Submitted:
26 December 2024
Posted:
27 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
3. Results
3.1. Temperature over Time with Extreme Cold Temperature Threshold
3.2. Wind Speed Versus Local Pressure
3.3. Precipitation Versus Relative Humidity
3.4. Temperature Versus Dew Point Temperature
4. Discussion
5. Conclusions
References
- Dabral, A.; Shankhwar, R.; Martins-Ferreira, M.A.C.; Pandey, S.; Kant, R.; Meena, R.K.; Chandra, G.; Ginwal, H.S.; Thakur, P.K.; Bhandari, M.S.; Sahu, N.; Nayak, S. Phenotypic, geological, and climatic spatio-temporal analyses of an exotic Grevillea robusta in the Northwestern Himalayas. Sustainability 2023, 15, 12292. [Google Scholar] [CrossRef]
- Nayak, S. Exploring the future rainfall characteristics over India from large ensemble global warming experiments. Climate 2023, 11, 94. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Knutson, T.R.; Kossin, J.P.; Naveau, P.; Zhang, X. Climate extremes: challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. Clim. Sci. Serv. Soc. Res. Model. Predict. Priorities 2013, 339–389. [Google Scholar]
- Nayak, S.; Takemi, T. Assessing the impact of climate change on temperature and precipitation over India. In Wadi Flash Floods, Natural Disaster Science and Mitigation Engineering: DPRI Reports; Sumi, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 121–142. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Climate change scenario over Japan: trends and impacts. In The Role of Tropics in Climate Change; Khare, Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2024; pp. 145–169. [Google Scholar]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: an attribution perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T.; Maity, S. Precipitation and temperature climatologies over India: A study with AGCM large ensemble climate simulations. Atmosphere 2022, 13, 671. [Google Scholar] [CrossRef]
- Saha, S.; Nayak, S.; Bhattacharyya, I.; Saha, S.; Mandal, A.K.; Chakraborty, S.; Bhattacharyya, R.; Chakraborty, R.; Franco, O.L.; Mandal, S.M.; Basak, A. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India. Front. Microbiol. 2014, 5, 463. [Google Scholar] [CrossRef]
- Sahu, N.; Panda, A.; Nayak, S.; Saini, A.; Mishra, M.; Sayama, T.; Sahu, L.; Duan, W.; Avtar, R.; Behera, S. Impact of Indo-Pacific Climate Variability on High Streamflow Events in Mahanadi River Basin, India. Water 2020, 12, 1952. [Google Scholar] [CrossRef]
- Sahu, N.; Saini, A.; Behera, S.; Sayama, T.; Nayak, S.; Sahu, L.; Duan, W.; Avtar, R.; Yamada, M.; Singh, R.B.; Takara, K. Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India. Sustainability 2020, 12, 7023. [Google Scholar] [CrossRef]
- Saini, A.; Sahu, N.; Kumar, P.; Nayak, S.; Duan, W.; Avtar, R.; Behera, S. Advanced Rainfall Trend Analysis of 117 Years over West Coast Plain and Hill Agro-Climatic Region of India. Atmosphere 2020, 11, 1225. [Google Scholar] [CrossRef]
- Saini, A.; Sahu, N.; Nayak, S. Determination of Grid-Wise Monsoon Onset and Its Spatial Analysis for India (1901–2019). Atmosphere 2023, 14, 1424. [Google Scholar] [CrossRef]
- Tyagi, N.; Jayal, T.; Singh, M.; Mandwal, V.; Saini, A.; Nirbhav, Sahu, N. ; Nayak, S. Evaluation of Observed and Future Climate Change Projection for Uttarakhand, India, Using CORDEX-SA. Atmosphere 2022, 13, 0947. [Google Scholar] [CrossRef]
- Sahu, N.; Nayan, R.; Panda, A.; Varun, A.; Kesharwani, R.; Das, P.; Kumar, A.; Mallick, S.K.; Mishra, M.M.; Saini, A.; Aggarwal, S.P.; Nayak, S. Impact of Changes in Rainfall and Temperature on Production of Darjeeling Tea in India. Atmosphere 2025, 16, 1. [Google Scholar] [CrossRef]
- Morimoto, J.; Aiba, M.; Furukawa, F.; Mishima, Y.; Yoshimura, N.; Nayak, S.; Takemi, T.; Haga, C.; Matsui, T.; Nakamura, F. Risk assessment of forest disturbance by typhoons with heavy precipitation in northern Japan. For. Ecol. Manag. 2021, 479, 118521. [Google Scholar] [CrossRef]
- Nayak, S. Do extreme precipitation intensities linked to temperature over India follow the Clausius–Clapeyron relationship? Curr. Sci. 2018, 115, 391–392. [Google Scholar] [CrossRef]
- Nayak, S.; Dairaku, K. Future changes in extreme precipitation intensities associated with temperature under SRES A1B scenario. Hydrol. Res. Lett. 2016, 10, 139–144. [Google Scholar] [CrossRef]
- Sayat, A.; Lyazzat, M.; Elmira, T.; Gaukhar, B.; Gulsara, M. Assessment of the impacts of climate change on drought intensity and frequency using SPI and SPEI in the Southern Pre-Balkash region, Kazakhstan. Watershed Ecol. Environ. 2024. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M. Assessment of sea level and morphological changes along Indian coastal areas during 1975–2005. Earth Sci. India 2019, 12, 117–125. [Google Scholar]
- Nayak, S.; Takemi, T. Dependence of extreme precipitable water events on temperature. Atmósfera 2019, 32, 159–165. [Google Scholar] [CrossRef]
- Chaudhary, M.T.; Piracha, A. Natural disasters—origins, impacts, management. Encyclopedia 2021, 1, 1101–1131. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Clausius-Clapeyron scaling of extremely heavy precipitations: Case studies of the July 2017 and July 2018 heavy rainfall events over Japan. J. Meteorol. Soc. Jpn. 2020, 98, 1147–1162. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Atmospheric driving mechanisms of extreme precipitation events in July of 2017 and 2018 in western Japan. Dyn. Atmos. Ocean. 2021, 93, 101186. [Google Scholar] [CrossRef]
- Rajkovich, N.B.; Brown, C.; Azaroff, I.; Backus, E.; Clarke, S.; Enriquez, J.; Stevens, A. New York State Climate Impacts Assessment Chapter 04: Buildings.
- Nayak, S.; Mandal, M.; Adhikari, A. Estimation of Indian coastal areas inundated into the sea due to sea-level rise during the 20th century. Curr. Sci. 2024, 104, 583–585. [Google Scholar]
- Nayak, S.; Dairaku, K.; Takayabu, I.; Suzuki-Parker, A.; Ishizaki, N.N. Extreme precipitation linked to temperature over Japan: current evaluation and projected changes with multi-model ensemble downscaling. Clim. Dyn. 2018, 51, 4385–4401. [Google Scholar] [CrossRef]
- Sahu, R.K.; Choudhury, G.; Vissa, N.K.; Tyagi, B.; Nayak, S. The Impact of El-Niño and La-Niña on the Pre-Monsoon Convective Systems over Eastern India. Atmosphere 2022, 13, 1261. [Google Scholar] [CrossRef]
- Sahu, R.K.; Nayak, S.; Singh, K.S.; Nayak, H.P.; Tyagi, B. Evaluating the impact of topography on the initiation of Nor’westers over eastern India. Geomat. Nat. Hazards Risk 2023, 14, 2184669. [Google Scholar] [CrossRef]
- Trošelj, J.; Nayak, S.; Hobohm, L.; Takemi, T. Real-time flash flood forecasting approach for development of early warning systems: integrated hydrological and meteorological application. Geomat. Nat. Hazards Risk 2023, 14, 2269295. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M. Examining the impact of regional land use and land cover changes on temperature: the case of Eastern India. Spat. Inf. Res. 2019, 27, 601–611. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M. Impact of land use and land cover changes on temperature trends over India. Land Use Policy 2019, 89, 104238. [Google Scholar] [CrossRef]
- Nayak, S. Land use and land cover change and their impact on temperature over central India. Lett. Spat. Resour. Sci. 2021, 14, 339–356. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M. Impact of land-use and land-cover changes on temperature trends over Western India. Curr. Sci. 2012, 102, 1166–1173. [Google Scholar]
- Nayak, S.; Maity, S.; Singh, K.S.; Nayak, H.P.; Dutta, S. Influence of the changes in land-use and land cover on temperature over Northern and North-Eastern India. Land 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Nayak, S.; Maity, S.; Sahu, N.; Saini, A.; Singh, K.S.; Nayak, H.P.; Dutta, S. Application of “Observation Minus Reanalysis” Method towards LULC Change Impact over Southern India. ISPRS Int. J. Geo-Inf. 2022, 11, 94. [Google Scholar] [CrossRef]
- Nayak, H.P.; Nayak, S.; Maity, S.; Patra, N.; Singh, K.S.; Dutta, S. Sensitivity of Land Surface Processes and Its Variation during Contrasting Seasons over India. Atmosphere 2022, 13, 1382. [Google Scholar] [CrossRef]
- Nayak, S.; Behera, M.D. Land use/land cover classification and mapping of Pilibhit District, Uttar Pradesh, India. Indian Geogr. J. 2008, 83, 15–24. [Google Scholar]
- Meinander, O.; Dagsson-Waldhauserova, P.; Amosov, P.; Aseyeva, E.; Atkins, C.; Baklanov, A.; Vukovic Vimic, A. Newly identified climatically and environmentally significant high latitude dust sources. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–74. [Google Scholar] [CrossRef]
- Nayak, S.; Behera, M.D. Improving Land Use and Vegetation Cover Classification Accuracy using Fuzzy Logic - A Study in Pilibhit District Uttar Pradesh, India. Int. J. Geoinformatics 2009, 5, 1–10. [Google Scholar]
- Nayak, S.; Mandal, M.; Maity, S. Assessing the impact of Land-use and Land-cover changes on the climate over India using a Regional Climate Model (RegCM4). Clim. Res. 2021, 85, 1–20. [Google Scholar] [CrossRef]
- Maity, S.; Satyanarayana, A.N.V.; Mandal, M.; Nayak, S. Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model. Atmos. Res. 2017, 197, 21–41. [Google Scholar] [CrossRef]
- Maity, S.; Mandal, M.; Nayak, S.; Bhatla, R. Performance of cumulus parameterization schemes in the simulation of Indian Summer Monsoon using RegCM4. Atmósfera 2017, 30, 287–309. [Google Scholar] [CrossRef]
- Maity, S.; Nayak, S.; Singh, K.S.; Nayak, H.P.; Dutta, S. Impact of soil moisture initialization in the simulation of Indian summer monsoon using RegCM4. Atmosphere 2021, 12, 1148. [Google Scholar] [CrossRef]
- Maity, S.; Nayak, S.; Nayak, H.P.; Bhatla, R. Comprehensive assessment of RegCM4 towards interannual variability of Indian summer monsoon using multi-year simulations. Theor. Appl. Climatol. 2022, 147, 129–140. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M.; Maity, S. Customization of regional climate model (RegCM4) over Indian region. Theor. Appl. Climatol. 2017, 127, 153–168. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M.; Maity, S. RegCM4 simulation with AVHRR land use data towards temperature and precipitation climatology over Indian region. Atmos. Res. 2018, 214, 163–173. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M.; Maity, S. Performance evaluation of RegCM4 in simulating temperature and precipitation climatology over India. Theor. Appl. Climatol. 2019, 138, 1535–1552. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Dynamical Downscaling of Typhoon Lionrock (2016) for Assessing the Resulting Hazards under Global Warming. J. Meteorol. Soc. Jpn. 2019, 97, 123–143. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Quantitative estimations of hazards resulting from Typhoon Chanthu (2016) for assessing the impact in current and future climate. Hydrol. Res. Lett. 2019, 13, 20–27. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Robust responses of typhoon hazards in northern Japan to global warming climate: cases of landfalling typhoons in 2016. Meteorol. Appl. 2020, 27, e1954. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Typhoon-induced precipitation characterization over northern Japan: a case study for typhoons in 2016. Prog. Earth Planet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Statistical analysis of the characteristics of typhoons approaching Japan from 2006 to 2019. Geomat. Nat. Hazards Risk 2023, 14, 2208722. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Structural characteristics of typhoons Jebi (2018), Faxai (2019), and Hagibis (2019). Meteorol. Atmos. Phys. 2023, 135. [Google Scholar] [CrossRef]
- Singh, K.S.; Nayak, S.; Maity, S.; Nayak, H.P.; Dutta, S. Prediction of extremely severe cyclonic storm “Fani” using moving nested domain. Atmosphere 2023, 14, 637. [Google Scholar] [CrossRef]
- Nayak, S.; Kanda, I. Examining the effectiveness of Doppler lidar-based observation nudging in WRF simulation for wind field: A case study over Osaka, Japan. Atmosphere 2023, 14, 972. [Google Scholar] [CrossRef]
- Walsh, J.E.; Ballinger, T.J.; Euskirchen, E.S.; Hanna, E.; Mård, J.; Overland, J.E.; Vihma, T. Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev. 2020, 209, 103324. [Google Scholar] [CrossRef]
- Nayak, S. Temporal Characteristics of Rainfall Events at Very High Timescale. Preprints 2024. [Google Scholar] [CrossRef]
- Koteshwaramma, T.; Singh, K.S.; Nayak, S. Performance of High-Resolution WRF Modeling System in Simulation of Severe Tropical Cyclones over the Bay of Bengal Using IMDAA Regional Reanalysis Dataset. Preprints 2024. [Google Scholar] [CrossRef]
- Nayak, S.; Trošelj, J.; Pattnayak, K.C.; Bharambe, K.P. Exploring the Underlying Patterns and Relationships Between Temperature and Heavy Rainfall Events over Western Japan. In Computing, Communication and Intelligence; CRC Press: Boca Raton, FL, USA, 2025; pp. 300–304. [Google Scholar]
- Singh, K.S.; Nayak, S.; Maity, S.; Nayak, H.P.; Dutta, S. Prediction of Bay of Bengal Extremely Severe Cyclonic Storm “Fani” Using Moving Nested Domain. Preprints 2022. [Google Scholar] [CrossRef]
- Nayak, S.; Maity, S. Evaluating the Performance of Cumulus Convection Parameterization Schemes in Regional Climate Modeling System. Preprints 2021. [Google Scholar] [CrossRef]
- Nayak, S. Assessing the Changes of the Landmass Surrounded by the Indian Coast. Preprints 2021. [Google Scholar] [CrossRef]
- Crisp, D.; Dolman, H.; Tanhua, T.; McKinley, G.A.; Hauck, J.; Bastos, A.; Aich, V. How well do we understand the land-ocean-atmosphere carbon cycle? Rev. Geophys. 2022, 60, e2021RG000736. [Google Scholar] [CrossRef]
- Bindajam, A.A.; Mallick, J.; AlQadhi, S.; Singh, C.K.; Hang, H.T. Impacts of vegetation and topography on land surface temperature variability over the semi-arid mountain cities of Saudi Arabia. Atmosphere 2020, 11, 762. [Google Scholar] [CrossRef]
- Lhotka, O.; Trnka, M.; Kyselý, J.; Markonis, Y.; Balek, J.; Možný, M. Atmospheric circulation as a factor contributing to increasing drought severity in central Europe. J. Geophys. Res. Atmos. 2020, 125, e2019JD032269. [Google Scholar] [CrossRef]
- Qing, Y.; Wang, S.; Yang, Z.L.; Gentine, P. Soil moisture—Atmosphere feedbacks have triggered the shifts from drought to pluvial conditions since 1980. Commun. Earth Environ. 2023, 4, 254. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
