:mm UTC | Mon/day/yr hh:mm UTC | Latitude | Longitude | |
| WHOTS 1 | 8/13/04 2:40 | 7/25/05 17:15 | 22° 46.00′N | 157° 53.90′W |
| WHOTS 2 | 7/28/05 1:43 | 6/24/06 18:30 | 22° 46.03’N | 157° 53.76’W |
| WHOTS 3 | 6/26/06 23:47 | 6/28/07 15:20 | 22° 46.03’N | 157° 53.99’W |
| WHOTS 4 | 6/25/07 23:48 | 6/6/08 17:20 | 22° 40.21’N | 157° 57.00’W |
| WHOTS 5 | 6/5/08 3:25 | 7/15/09 16:51 | 22° 46.06’N | 157° 54.09’ W |
| WHOTS 6 | 7/11/09 1:19 | 8/2/10 17:11 | 22° 39.99’ N | 157° 56.96’ W |
| WHOTS 7 | 7/29/10 2:37 | 7/11/11 16:28 | 22° 46.01’N | 157° 53.99’W |
| WHOTS 8 | 7/7/11 1:08 | 6/16/12 17:47 | 22° 40.16’N | 157° 57.03’ W |
| WHOTS 9 | 6/14/12 2:23 | 7/14/13 16:17 | 22° 46.07’ N | 157° 53.96’ W |
| WHOTS 10 | 7/11/13 4:26 | 7/20/14 16:17 | 22° 40.12’N | 157° 57.01’ W |
| WHOTS 11 | 7/17/14 2:40 | 7/14/15 16:56 | 22° 45.98’ N | 157° 53.96’ W |
| WHOTS 12 | 7/12/15 2:10 | 6/29/16 17:47 | 22° 40.06’ N | 157° 56.97’ W |
| WHOTS 13 | 6/27/16 08:47 | 7/31/17 16:38 | 22° 47.24’N | 157° 54.45’ W |
| WHOTS 14 | 7/28/17 2:19 | 9/26/18 16:57 | 22° 40.02’N | 157° 57.09’ W |
| WHOTS 15 | 9/22/18 01:17 | 10/8/19 17:00 | 22° 46.05’N | 157° 53.89’ W |
| WHOTS 16 | 10/6/19 02:12 | 8/28/21 17:52 | 22° 40.01’ N | 157° 56.96’W |
| WHOTS 17 | 8/26/21 03:13 | 7/25/22 18:03 | 22° 46.042’N | 157° 53.958’W |
References
- Albrecht, B. A.; Bretherton, C.S.; Johnson, D.; Schubert, W.S.; Frisch, A. S. The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. AMS, 1995, 76, 889–904. [CrossRef]
- Wood, R.; Mechoso, C.R.; Bretherton, C.S.; Weller, R.A.; Huebert, B.; Straneo, F.; Albrecht, B.A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Gallardo Klenner, L.; Garreaud, R.; Grados, C.; Covert, D.S.; Bates, T.S.; Krejci, R.; Russell, L.M.; de Szoeke, S.; Brewer, A.; Yuter, S.E.; Springston, S.R.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S.J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K.N. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys. 2011, 11, 627–654. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Lin, X.; Li, J.; Xing, N.; Xie, F.; Feng, J.; Zhou, X.; Cai, H.; Wang, Z. Long-term trend of the tropical Pacific trade winds under global warming and its causes. J. Geophys. Res. 2019, 124, 2626–2640. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Long, M. Intensification of Pacific trade wind and related changes in the relationship between sea surface temperature and sea level pressure. Geophys. Res. Letters 2022, 49, e2022GL098052. [Google Scholar] [CrossRef]
- Simpson, I.R.; Bacmesiter, J.T.; Sandu, I.; M. J.; Rodwell, M.J. Why do modeled and observed surface wind stress climatologies differ in the trade wind regions? J. Climate 2018, 31, 491–513. [Google Scholar] [CrossRef]
- Weller, R.; Lukas, R.; Potemra, J.; Plueddemann, A.; Fairall, C.; Bigorre, S. Ocean Reference Stations: Long-term, open ocean observations of surface meteorology and air-sea fluxes are essential benchmarks. Bull. Amer. Met. Soc. 2022. [Google Scholar] [CrossRef]
- Sato, K.; Hirasaw, N. Statistics of Antarctic surface meteorology based on hourly data in 1957-2007 at Syowa Station. Polar Science 2007, 1, 1–15. [Google Scholar] [CrossRef]
- Tsuchiya, C.; Sato, K.; Nasuno, T.; Noda, At. T.; Satoh, M. Universal frequency spectra of surface meteorological fluctuations. J. Climate 2011, 24, 4718–4732. [Google Scholar] [CrossRef]
- Kang, S.-L.; Won, H. Spectral structure of 5 year time series of horizontal wind speed at the Boulder Atmospheric Observatory. J. Geophys. Res. Atmos. 2016, 121(11), 946–11,967. [Google Scholar] [CrossRef]
- Dinsmore; Alpha, R.; Bravo, Charlie. Ocean weather ships 1940-1980. Oceanus 1996, 39, 9–10. Available online: https://www.whoi.edu/oceanus/feature/alpha-bravo-charlie/.
- Fissel, D.; Pond, S.; Miyake, M. Spectra of surface atmospheric quantities at ocean weathership P. Atmosphere 1976, 14, 77–97. [Google Scholar] [CrossRef]
- National Research Council. The Meteorological and Coastal Marine Automated Network for the United States 1998; The National Academies Press: Washington D.C., USA, 1998; p. 110 pages. [Google Scholar] [CrossRef]
- Xie, S.P.; Liu, W.T.; Liu, Q.; Nonaka, M. Far-reaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system. Science 2001, 292, 2057–60. [Google Scholar] [CrossRef]
- Colbo, K.; Weller, R.A. The accuracy of the IMET sensor package in the subtropics. J. Atmos. Oceanic Tech. 2009, 26, 1867–1890. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; JHnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Hersbach, H.; Coauthors. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; et al. MERRA-2 Overview: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.J.; Sabine, C.L.; Maenner-Jones, S.; Lawrence-Slavas, N.; Meinig, C.; Feeley, R.A.; Kang, K.; Mathis, T.; Musielewicz, S.; Bott, R.; McLain, P.D.; Fought, H.J.; A. Kozyr, A. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system. Earth Syst. Sc. Data 2014, 6, 353–366. [Google Scholar] [CrossRef]
- Hosom, D.S.; Weller, R.A.; Payne, R.E.; Prada, K.E. The IMET (improved meteorology) ship and buoy systems. J. Atmos. Oceanic Technol. 1995, 12, 527–540. [Google Scholar] [CrossRef]
- Payne, R.E.; Anderson, S.P. A new look at calibration and use of Eppley Precision Infrared Radiometers: Calibration and use of the Woods Hole Oceanographic Institution Improved Meteorology Precision Infrared Radiometer. J. Atmos. Oceano. Tech. 1999, 16, 739–751. [Google Scholar] [CrossRef]
- Fairall, C.W.; Hare, J.E.; Uttal, T.; Hazen, D.; Cronin, M.; Bond, N.A.; Veron, D. A seven-cruise sample of clouds, radiation, and surface forcing in the Equatorial Eastern Pacific. J. Clim. 2008, 21, 655–673. [Google Scholar] [CrossRef]
- Bigorre, S.P.; Weller, R.A.; Edson, J.B.; Ware, J.D. A Surface Mooring for Air–Sea Interaction Research in the Gulf Stream. Part II: Analysis of the Observations and Their Accuracies. J. Atmos. Oceanic Technol. 2013, 30, 450–469. [Google Scholar] [CrossRef]
- Weller, R.A. Observing surface meteorology and air-sea fluxes. In Observing the oceans in real time—Instruments, Measurement and Experience; Venkatsen, R.; Tandon, A.; D’Asaro, E.; Atmanand; M.A. Springer Cham, 2018; pp. 17–35. [Google Scholar] [CrossRef]
- Schlundt, M.; Farrar, J.T.; Bigorre, S.P.; Plueddemann, A.J.; R. Weller, R.A. Accuracy of wind observations from open-ocean buoys: Correction for flow distortion. J. Atmos. Oceanic Tech. 2020, 37, 687–703. [Google Scholar] [CrossRef]
- Bigorre, S.P.; Plueddemann, A.J. The annual cycle of air-sea fluxes in the Northwest Tropical Atlantic. Front. Mar. sci. 2021, 7, 612842. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Haeffelin, M.; Kato, S.; Smith, A.M.; Rutledge., C.K.; Charlock, T.P.; Mahan, J.R. Determination of the thermal offset of the Eppley precision spectral pyranometer. Appl. Opt. 2001, 40, 472–484. Available online: https://opg.optica.org/ao/abstract.cfm?URI=ao-40-4-472. [CrossRef] [PubMed]
- Payne, R.E. Albedo of the Sea Surface. J. Atmos. Sci. 1972, 29, 959–970. [Google Scholar] [CrossRef]
- Dutton, E.G.; Farhadi, A.; Stone, R.S.; Long, C.N.; Nelson, D.W. Long-term variations in the occurrence and effective solar transmission of clouds as determined from surface-based total irradiance observations. J. Geophys. Res. 2004, 109, D03204. [Google Scholar] [CrossRef]
- Stephens, G.L.; Tsay, S.-C. On the cloud absorption anomaly. Quart. J. Roy. Meteor. Soc. 1990, 116, 671–704. [Google Scholar] [CrossRef]
- O’Hirok, W.; Gautier, C. A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere Part II: Spectral effects. J. Atmos. Sci. 1998, 55, 3065–3076. [Google Scholar] [CrossRef]
- de Szoeke, S.P.; Skyllingstad, E.D.; Zuidema, P.; Chandra, A.S. Cold pools and their influence on the tropical marine boundary layer. J. Atmos/Sci. 2017, 74, 1149–1168. [Google Scholar] [CrossRef]
- Wills, S.M.; Cronin, M.F.; Zhang, D. Air-sea heat fluxes associated with convective cold pools. J. Geophys. Res: Atmospheres 2023, 128, e2023JD039708. [Google Scholar] [CrossRef]
- Anderson, S.P.; Baumgartner, M.F. Radiative heating errors in naturally ventilated air temperature measurements made from buoys J. Atmos. Ocean. Technol. 1998, 15, 157–73. [Google Scholar] [CrossRef]
- Bartiromo, R.; De Vincenzi, M. Electrical measurements in laboratory practice. Undergraduate Lecture Notes in Physics; Springer International Publishing: Cham, Switzerland., 2016; 286 pages; ISBN 978-3-319-31100-5. [Google Scholar] [CrossRef]
- Gasperini, F.; Oberheide, J. 2024. This is an update of J. Oberheide, M.E. Hagan, A.D. Richmond, J.M. Forbes, DYNAMICAL METEOROLOGY | Atmospheric Tides, Editor(s): Gerald R. North, John Pyle, Fuqing Zhang, Encyclopedia of Atmospheric Sciences (Second Edition), Academic Press, 2015, Pages 287 297. ISBN 9780123822253. [CrossRef]
- Ray, R.D.; Ponte, R.M. Barometric tides from ECMWF operational analyses. Annales Geophysicae 2003, 21, 1897–1910. [Google Scholar] [CrossRef]
- He, M.; Forbes, J.M.; Jacobi, C.; Li, G.; Liu, L.; Stober, G.; Wang, C. Observational verification of high-order solar tidal harmonics in the Earth’s atmosphere. Geophys. Res. Letters 2024, 51, e2024GL108439. [Google Scholar] [CrossRef]
- Chapman, S.; Malin, S.R.C. Atmospheric tides, thermal and gravitational: Nomenclature, notation and new results. J. Atmos. Sci. 1970, 27, 707–710. [Google Scholar] [CrossRef]
- Iqbal, M. Spectral and total sun radiance under cloudless skies. In Physical Climatology for Solar and Wind Energy; Guzzi, R., Justus, C.G., Eds.; World Scientific, 1988; pp. 196–242. [Google Scholar]
- Nallapareddy, A.; Shapiro, A.; J. J. Gourley, J.J. A climatology of nocturnal warming events associated with cold-frontal passages in Oklahoma. J. Appl. Meteor. Climatol. 2011, 50, 2042–2061. [Google Scholar] [CrossRef]
- Yuanyuan, M.A.; Yang, Y.; Xiao-Ming, H.; Ruhui, G. Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF. J. Meteor. Res. 2015, 29, 747–763. [Google Scholar] [CrossRef]
- Lao, I.R.; Carsten, A.; Wiebe, E.; Monahan, A.H. Temporal and Spatial Structure of Nocturnal Warming Events in a Midlatitude Coastal City. J. App. Met. Climatology 2022, 61, 1139–1157. [Google Scholar] [CrossRef]
- Latto, A.; Powell, J. National Hurricane Center, Central Pacific Hurricane Center, Tropical Cyclone Report: Hurricane Douglas (EP082020), 20-29 July 2020. 2021. Available online: https://www.nhc.noaa.gov/data/tcr/EP082020_Douglas.pdf.
- Betts, A.K. Diurnal cycle. In Encyclopedia of Atmospheric sciences; Holton, J.R., Pyle, J., Curry, J.A., Eds.; Academic Press: London, 2003; pp. pp 640–643. ISBN 0-12-227090-8. [Google Scholar]
- Tian, Y.; Zhong, D.; Ghausi, S.A.; Wang, G.; Kleidon, A. Understanding variations in downwelling longwave radiation using Brutsaert’s equation. Earth System Dynamics 2023, 14, 1363–1374. [Google Scholar] [CrossRef]
- Burleyson, C.D.; de Szoeke, S.P.; Yuter, S.E.; Wilbanks, M.; Brewer, W.A. Ship-based observations of the diurnal cycle of Southwest Pacific marine stratocumulus clouds and precipitation. J. Atmos. Sci. 2013, 70, 3876–3894. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Powell, J. Hurricane Darby (EPO52016) 11-25 July 2016. National Hurricane Center, Central Pacific Hurricane Center, Tropical Cyclone Report, 2019, 1-22.


























| Flux | WHOTS mean | One-minute | Daily | Annual |
|---|---|---|---|---|
| Net longwave (QL,W m−2) | -57.0 | 7.5 | 2 | 2 |
| Net shortwave (QS, W m−2) | 225.0 | 10 | 3 | 3 |
| Latent (QH, W m−2) | -137.5 | 5 | 4 | 4 |
| Sensible (QB, W m−2) | -7.3 | 1.5 | 1.5 | 1.5 |
| Rain heat flux (QR, W m−2) | -0.2 | 10% | 10% | 10% |
| Net heat flux (QN, W m−2) | 23.2 | 15 | 8 | 8 |
| Wind stress magnitude (τ, N m−2) | 0.0938 | .007 | .007 | .007 |
| East wind stress (τE, N m−2) | -0.0762 | .007 | .007 | .007 |
| North wind stress (τN, N m−2) | -0.0115 | .007 | .007 | .007 |
| Wind stress direction (τdir, °) | 261.4 | 6 | 5 | 5 |
| E-P (mm hr−1) | -0.14 | 10% | 10% | 10% |
| Mean | Min | Max | |||||
|---|---|---|---|---|---|---|---|
| 1-min | 1-h | 1-day | 1-min | 1-h | 1-day | ||
| obs Ta (°C) | 24.26 | 15.89 | 16.95 | 18.62 | 29.54 | 29.17 | 27.96 |
| 2m Ta (°C) | 24.31 | 16.14 | 17.17 | 18.79 | 29.65 | 29.21 | 27.99 |
| obs SST (°C) | 25.15 | 21.85 | 21.86 | 21.97 | 31.28 | 30.09 | 26.68 |
| Tskin (°C) | 24.93 | 21.68 | 21.72 | 21.82 | 30.97 | 30.16 | 28.53 |
| delta T (°C) | 0.62 | -5.65 | -2.74 | -0.60 | 7.04 | 5.88 | 4.26 |
| SLP (hPa) | 1017.0 | 994.9 | 995.6 | 1001.0 | 1026.8 | 1026.5 | 1025.0 |
| obs RH (%RH) | 75.6 | 37.6 | 42.6 | 51.6 | 99.3 | 98.0 | 94.2 |
| obs SH (g kg−1) | 14.26 | 5.89 | 6.78 | 7.63 | 20.81 | 20.77 | 20.18 |
| 2m SH (g kg−1) | 14.41 | 6.18 | 6.95 | 7.84 | 23.21 | 20.80 | 20.23 |
| DSWR (W m−2) | 238.1 | -2.3 | 0.0 | 25.4 | 1469.5 | 1134.5 | 358.8 |
| DLWR (W m−2) | 388.8 | 302.5 | 312.9 | 332.7 | 476.1 | 453.6 | 441.1 |
| Prate (mm hr−1) | 0.061 | 0.000 | 0.000 | 0.000 | 208.651 | 70.412 | 13.333 |
| WSPD (m s−1) | 6.77 | 0.00 | 0.01 | 0.05 | 22.56 | 19.55 | 12.61 |
| Weast (m s−1) | -5.42 | -22.33 | -18.74 | -12.30 | 17.21 | 15.22 | 10.40 |
| Wnorth (m s−1) | -0.63 | -17.13 | -15.35 | -10.09 | 16.51 | 14.52 | 9.58 |
| 10m WSPD (m s−1) | 7.41 | 0.03 | 0.03 | 0.07 | 26.08 | 22.31 | 14.10 |
| Curpsd (m s−1) | 0.17 | 0.00 | 0.00 | 0.00 | 0.99 | 0.91 | 0.63 |
| Cureast (m s−1) | -0.03 | -0.75 | -0.70 | -0.56 | 0.88 | 0.84 | 0.61 |
| Curnorth (m s−1) | 0.02 | -0.87 | -0.85 | -0.60 | 0.99 | 0.91 | 0.60 |
| QN (W m−2) | 23.4 | -873.1 | -723.8 | -413.0 | 1246.4 | 900.5 | 215.9 |
| QH (W m−2) | -137.5 | -662.0 | -539.7 | -414.0 | -0.2 | -3.2 | -14.4 |
| QB (W m−2) | -7.3 | -192.0 | -137.8 | -93.2 | 95.6 | 32.4 | 9.3 |
| QS (W m−2) | 225.0 | -2.2 | 0.0 | 24.0 | 1388.7 | 1072.1 | 339.1 |
| QL (W m−2) | -57.0 | -129.7 | -119.7 | -102.0 | -3.6 | -5.4 | -12.4 |
| QR (W m−2) | -0.20 | -938.0 | -154.3 | -22.6 | 0.0 | 0.0 | 0.0 |
| | τ| (N m−2) | 0.094 | 0.000 | 0.000 | 0.000 | 1.918 | 1.307 | 0.490 |
| τE (N m−2) | -0.076 | -1.899 | -1.259 | -0.486 | 1.033 | 0.661 | 0.329 |
| τN (N m−2) | -0.011 | -1.326 | -1.023 | -0.275 | 0.796 | 0.556 | 0.266 |
| salinity (psu) | 35.06 | 31.68 | 32.74 | 34.18 | 35.77 | 35.64 | 35.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
