Preprint
Article

This version is not peer-reviewed.

Adaptive Digital Twin Identification with Control: Integration of Extended Kalman Filter-Based Recursive Sparse Nonlinear Identification with Model Predictive Control

Submitted:

10 January 2026

Posted:

12 January 2026

You are already at the latest version

Abstract
The adoption of digital twins has revolutionized industrial process simulation, monitoring, and control effectiveness. However, practical implementations of digital twins are hindered by substantial challenges, including extended development time, diminishing model accuracy, and restricted interactive capabilities. Addressing these critical issues, this paper proposes a comprehensive digital twin development framework that integrates digital twin identification, real-time model updating, and advanced process control. The proposed approach first identifies the offline digital twin model through the sparse identification of nonlinear dynamics algorithm, reducing the digital twin development time while maintaining model fidelity. Then, the identified model is updated by the extended Kalman filter to mitigate the problem of diminishing accuracy. Finally, incorporating the latest updated model into the model predictive control facilitates the control inputs optimization and enhances the interactive capacity of digital twins. Through one industrial case study and two simulation examples, the advantages of the proposed algorithm are demonstrated.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated