Submitted:
09 January 2026
Posted:
12 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Overall Structure of Ataxin-2 Family Members Across Evolution
- (1)
- Firstly, just after the ancestral N-terminus, the Like-SM (LSm) fold has a typical structure of small five-strand anti-parallel beta sheets (β1, β2, β3, β4, β5), with SH3-type barrel tertiary structure. The ancestral quaternary structure is characterized by assembly into an LSm hexameric or heptameric ring, with U-rich RNA oligonucleotides binding inside the LSm torus lumen. Overall, the LSm domain in human ATXN2 and ATXN2L (synthetic full-length entries UniProt Q99700 and Q8WWM7) comprises 78 amino acid residues. LSm domains have descended from bacterial proteins like Escherichia coli Hfq and YlxS, as well as archaeal Sm1 / Sm2, which serve as RNA chaperones and in ribosomal pathways [77,78]. In eukaryotes, various Sm proteins in the nucleus form a heteroheptameric ring that is crucial for intron splicing [79]. Like-Sm proteins were subsequently also described in the cytoplasm, where LSM2-16 combine the RNA-binding sequence with a methyl-transferase domain [80,81], whereas Ataxin-2 combines the RNA-binding sequence with the LSmAD and the PAM2 motif [76,82]. Our datamining effort confirmed that the LSm sequence of Ataxin-2 has relevant similarity to the LSm domains of LSM2-16, so BlastP searches frequently confuse different families, and the sequence variability of the LSm domain is so strong in low organisms that current InterPro and Pfam algorithms fail to detect it in approximately one third of Ataxin-2 orthologs. The LSm/LSmAD region in Ataxin-2 binds to the RNA helicase DDX6 [64]. Together with the RNA helicase DDX6 and the LSm-containing factor LSM12, Ataxin-2 was found to influence circadian posttranscriptional regulation and olfactory habituation in fly neurons [83,84]. It is therefore important to note that an RNA helicase domain was chimerically added to Ataxin-2 orthologs in several species (see below for individual protein database entries).
- (2)
- Secondly, after a disordered bridge region of usually 50-60 amino acids, the LSmAD sequence stands out with a predicted alpha-fold structure. However, experimental analysis showed only a modest presence of α-helical structural elements, with a considerable degree of flexibility, devoid of tertiary structure and without RNA binding capacity [77]. Human Ataxin-2 LSmAD sequence (amino acids 409-477 in the synthetic full-length UniProt entry Q99700) contains a putative clathrin-mediated trans-Golgi signal (residues 414–416) and an ER exit signal (residues 426–428). Indeed, experimental analysis confirmed that deletion of 42 residues within LSmAD causes Golgi dispersion [50]. Overall, the ancient protein module comprising LSm and LSmAD with their connecting bridge sequences extends across some 250 amino acid residues in a very stable size across evolution, while most length variability of Ataxin-2 orthologs is due to IDR composition and length across the C-terminal half, and sometimes in short N-terminal regions. Here, it is important to note that our datamining effort found practically all LSmAD-containing sequences to represent Ataxin-2 orthologs, so the extremely well-conserved LSmAD domain is the unique characteristic feature of the Ataxin-2 family, and perfectly suited for the BlastP search for orthologs.
- (3)
- Thirdly, the 14 residues-short linear motif known as PAM2 was named as Poly(A)-binding protein interacting Motif 2. It connects to an MLLE sequence in the PABP C-terminus (also known as CTC, short for carboxy-terminal conserved domain), in dependence on nearby phosphorylation sites [62,78,79,80,81]. In plants, the PAM2 motif extends over 19 residues that contain a tandem duplicate of the core sequence [76]. Interestingly, its location is always outside globular domains [82], at approximately three-fifths of the protein length. It clearly functions to interact with mRNA 3’ tails, and it exists as a component of over a dozen different eukaryotic proteins [82], several of which are known for their regulation of mRNA translation versus decay [79]. These protein families include PAIP1/2, LARP4, eRF3/GSPT1/2, TTC3, USP10, PAN3, GW182, Tob1/2, and other factors, so our datamining effort found its usefulness for Ataxin-2 ortholog searches to be limited, and particularly in low organisms the sequence variability of this motif makes its automated recognition by current InterPro and Pfam algorithms doubtful. The PAM2 motif was shown to prevent the phase separation of Ataxin-2 in cellular growth periods, while it localizes to the translation apparatus at the rough ER, promoting the relocation of Ataxin-2 to stress granules after cellular damage [55,56,83].
2.2. Compilation of Ataxin-2 Family Protein Sequences Until Excavata, Amoebozoa, and Algae
2.3. Gene Duplication ATXN2 / ATXN2L in Animals, and CID3 / CID4 in Plants, Upon Entering Freshwater and Land
2.4. Genomic Comparison of Exon-Intron Structure for Human and Murine Ataxin-2 Versus Ataxin-2-like
2.5. C-Terminal Fragment Isoforms Are Prominent According to Exon Expression Analyses, and C-Terminal Epitopes Are the Target of Current Commercial Antibodies
2.6. Most N-Terminal Start Codon with Subsequent Fragment Appears in Armadillo only for ATXN2
2.7. The Usual Start Codon in Human ATXN2 / ATXN2L Is Followed by polyQ and a Repeat-Rich Fragment, Which Elongates Since Yeast / Insects
2.8. The Role of Proline Flanking Residues and Interrupting Residues for the polyQ Repeat
2.9. Ancient Start Codon Preceding LSm Domain as an Optional Third Start in Human ATXN2
2.10. RNA Processing Factors May Bind to the LSm-LSmAD Region, or Be Added to N/C-Termini of Ataxin-2 Orthologs, in Dependence on the Biochemical Needs of Different Ecological Niches
2.11. LSmAD Became the Hallmark of Ataxin-2 in Rhodophytes and Protists
2.12. Sequence after LSmAD, Including the PAM2 Motif, Has a Polyampholytic Intrinsically Disordered Structure and Is Modified by Alternatively Spliced Exons Ante-10 and 10 in Human ATXN2
2.13. PAM2 Motif in Many Protists and Insects Lies Close to Long polyQ Stretches
2.14. Sequence Beyond LSmAD Without an Intrinsically Disordered Structure
2.15. C-Terminus Alternatives
2.16. Ataxin-2 Forms Chimeric Proteins with Very-Long-Chain Fatty Acid Synthases in Various Algae, Suggesting an Evolutionary Link and a Potential Role in Wax Biosynthesis in Plants
2.17. Ataxin-2 Is Chimeric with Oxysterol-Binding Proteins in Various Hexapods and with Myelin Biosynthesis Factors in Animals
2.18. Ataxin-2 Is Chimeric with an AMP Kinase Subunit and with a SCYL1 Ortholog in Some Fungi, Where Its Mutations May Impact Metabolic Reserves and Lipid Homeostasis
- -
- An N-terminal KA1/Ssp2_C domain in Neophaeococcomyces mojaviensis (NCBI Genbank entry KAJ9652119.1). This C-terminal domain in the serine/threonine protein kinase AMPK catalytic (alpha) subunit Ssp2 acts as a sensor to regulate cellular responses to a variety of nutritional and environmental stresses [253].
- -
- A longin-like domain exists at the C-terminus in Saitoella complicata fungus (UniProt entry A0A0E9NFC8). These sequences are involved in membrane dynamics regulation, occurring e.g., in GDP/GTP exchange factors for Rab7 / Rab32 / Rab38, such as the MON1/CCZ1-MC1 complex or the HPS1/HPS4-BLOC3 complex [254].
- -
- An ARM-like fold together with a CIK-related domain is present at the C-terminus in Aspergillus felis fungus (A0A8H6QL38). This combination of armadillo-repeats in CIK- (Catalytically Inactive Kinase) related proteins is preserved in human SCYL1-3, which are involved in the regulation of traffic between the Golgi apparatus and the ER, or play a role between the trans-Golgi network and the endosomal system, but also contribute to tRNA export from the nucleus [255,256]. This observation seems relevant since SCYL1 mutations cause progressive spinocerebellar neurodegeneration in mouse and human (SCAR21 type), and motor neuron disease with mislocalization of TDP-43 in mouse, similar to ALS and to ATXN2 mutation effects in humans [257,258,259,260,261,262]. SCYL1 mediates MTORC1 signals [263].
- -
- An N-terminal addition of a phospholipid transporter P-type ATPase occurred in Physocladia obscura fungus (A0AAD5T663 and A0AAD5XG15).
- -
- A C-terminal addition of a SEC6 domain is documented in Candida oxycetoniae fungus (A0AAI9WVV1) and in Candidozyma haemuli fungus (A0A2V1AQ46). The exocyst component SEC6 interacts with oxysterol-binding protein to regulate polarized vesicular membrane transport and growth in a sterol-dependent manner [264].
- -
- Further, an N-terminal cytochrome c oxidase, subunit Va/VI domain exists in Racocetra fulgida (A0A9N9AHJ9). This observation suggests that Ataxin-2 can act on the intra-mitochondrial pathway of oxidative stress generation directly.
- -
- A Calcineurin-like phosphoesterase domain was added in Diversispora eburnea (A0A9N8VJW7). Such a domain occurs, e.g. in nucleotidases and sphingomyelin phosphodiesterases [265].
- -
- A Cysteine desulfurase was appended to the N-terminus, and at the same time, a cell cycle-regulated microtubule-associated protein (TPX2) domain was added at the C-terminus in Bifiguratus adelaidae (A0A261XY39). The mitochondrial cysteine desulfurase NifS / IscS / NFS1 acts in the core iron-sulfur cluster (ISC) assembly complex, where perturbations lead to the human disorder Friedreich’s ataxia [266,267]. Cellular iron-sulfur (Fe/S) proteins are involved in lipid synthesis and steroid metabolism [268]. The TPX2 protein is an assembly factor for spindles, downstream from RanGTP [269].
3. Discussion
3.1. Ataxin-2 Chimerisms, Probably Due to Transcriptional Readthrough, Include Domains Enriched in Functions for rRNA Processing and Membrane Resilience
3.2. Experimental Confirmation that Mutations in Ataxin-2 Alter Membrane Resilience
- -
- -
- -
- The absence of ATXN2 from Mus musculus tissue results in massive accumulation of lipid droplets and glycogen, together with reduced sterol degradation in cerebellum and elevated blood cholesterol [134]. Proteome profiling of these ATXN2-null mouse livers demonstrated significant deficits of enzymes in the fatty acid beta-oxidation and malonyl-CoA / methylmalonyl-CoA pathways [296]. Again, according to unbiased global proteome and metabolome profiling efforts, the ATXN2 polyQ expansion in mouse cerebellum has indeed its main impact on the very-long-chain fatty acid elongases such as ELOVL4 (residing at the ER in a multi-protein complex), the very-long-chain fatty acids VLCFA24-26 with precursors such as acetyl-CoA and N-acetylaspartate [130], and their derivative sphingolipids and ceramides [145]. This is accompanied by changes in inositol-tris-phosphate metabolism and calcium/calmodulin-dependent kinases [297]. Receptors for the inositol 1,4,5-trisphosphate lipids were also implicated in an SCA2 mouse model [298]. In the spinal cords from two different SCA2 mouse models with ATXN2 polyQ expansion, the suppression of enzymes for cholesterol biosynthesis from acetyl-CoA and squalene, together with cholesterol and oxysterol deficits, was the main finding [147,287,299]. The restoration of brain cholesterol turnover was reported to have therapeutic value in a SCA2 mouse model [300].
- -
- For Homo sapiens, the brains of SCA2 patients show a reduction of C22/24-sphingomyelin and cholesterol levels [145], and the myelinated white matter of the brain is deficient [24,301,302,303,304,305,306,307], already at presymptomatic disease stages [31,308,309]. The subcutaneous fat deposits, the cheek fat body, the visceral fat, and the body weight of SCA2 patients decrease progressively, as well as the levels of testosterone as a cholesterol-derivative, in peripheral tissues [310,311,312]. In an epidemiological genome-wide association study of a Japanese population, variants of ATXN2 were found to underlie the susceptibility for dyslipidemia [313].
3.3. What Is the Role of Ataxin-2 for the Unfolded Protein Response and Retinoic Acid Signaling?
3.4. Are Chimerisms, Transcriptional Readthrough, and Neighbor Genes Relevant for Ataxin-2-like?
3.4. Ataxin-2 Isoforms
3.5. How Are Ataxin-2 LSm and LSmAD Domains Essential for Eukaryotic Life?
3.6. How Should Future Investigations Be Re-Focused?
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Ala | Alanine |
| ALS | Amyotrophic Lateral Sclerosis |
| AMPK | Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 |
| Arg | Arginine |
| ARM | Armadillo repeat |
| A-T | Ataxia Teleangiectasia |
| ATF6 | Activating Transcription Factor 6, |
| ATP | Adenosine triphosphate |
| ATXN2 | Ataxin-2 |
| ATXN2L | Ataxin-2 like |
| BiP | Immunoglobulin Binding Protein |
| BLOC3 | Biogenesis of Lysosome-Related Organelles Complex-3 |
| BRAP2 | BRCA1 Associated Protein 2 |
| BRCA1 | BReast CAncer gene 1 |
| BRX | Brevis radiX |
| C2HC | Cys2His2 Zinc Finger Protein Family |
| CAMKK | Calcium/calmodulin-Dependent Protein Kinase Kinase |
| CCZ1MC1 | CCZ1B Vacuolar Protein Trafficking and Biogenesis Associated |
| CHOP | C/EBP Homologous Protein |
| CID3 | Polyadenylate-binding Protein-interacting Protein 3 |
| CIK | Catalytically Inactive Kinase |
| CLPP | ATP-dependent Clp Protease Proteolytic Subunit, mitochondrial |
| CoA | Coenzyme A |
| CPEB3 | Cytoplasmic Polyadenylation Element Binding Protein 3 |
| CTC | Carboxy-Terminal Conserved Domain |
| CUL-1 | CULLIN-1 |
| DDX | DEAD box RNA helicase domain |
| DEAD | Asp-Glu-Ala-Asp |
| DNA | Desoxyribonucleic Acid |
| ELOVL | Elongation of Very Long Chain Fatty Acids Protein |
| EMBL | European Molecular Biology Laboratory |
| ER | Endoplasmic Reticulum |
| ERAD | ER Associated Degradation |
| eRF3 | Eukaryotic Release Factor 3 |
| FAPP1 | Four-Phosphate-Adaptor Protein 1 |
| FBXO42 | F-box Only Protein 42, |
| FeS | Iron-Sulfur-Cluster |
| FMN2 | Formin-2 |
| FTD | Fronto-Temporal Dementia |
| GADD34 | Growth Arrest and DNA Damage-Inducible Protein |
| GDP | Guanosine Diphosphate |
| Glu | Glutamine |
| GSPT1 | G1 to S Phase Transition 1 Protein |
| GTP | Guanosine Triphosphate |
| GW182 | TNRC6 = Trinucleotide Repeat Containing 6A |
| HECT | Homologous to E6-AP C-Terminus |
| His | Histidine |
| HPS1/4 | Heat Shock Protein 1/4 |
| IDR | Intrinsically Disordered Sequence |
| IP3R1 | Inositol 1,4,5-trisphosphate Receptor Type 1 |
| IRE1 | Iron Responsive Element |
| KAI1 | CD82 = Cluster of Differentiation 82 |
| KCS | 3-ketoacyl-CoA Synthase |
| KO | Knockout |
| LACT | lecithin:cholesterol acyltransferase |
| LARP4 | La-related Proteins |
| LLPS | Liquid-Liquid Phase Separation |
| LSm | like-Sm |
| LSM11/12 | U7 snRNA-associated Sm-like protein 11/12 |
| LSmAD | Lsm-associated Domain |
| MAM | Mitochondria-associated ER Membrane |
| MAPKAP5 | MAP kinase-activated protein kinase 5 |
| MED25 | Mediator Complex Subunit 25 |
| Met | Methionine |
| MK5 | MAPK-activated Protein Kinase 5 |
| MLLE | MLLEKITG, from French Mademoiselle |
| MON1 | Vacuolar Fusion Protein Mon1 |
| mRNA | Messenger RNA |
| MTOC | Microtubule Organizing Centers |
| MTORC1 | Mechanistic Target of Rapamycin Complex 1 |
| MYC | Myc Proto-Oncogene Protein, derived from myelocytomatosis-neuroblastoma |
| MYCN | N-Myc Proto-Oncogene Protein |
| MYT1 | myelin transcription factor-1 |
| NAADP | Nicotinic Acid Adenine Dinucleotide Phosphate |
| NRF2 | Nuclear Factor Erythroid 2-Related Factor 2 |
| NTH1 | Nth Like DNA Glycosylase 1 |
| PAIP1/2 | Polyadenylate-binding Protein-interacting Protein 1/2 |
| PAM2 | PABP-interacting Motif 2 |
| PAN3 | Poly(A) Specific Ribonuclease Subunit 3 |
| PARK2 | PRKN = Parkin |
| PARKIN | Parkin RBR E3 Ubiquitin Protein Ligase |
| PBP1 | Poly(A)-binding protein) |
| PDAT | phospholipid:diacylglycerol acyltransferase |
| PERK | Protein Kinase RNA-Like Endoplasmic Reticulum Kinase |
| PFAM | Protein Families Database |
| PINK1 | PTEN Induced Kinase 1 |
| polyQ | Polyglutamine repeat |
| PRAK | p38-Regulated/Activated Protein Kinase |
| PRM | Proline-rich Motifs |
| Pro | Proline |
| PRR36 | Proline-rich Protein 36 |
| PSP | Progressive Supranuclear Palsy |
| PtdIns4P | Phosphatidylinositol 4-phosphate |
| Q | Glutamine |
| Rab7/32/38 | Ras-related Protein |
| RALDH1 | Aldehyde Dehydrogenase 1 Family Member A1 |
| RAN | Ras-related Nuclear Protein |
| RAR | Retinoid Acid Receptors |
| rFNA | Ribosomal RNA |
| RIDD | Regulated IRE1-dependent decay |
| RIOK2 | Right Open Reading Frame Kinase |
| RNA | Ribonucleic acid |
| RNAseq | RNA sequencing |
| RNP | Ribonucleoprotein |
| ROR | RAR-related Orphan Receptors |
| ROS | Reactive Oxygen Species |
| RRM | RNA Recognition Motif |
| RXR | Retinoid X Receptors |
| SCA2 | Spinocerebellar Ataxia Type 2 |
| SCAR21 | Spinocerebellar Ataxia, Autosomal Recessive 21 |
| SCYL1 | SCY1 Like Pseudokinase 1 |
| SEC6 | SNARE-binding Exocyst Subunit |
| Ser | Serine |
| SF3B4 | Splicing Factor 3B subunit |
| SFPQ | Splicing Factor, Proline-and Glutamine-rich |
| shRNA | Short RNA |
| SKOR1 | SKI Family Transcriptional Corepressor 1 |
| SKP-A | S-phase Kinase Associated A Protein |
| TAF4 | TFIID Subunit 4 |
| TDP-43 | TAR DNA-binding Protein 43 |
| Tob1/2 | Transducer Of ERBB2, 1 |
| TORC2 | Target of Rapamycin Complex 2 |
| TPX2 | Targeting Protein for Xklp2 |
| TRAF2 | TNF Receptor Associated Factor 2 |
| TTC3 | Tetratricopeptide Repeat Domain 3 |
| UBP | Ubiquitin-Specific Protease |
| UPR | Unfolded Protein Response |
| USP10 | Ubiquitin-Specific Peptidase 10 |
| Val | Valine |
| VLCFA | Very-Long-Chain Fatty Acids |
| WASF2 | WASP Family Member 2 |
| WT | Wildtype |
| XBP1 | X-box Binding Protein 1 |
References
- Pulst, S.M.; et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2 . Nat Genet 1996, 14(3), 269–76. [Google Scholar] [CrossRef]
- Sanpei, K.; et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique . DIRECT. Nat Genet 1996, 14(3), 277–84. [Google Scholar] [CrossRef]
- Imbert, G.; et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats . Nat Genet 1996, 14(3), 285–91. [Google Scholar] [CrossRef]
- Elden, A.C.; et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS . Nature 2010, 466(7310), 1069–75. [Google Scholar] [CrossRef]
- Becker, L.A.; et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice . Nature 2017, 544(7650), 367–371. [Google Scholar] [CrossRef] [PubMed]
- Shulman, J.M.; Feany, M.B. Genetic modifiers of tauopathy in Drosophila . Genetics 2003, 165(3), 1233–42. [Google Scholar] [CrossRef] [PubMed]
- Ross, O.A.; et al. Ataxin-2 repeat-length variation and neurodegeneration . Hum Mol Genet 2011, 20(16), 3207–12. [Google Scholar] [CrossRef]
- Thompson, A.D.; et al. Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 is involved in tau degradation . ACS Chem Biol 2012, 7(10), 1677–86. [Google Scholar] [CrossRef]
- Kim, A., S.H. Park, and B. Jeon, An Autopsy Case of Progressive Supranuclear Palsy With Incidental ATXN2 Expansion. JAMA Neurol 2018, 75(8), 1025–1027. [CrossRef]
- Auburger, G.; et al. Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population . Am J Hum Genet 1990, 46(6), 1163–77. [Google Scholar] [PubMed]
- Orozco Diaz, G.; et al. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba . Neurology 1990, 40(9), 1369–75. [Google Scholar] [CrossRef]
- Lastres-Becker, I.; Rub, U.; Auburger, G. Spinocerebellar ataxia 2 (SCA2) . Cerebellum 2008, 7(2), 115–24. [Google Scholar] [CrossRef] [PubMed]
- Auburger, G.W. Spinocerebellar ataxia type 2 . Handb Clin Neurol 2012, 103, 423–36. [Google Scholar]
- Rub, U.; et al. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7 . Prog Neurobiol 2013, 104, 38–66. [Google Scholar] [CrossRef]
- Lorenzetti, D.; Bohlega, S.; Zoghbi, H.Y. The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia . Neurology 1997, 49(4), 1009–13. [Google Scholar] [CrossRef] [PubMed]
- Lessing, D.; Bonini, N.M. Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila . PLoS Biol 2008, 6(2), e29. [Google Scholar] [CrossRef]
- Velazquez Perez, L.; et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin . Neurosci Lett 2009, 454(2), 157–60. [Google Scholar] [CrossRef]
- Sequeiros, J.; Seneca, S.; Martindale, J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias . Eur J Hum Genet 2010, 18(11), 1188–95. [Google Scholar] [CrossRef]
- Lyasota, O.; et al. Stability of the CAG Tract in the ATXN2 Gene Depends on the Localization of CAA Interruptions . Biomedicines 2024, 12(8). [Google Scholar] [CrossRef]
- Matsuura, T.; et al. Mosaicism of unstable CAG repeats in the brain of spinocerebellar ataxia type 2 . J Neurol 1999, 246(9), 835–9. [Google Scholar] [CrossRef] [PubMed]
- Auburger, G.; et al. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2 . Trends Neurosci 2017, 40(8), 507–516. [Google Scholar] [CrossRef]
- Kacher, R.; et al. CAG repeat mosaicism is gene specific in spinocerebellar ataxias . Am J Hum Genet 2024, 111(5), 913–926. [Google Scholar] [CrossRef]
- Magana, J.J.; Velazquez-Perez, L.; Cisneros, B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives . Mol Neurobiol 2013, 47(1), 90–104. [Google Scholar] [CrossRef]
- Estrada, R.; et al. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies . Acta Neuropathol 1999, 97(3), 306–10. [Google Scholar] [CrossRef]
- Varrone, A.; et al. Reduced striatal [123 I]FP-CIT binding in SCA2 patients without parkinsonism . Ann Neurol 2004, 55(3), 426–30. [Google Scholar] [CrossRef]
- van de Warrenburg, B.P.; et al. Peripheral nerve involvement in spinocerebellar ataxias . Arch Neurol 2004, 61(2), 257–61. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; et al. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients . Hum Mol Genet 2011, 20(9), 1697–700. [Google Scholar] [CrossRef]
- Gispert, S.; et al. The modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect . Neurobiol Dis 2012, 45(1), 356–61. [Google Scholar] [CrossRef] [PubMed]
- Lahut, S.; et al. ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population . PLoS One 2012, 7(8), e42956. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Perez, L.; et al. Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence . Clin Neurophysiol 2017, 128(12), 2493–2502. [Google Scholar] [CrossRef]
- Velazquez-Perez, L.; et al. Progression of corticospinal tract dysfunction in pre-ataxic spinocerebellar ataxia type 2: A two-years follow-up TMS study . Clin Neurophysiol 2018, 129(5), 895–900. [Google Scholar] [CrossRef]
- Velazquez-Perez, L.; et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study . Lancet Neurol 2014, 13(5), 482–9. [Google Scholar] [CrossRef]
- Jacobi, H.; et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study . Lancet Neurol 2015, 14(11), 1101–8. [Google Scholar] [CrossRef]
- Velazquez-Perez, L.; et al. Hereditary Ataxias in Cuba: A Nationwide Epidemiological and Clinical Study in 1001 Patients . Cerebellum 2020, 19(2), 252–264. [Google Scholar] [CrossRef]
- Rive Le Gouard, N.; et al. The Two Faces of Pediatric SCA2 . Eur J Neurol 2025, 32(8), p. e70314. [Google Scholar] [CrossRef]
- Charles, P.; et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? . Neurology 2007, 69(21), 1970–5. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; et al. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism . Arch Neurol 2007, 64(10), 1510–8. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; et al. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats . PLoS One 2011, 6(3), e17951. [Google Scholar] [CrossRef] [PubMed]
- Corrado, L.; et al. ATXN-2 CAG repeat expansions are interrupted in ALS patients . Hum Genet 2011, 130(4), 575–80. [Google Scholar] [CrossRef]
- Wang, C.; et al. Linkage analysis and whole-exome sequencing exclude extra mutations responsible for the parkinsonian phenotype of spinocerebellar ataxia-2 . Neurobiol Aging 2015, 36(1), 545 e1–7. [Google Scholar] [CrossRef]
- Al-Ramahi, I.; et al. dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1 . PLoS Genet 2007, 3(12), e234. [Google Scholar] [CrossRef]
- Van Langenhove, T.; et al. Ataxin-2 polyQ expansions in FTLD-ALS spectrum disorders in Flanders-Belgian cohorts . Neurobiol Aging 2012, 33(5), 1004 e17–20. [Google Scholar] [CrossRef]
- Neuenschwander, A.G.; et al. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis . JAMA Neurol 2014, 71(12), 1529–34. [Google Scholar] [CrossRef]
- Nobrega, C.; et al. Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado-Joseph disease . Brain 2015, 138 Pt 12, 3537–54. [Google Scholar] [CrossRef] [PubMed]
- Rubino, E.; et al. ATXN2 intermediate repeat expansions influence the clinical phenotype in frontotemporal dementia . Neurobiol Aging 2019, 73, 231 e7–231 e9. [Google Scholar] [CrossRef]
- Glass, J.D.; et al. ATXN2 intermediate expansions in amyotrophic lateral sclerosis . Brain 2022, 145(8), 2671–2676. [Google Scholar] [CrossRef] [PubMed]
- Mijajlovic, M.; et al. Transcranial sonography in spinocerebellar ataxia type 2 . J Neurol 2008, 255(8), 1164–7. [Google Scholar] [CrossRef] [PubMed]
- Shibata, H.; Huynh, D.P. S.M. Pulst, A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet 2000, 9(9), 1303–13. [Google Scholar] [CrossRef]
- Huynh, D.P.; et al. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death . Hum Mol Genet 2003, 12(13), 1485–96. [Google Scholar] [CrossRef]
- Ng, H.; Pulst, S.M.; Huynh, D.P. Ataxin-2 mediated cell death is dependent on domains downstream of the polyQ repeat . Exp Neurol 2007, 208(2), 207–15. [Google Scholar] [CrossRef]
- Del Castillo, U.; et al. Conserved role for Ataxin-2 in mediating endoplasmic reticulum dynamics . Traffic 2019, 20(6), 436–447. [Google Scholar] [CrossRef] [PubMed]
- Nonis, D.; et al. Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking . Cell Signal 2008, 20(10), 1725–39. [Google Scholar] [CrossRef]
- Drost, J.; et al. Ataxin-2 modulates the levels of Grb2 and SRC but not ras signaling . J Mol Neurosci 2013, 51(1), 68–81. [Google Scholar] [CrossRef]
- Bian, W.; et al. A spatially defined human Notch receptor interaction network reveals Notch intracellular storage and Ataxin-2-mediated fast recycling . Cell Rep 2023, 42(7), 112819. [Google Scholar] [CrossRef] [PubMed]
- van de Loo, S.; et al. Ataxin-2 associates with rough endoplasmic reticulum . Exp Neurol 2009, 215(1), 110–8. [Google Scholar] [CrossRef]
- Satterfield, T.F.; Pallanck, L.J. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes . Hum Mol Genet 2006, 15(16), 2523–32. [Google Scholar] [CrossRef]
- Satterfield, T.F.; Jackson, S.M.; Pallanck, L.J. A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation . Genetics 2002, 162(4), 1687–702. [Google Scholar] [CrossRef] [PubMed]
- Ralser, M.; et al. Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways . Hum Mol Genet 2005, 14(19), 2893–909. [Google Scholar] [CrossRef]
- Key, J.; et al. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation . Neurobiol Dis 2025, 209, 106903. [Google Scholar] [CrossRef]
- Stubenvoll, M.D.; et al. Correction: ATX-2, The C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics . PLoS Genet 2016, 12(12), e1006519. [Google Scholar] [CrossRef]
- Del Castillo, U.; et al. Ataxin-2 is essential for cytoskeletal dynamics and neurodevelopment in Drosophila . iScience 2022, 25(1), p. 103536. [Google Scholar] [CrossRef]
- Boeynaems, S.; et al. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates . Mol Cell 2023, 83(12), 2020–2034 e6. [Google Scholar] [CrossRef]
- Kim, S.K.; Gelfand, V.I. PolyQ-Expansion of Ataxin-2 Disrupts Microtubule Stability and Impairs Axon Outgrowth . J Neurosci 2025, 45(40). [Google Scholar] [CrossRef]
- Nonhoff, U.; et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules . Mol Biol Cell 2007, 18(4), 1385–96. [Google Scholar] [CrossRef]
- Swisher, K.D.; Parker, R. Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae . PLoS One 2010, 5(4), e10006. [Google Scholar] [CrossRef]
- Yamagishi, R.; et al. Concerted action of ataxin-2 and PABPC1-bound mRNA poly(A) tail in the formation of stress granules . Nucleic Acids Res 2024, 52(15), 9193–9209. [Google Scholar] [CrossRef]
- Palozzi, J.M.; et al. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy . Cell Metab 2022, 34(11), 1809–1823 e6. [Google Scholar] [CrossRef]
- Huynh, D.P.; et al. Parkin is an E3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death . Exp Neurol 2007, 203(2), 531–41. [Google Scholar] [CrossRef] [PubMed]
- Halbach, M.V.; et al. Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated . PLoS One 2015, 10(3), e0121089. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.E.; et al. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels . Neurobiol Dis 2016, 96, 115–126. [Google Scholar] [CrossRef] [PubMed]
- O'Neill, E.C.; et al. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry . Mol Biosyst 2015, 11(10), 2808–20. [Google Scholar] [CrossRef]
- Luisi, P.L. Why are enzymes macromolecules? . Naturwissenschaften 1979, 66(10), 498–504. [Google Scholar] [CrossRef]
- Marijuan, P.C.; del Moral, R.; Navarro, J. On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization . Biosystems 2013, 114(1), 8–24. [Google Scholar] [CrossRef]
- Toro, I.; et al. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex . EMBO J 2001, 20(9), 2293–303. [Google Scholar] [CrossRef] [PubMed]
- Ralser, M.; et al. An integrative approach to gain insights into the cellular function of human ataxin-2 . J Mol Biol 2005, 346(1), 203–14. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, D.; Guzman, P. Insights into the evolution and domain structure of Ataxin-2 proteins across eukaryotes . BMC Res Notes 2014, 7, 453. [Google Scholar] [CrossRef]
- Zhang, S.; et al. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain . Cells 2025, 14(5). [Google Scholar] [CrossRef] [PubMed]
- Kozlov, G.; et al. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase . EMBO J 2004, 23(2), 272–81. [Google Scholar] [CrossRef]
- Huang, K.L.; et al. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate . RNA 2013, 19(3), 295–305. [Google Scholar] [CrossRef]
- Kozlov, G.; et al. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein . J Biol Chem 2010, 285(18), 13599–606. [Google Scholar] [CrossRef]
- Damrath, E.; et al. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice . PLoS Genet 2012, 8(8), e1002920. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Lengauer, T. Survey on the PABC recognition motif PAM2 . Biochem Biophys Res Commun 2004, 316(1), 129–38. [Google Scholar] [CrossRef]
- Petrauskas, A.; et al. Structured and disordered regions of Ataxin-2 contribute differently to the specificity and efficiency of mRNP granule formation . PLoS Genet 2024, 20(5), e1011251. [Google Scholar] [CrossRef]
- Obornik, M.; Lukes, J. Cell biology of chromerids: autotrophic relatives to apicomplexan parasites . Int Rev Cell Mol Biol 2013, 306, 333–69. [Google Scholar] [PubMed]
- Cavalier-Smith, T. The excavate protozoan phyla Metamonada Grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa . Int J Syst Evol Microbiol 2003, 53 Pt 6, 1741–58. [Google Scholar] [CrossRef] [PubMed]
- Hannaert, V.; et al. Plant-like traits associated with metabolism of Trypanosoma parasites . Proc Natl Acad Sci U S A 2003, 100(3), 1067–71. [Google Scholar] [CrossRef]
- Whitfield, J. Sleeping sickness bug swallowed a plant.; Nature, 2003. [Google Scholar]
- Karnkowska, A.; et al. A Eukaryote without a Mitochondrial Organelle . Curr Biol 2016, 26(10), 1274–84. [Google Scholar] [CrossRef]
- Burri, L.; et al. Microsporidian mitosomes retain elements of the general mitochondrial targeting system . Proc Natl Acad Sci U S A 2006, 103(43), 15916–20. [Google Scholar] [CrossRef]
- Nowack, E.C.M.; Weber, A.P.M. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes . Annu Rev Plant Biol 2018, 69, 51–84. [Google Scholar] [CrossRef]
- Kim, E.; Graham, L.E. EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata . PLoS One 2008, 3(7), e2621. [Google Scholar] [CrossRef]
- Keeling, P.J. The endosymbiotic origin, diversification and fate of plastids . Philos Trans R Soc Lond B Biol Sci 2010, 365(1541), 729–48. [Google Scholar] [CrossRef] [PubMed]
- Keeling, P.J. Diversity and evolutionary history of plastids and their hosts . Am J Bot 2004, 91(10), 1481–93. [Google Scholar] [CrossRef]
- Ponce-Toledo, R.I.; et al. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids . Curr Biol 2017, 27(3), 386–391. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Martinez, F.; Jackson, C.; Reyes-Prieto, A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity . Genome Biol Evol 2019, 11(1), 174–188. [Google Scholar] [CrossRef]
- Lemieux, C.; Otis, C.; Turmel, M. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution . Nature 2000, 403(6770), 649–52. [Google Scholar] [CrossRef]
- Lee, R.E. Phycology, chapter 5; Cambridge University Press: New York, 2018. [Google Scholar]
- Miyagishima, S.Y. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems . Commun Biol 2023, 6(1), 1150. [Google Scholar] [CrossRef]
- Woelkerling, W.J. An Introduction. Biology of the Red Algae; Cole, K.M., Sheath, R.G., Eds.; Cambridge University Press: Cambridge, 1990. [Google Scholar]
- Rohmer, M.; Bouvier, P.; Ourisson, G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols . Proc Natl Acad Sci U S A 1979, 76(2), 847–51. [Google Scholar] [CrossRef] [PubMed]
- Ourisson, G.; Nakatani, Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol . Chem Biol 1994, 1(1), 11–23. [Google Scholar] [CrossRef]
- Wu, F.; Janvier, P.; Zhang, C. The rise of predation in Jurassic lampreys . Nat Commun 2023, 14(1), 6652. [Google Scholar] [CrossRef]
- Meyer, A.; Schartl, M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions . Curr Opin Cell Biol 1999, 11(6), 699–704. [Google Scholar] [CrossRef]
- Schilling, T.F.; Knight, R.D. Origins of anteroposterior patterning and Hox gene regulation during chordate evolution . Philos Trans R Soc Lond B Biol Sci 2001, 356(1414), 1599–613. [Google Scholar] [CrossRef]
- Moens, C.B.; Prince, V.E. Constructing the hindbrain: insights from the zebrafish . Dev Dyn 2002, 224(1), 1–17. [Google Scholar] [CrossRef]
- Wilson, L.; Maden, M. The mechanisms of dorsoventral patterning in the vertebrate neural tube . Dev Biol 2005, 282(1), 1–13. [Google Scholar] [CrossRef]
- Lupo, G.; Harris, W.A.; Lewis, K.E. Mechanisms of ventral patterning in the vertebrate nervous system . Nat Rev Neurosci 2006, 7(2), 103–14. [Google Scholar] [CrossRef]
- Marletaz, F.; et al. Retinoic acid signaling and the evolution of chordates . Int J Biol Sci 2006, 2(2), 38–47. [Google Scholar] [CrossRef] [PubMed]
- Kuraku, S. Palaeophylogenomics of the vertebrate ancestor--impact of hidden paralogy on hagfish and lamprey gene phylogeny . Integr Comp Biol 2010, 50(1), 124–9. [Google Scholar] [CrossRef] [PubMed]
- Campo-Paysaa, F.; et al. Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum . Evodevo 2015, 6, 18. [Google Scholar] [CrossRef]
- Handberg-Thorsager, M.; et al. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation . Sci Adv 2018, 4(2), p. eaao1261. [Google Scholar] [CrossRef]
- Bedois, A.M.H.; Parker, H.J.; Krumlauf, R. Retinoic Acid Signaling in Vertebrate Hindbrain Segmentation: Evolution and Diversification . Diversity 2021, 13, 398. [Google Scholar] [CrossRef]
- Qian, X.; et al. Identification and characterization of novel substrates of Trk receptors in developing neurons . Neuron 1998, 21(5), 1017–29. [Google Scholar] [CrossRef]
- Joe, R.M.; et al. Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1alpha To Enhance Nerve Growth Factor Function . Mol Cell Biol 2018, 38(6). [Google Scholar] [CrossRef]
- Wang, T.C.; et al. The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons . PLoS One 2011, 6(10), e26433. [Google Scholar] [CrossRef]
- Lin, L.; et al. ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance . Cell Death Dis 2019, 10(3), 173. [Google Scholar] [CrossRef]
- Auburger, G.; et al. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? . World J Diabetes 2014, 5(3), 316–27. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; et al. Ataxin-2: a powerful RNA-binding protein . Discov Oncol 2024, 15(1), 298. [Google Scholar] [CrossRef]
- Zhang, G.; et al. Comparative genomics reveals insights into avian genome evolution and adaptation . Science 2014, 346(6215), 1311–20. [Google Scholar] [CrossRef]
- Jiao, Y.; et al. Ancestral polyploidy in seed plants and angiosperms . Nature 2011, 473(7345), 97–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mistry, D.; Jetter, R. Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives . Plant Cell Physiol 2024, 65(8), 1245–1260. [Google Scholar] [CrossRef]
- Chang, C.Y.; et al. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers . New Phytol 2021, 229(2), 675–691. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.W.; et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella . Science 2013, 342(6165), 1468–73. [Google Scholar] [CrossRef]
- Lastres-Becker, I.; et al. New alternative splicing variants of the ATXN2 transcript . Neurol Res Pract 2019, 1, 22. [Google Scholar] [CrossRef]
- Nechiporuk, T.; et al. The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression . Hum Mol Genet 1998, 7(8), 1301–9. [Google Scholar] [CrossRef]
- Affaitati, A.; et al. Identification of alternative splicing of spinocerebellar ataxia type 2 gene . Gene 2001, 267(1), 89–93. [Google Scholar] [CrossRef]
- Scoles, D.R.; et al. ETS1 regulates the expression of ATXN2 . Hum Mol Genet 2012, 21(23), 5048–65. [Google Scholar] [CrossRef]
- Key, J.; et al. Mid-Gestation lethality of Atxn2l-Ablated Mice . Int J Mol Sci 2020, 21(14). [Google Scholar] [CrossRef] [PubMed]
- Key, J.; et al. Conditional ATXN2L-Null in Adult Frontal Cortex CamK2a+ Neurons Does Not Cause Cell Death but Restricts Spontaneous Mobility and Affects the Alternative Splicing Pathway . Cells 2025, 14(19). [Google Scholar] [CrossRef]
- Sen, N.E.; et al. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation . Neurobiol Dis 2019, 132, 104559. [Google Scholar] [CrossRef] [PubMed]
- Almaguer-Mederos, L.E.; et al. Spinal Cord Phosphoproteome of SCA2 Mouse Model Reveals Alteration of ATXN2-N-Term PRM-SH3-Actin Interactome and of Autophagy . Mol Cell Proteomics 2025, 24(11), 101072. [Google Scholar] [CrossRef]
- Morgan, A.A.; Rubenstein, E. Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome . PLoS One 2013, 8(1), e53785. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Mandal, S.; Park, M.H. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution . PLoS One 2014, 9(11), e111800. [Google Scholar] [CrossRef]
- Lastres-Becker, I.; et al. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice . Hum Mol Genet 2008, 17(10), 1465–81. [Google Scholar] [CrossRef]
- van de Poll, F.; et al. Pbp1 associates with Puf3 and promotes translation of its target mRNAs involved in mitochondrial biogenesis . PLoS Genet 2023, 19(5), e1010774. [Google Scholar] [CrossRef]
- Tuong, D.T., Vi; et al. Pbp1, the yeast ortholog of human Ataxin-2, functions in the cell growth on non-fermentable carbon sources . PLoS One 2021, 16(5), e0251456. [Google Scholar] [CrossRef]
- Cornelius, N.; et al. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters . Mitochondrion 2017, 34, 103–114. [Google Scholar] [CrossRef]
- Seidel, G.; et al. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes . J Proteome Res 2017, 16(2), 504–515. [Google Scholar] [CrossRef]
- Chitre, M.; Emery, P. ATXN2 is a target of N-terminal proteolysis . PLoS One 2023, 18(12), e0296085. [Google Scholar] [CrossRef]
- Leitgeb, B.; et al. Studying the structural properties of polyalanine and polyglutamine peptides . J Mol Model 2007, 13(11), 1141–50. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.Y.; Brown, S.A. Alanine tracts: the expanding story of human illness and trinucleotide repeats . Trends Genet 2004, 20(1), 51–8. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, R.; et al. Clinical and neuroimaging review of triplet repeat diseases . Jpn J Radiol 2023, 41(2), 115–130. [Google Scholar] [CrossRef]
- Gillon, A.D.; Latham, C.F.; Miller, E.A. Vesicle-mediated ER export of proteins and lipids . Biochim Biophys Acta 2012, 1821(8), 1040–9. [Google Scholar] [CrossRef] [PubMed]
- Vianna, M.C.; et al. Drosophila ataxin-2 gene encodes two differentially expressed isoforms and its function in larval fat body is crucial for development of peripheral tissues . FEBS Open Bio 2016, 6(11), 1040–1053. [Google Scholar] [CrossRef]
- Sen, N.E.; et al. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism . Int J Mol Sci 2019, 20(23). [Google Scholar] [CrossRef]
- Watanabe, R.; et al. Intracellular dynamics of Ataxin-2 in the human brains with normal and frontotemporal lobar degeneration with TDP-43 inclusions . Acta Neuropathol Commun 2020, 8(1), p. 176. [Google Scholar] [CrossRef]
- Canet-Pons, J.; et al. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression . Neurobiol Dis 2021, 152, 105289. [Google Scholar] [CrossRef]
- Torricella, F.; Tugarinov, V. G.M. Clore, Nucleation of Huntingtin Aggregation Proceeds via Conformational Conversion of Pre-Formed, Sparsely-Populated Tetramers. Adv Sci (Weinh) 2024, 11(24), p. e2309217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; et al. Possible Co-Evolution of Polyglutamine and Polyproline in Huntingtin Protein: Proline-Rich Domain as Transient Folding Chaperone . J Phys Chem Lett 2022, 13(27), 6331–6341. [Google Scholar] [CrossRef] [PubMed]
- Darnell, G.; et al. Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure . J Mol Biol 2007, 374(3), 688–704. [Google Scholar] [CrossRef]
- Ceccon, A.; Tugarinov, V.; Clore, G.M. Quantitative Exchange NMR-Based Analysis of Huntingtin-SH3 Interactions Suggests an Allosteric Mechanism of Inhibition of Huntingtin Aggregation . J Am Chem Soc 2021, 143(25), 9672–9681. [Google Scholar] [CrossRef]
- Nagarajan, A.; Jawahery, S.; Matysiak, S. The effects of flanking sequences in the interaction of polyglutamine peptides with a membrane bilayer . J Phys Chem B 2014, 118(24), 6368–79. [Google Scholar] [CrossRef]
- Ramirez de Mingo, D.; et al. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation . BMC Biol 2022, 20(1), 129. [Google Scholar] [CrossRef] [PubMed]
- Gerber, H.P.; et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches . Science 1994, 263(5148), 808–11. [Google Scholar] [CrossRef]
- Achsel, T.; Stark, H.; Luhrmann, R. The Sm domain is an ancient RNA-binding motif with oligo(U) specificity . Proc Natl Acad Sci U S A 2001, 98(7), 3685–9. [Google Scholar] [CrossRef]
- Sobti, M.; et al. Engineered rings of mixed yeast Lsm proteins show differential interactions with translation factors and U-rich RNA . Biochemistry 2010, 49(11), 2335–45. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, M.A.; et al. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein . EMBO J 2002, 21(13), 3546–56. [Google Scholar] [CrossRef]
- Zhang, A.; et al. Global analysis of small RNA and mRNA targets of Hfq . Mol Microbiol 2003, 50(4), 1111–24. [Google Scholar] [CrossRef] [PubMed]
- Folichon, M.; et al. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation . Nucleic Acids Res 2003, 31(24), 7302–10. [Google Scholar] [CrossRef] [PubMed]
- Brennan, R.G.; Link, T.M. Hfq structure, function and ligand binding . Curr Opin Microbiol 2007, 10(2), 125–33. [Google Scholar] [CrossRef]
- Sittka, A.; et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq . PLoS Genet 2008, 4(8), e1000163. [Google Scholar] [CrossRef]
- Padalon-Brauch, G.; et al. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence . Nucleic Acids Res 2008, 36(6), 1913–27. [Google Scholar] [CrossRef]
- Link, T.M.; Valentin-Hansen, P.; Brennan, R.G. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA . Proc Natl Acad Sci U S A 2009, 106(46), 19292–7. [Google Scholar] [CrossRef]
- Lorenz, C.; et al. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts . Nucleic Acids Res 2010, 38(11), 3794–808. [Google Scholar] [CrossRef]
- Otaka, H.; et al. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action . Proc Natl Acad Sci U S A 2011, 108(32), 13059–64. [Google Scholar] [CrossRef]
- Horstmann, N.; et al. Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract . Nucleic Acids Res 2012, 40(21), 11023–35. [Google Scholar] [CrossRef]
- Zeng, Q.; Sundin, G.W. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function . BMC Genomics 2014, 15(1), 414. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, R.; et al. The archaeal Lsm protein from Pyrococcus furiosus binds co-transcriptionally to poly(U)-rich target RNAs . Biol Chem 2023, 404(11-12), 1085–1100. [Google Scholar] [CrossRef] [PubMed]
- Guisbert, E.; et al. Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli . J Bacteriol 2007, 189(5), 1963–73. [Google Scholar] [CrossRef] [PubMed]
- Diestra, E.; et al. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane . PLoS One 2009, 4(12), e8301. [Google Scholar] [CrossRef]
- Andrade, J.M.; et al. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity . EMBO J 2018, 37(11). [Google Scholar] [CrossRef]
- Sharma, I.M.; Korman, A.; Woodson, S.A. The Hfq chaperone helps the ribosome mature . EMBO J 2018, 37(11). [Google Scholar] [CrossRef]
- Figueroa-Bossi, N.; et al. Loss of Hfq activates the sigmaE-dependent envelope stress response in Salmonella enterica . Mol Microbiol 2006, 62(3), 838–52. [Google Scholar] [CrossRef]
- Johansen, J.; et al. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins . J Mol Biol 2006, 364(1), 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; et al. The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis . PLoS One 2014, 9(1), e85626. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.L.; Raivio, T.L. Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli . Mol Microbiol 2014, 92(4), 681–97. [Google Scholar] [CrossRef]
- Deng, Y.; et al. The RNA Chaperone Hfq Is Involved in Colony Morphology, Nutrient Utilization and Oxidative and Envelope Stress Response in Vibrio alginolyticus . PLoS One 2016, 11(9), e0163689. [Google Scholar] [CrossRef]
- Gottesman, S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria . J Biol Chem 2019, 294(31), 11685–11700. [Google Scholar] [CrossRef]
- Tobias, N.J.; et al. Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites . Environ Microbiol 2017, 19(1), 119–129. [Google Scholar] [CrossRef]
- He, W.; Parker, R. Functions of Lsm proteins in mRNA degradation and splicing . Curr Opin Cell Biol 2000, 12(3), 346–50. [Google Scholar] [CrossRef]
- Friesen, W.J.; Dreyfuss, G. Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN) . J Biol Chem 2000, 275(34), 26370–5. [Google Scholar] [CrossRef]
- Fromont-Racine, M.; et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins . Yeast 2000, 17(2), 95–110. [Google Scholar] [CrossRef]
- Tritschler, F.; et al. Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes . Mol Cell Biol 2008, 28(21), 6695–708. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; et al. Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes . Nature 2012, 484(7393), 260–4. [Google Scholar] [CrossRef]
- Mura, C.; et al. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function . RNA Biol 2013, 10(4), 636–51. [Google Scholar] [CrossRef] [PubMed]
- Reimer, K.A.; et al. The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors . RNA 2017, 23(6), 952–967. [Google Scholar] [CrossRef] [PubMed]
- Brandmann, T.; et al. Molecular architecture of LSM14 interactions involved in the assembly of mRNA silencing complexes . EMBO J 2018, 37(7). [Google Scholar] [CrossRef] [PubMed]
- Lekontseva, N.V.; Stolboushkina, E.A.; Nikulin, A.D. Diversity of LSM Family Proteins: Similarities and Differences . Biochemistry (Mosc) 2021, 86 Suppl 1, S38–S49. [Google Scholar] [CrossRef]
- Zhang, J.; et al. Lsm12 is an NAADP receptor and a two-pore channel regulatory protein required for calcium mobilization from acidic organelles . Nat Commun 2021, 12(1), 4739. [Google Scholar] [CrossRef]
- Paya, G.; et al. Analysis of Lsm Protein-Mediated Regulation in the Haloarchaeon Haloferax mediterranei . Int J Mol Sci 2024, 25(1). [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.; Zheng, Q. The RNA-binding protein LSM family regulating reproductive development via different RNA metabolism . Biochim Biophys Acta Mol Basis Dis 2025, 1871(5), 167808. [Google Scholar] [CrossRef]
- Yang, X.C.; et al. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome . RNA 2023, 29(11), 1673–1690. [Google Scholar] [CrossRef]
- Albrecht, M.; Lengauer, T. Novel Sm-like proteins with long C-terminal tails and associated methyltransferases . FEBS Lett 2004, 569(1-3), 18–26. [Google Scholar] [CrossRef]
- Yokoshi, M.; et al. Direct binding of Ataxin-2 to distinct elements in 3' UTRs promotes mRNA stability and protein expression . Mol Cell 2014, 55(2), 186–98. [Google Scholar] [CrossRef]
- Wang, J.Y.; et al. PolyQ-expanded ataxin-2 aggregation impairs cellular processing-body homeostasis via sequestering the RNA helicase DDX6 . J Biol Chem 2024, 300(7), p. 107413. [Google Scholar] [CrossRef]
- Scoles, D.R.; et al. Repeat Associated Non-AUG Translation (RAN Translation) Dependent on Sequence Downstream of the ATXN2 CAG Repeat . PLoS One 2015, 10(6), e0128769. [Google Scholar] [CrossRef]
- Bruner, S.D.; Norman, D.P.; Verdine, G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA . Nature 2000, 403(6772), 859–66. [Google Scholar] [CrossRef] [PubMed]
- Nash, H.M.; et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily . Curr Biol 1996, 6(8), 968–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; et al. The Clf1p splicing factor promotes spliceosome assembly through N-terminal tetratricopeptide repeat contacts . J Biol Chem 2003, 278(10), 7875–83. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; et al. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA . J Am Chem Soc 2010, 132(11), 3953–64. [Google Scholar] [CrossRef]
- Bohnsack, K.E.; Hobartner, C.; Bohnsack, M.T. Eukaryotic 5-methylcytosine (m(5)C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease . Genes (Basel) 2019, 10(2). [Google Scholar] [CrossRef]
- Haigis, M.C.; Kurten, E.L.; Raines, R.T. Ribonuclease inhibitor as an intracellular sentry . Nucleic Acids Res 2003, 31(3), 1024–32. [Google Scholar] [CrossRef]
- Kazan, K. The Multitalented MEDIATOR25 . Front Plant Sci 2017, 8, 999. [Google Scholar] [CrossRef]
- Maurice, F.; et al. In vitro dimerization of human RIO2 kinase . RNA Biol 2019, 16(11), 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Nithianandam, V.; Sarkar, S.; Feany, M.B. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency . Hum Mol Genet 2024, 33(10), 860–871. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; et al. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening . Nat Commun 2024, 15(1), 7138. [Google Scholar] [CrossRef]
- D'Amora, D.R.; et al. BRAP-2 promotes DNA damage induced germline apoptosis in C. elegans through the regulation of SKN-1 and AKT-1 . Cell Death Differ 2018, 25(7), 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; et al. BRAP2 inhibits the Ras/Raf/MEK and PI3K/Akt pathways in leukemia cells, thereby inducing apoptosis and inhibiting cell growth . Exp Ther Med 2021, 21(5), 463. [Google Scholar] [CrossRef]
- Li, S.; et al. Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs . J Biol Chem 1998, 273(11), 6183–9. [Google Scholar] [CrossRef]
- Bakthavachalu, B.; et al. RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration . Neuron 2018, 98(4), 754–766 e4. [Google Scholar] [CrossRef]
- Bravo, J.; et al. Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana Poly(A)-binding proteins . Mol Genet Genomics 2005, 272(6), 651–65. [Google Scholar] [CrossRef]
- Xie, J.; Kozlov, G.; Gehring, K. The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins . Biochim Biophys Acta 2014, 1839(11), 1062–8. [Google Scholar] [CrossRef]
- Singh, A.; et al. Antagonistic roles for Ataxin-2 structured and disordered domains in RNP condensation . Elife 2021, 10. [Google Scholar] [CrossRef]
- Jimenez-Lopez, D.; Bravo, J.; Guzman, P. Evolutionary history exposes radical diversification among classes of interaction partners of the MLLE domain of plant poly(A)-binding proteins . BMC Evol Biol 2015, 15, 195. [Google Scholar] [CrossRef]
- McCarty, J.; et al. Complete Phase Diagram for Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins . J Phys Chem Lett 2019, 10(8), 1644–1652. [Google Scholar] [CrossRef]
- Scheidt, T.; et al. Stressing the role of a short linear motif in ataxin-2 condensation . Mol Cell 2023, 83(12), 1961–1963. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.; et al. Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth . Cell 2019, 177(3), 697–710 e17. [Google Scholar] [CrossRef]
- Kato, M.; et al. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain . Cell 2019, 177(3), 711–721 e8. [Google Scholar] [CrossRef]
- Prouteau, M.; Loewith, R. TOR Signaling Is Going through a Phase . Cell Metab 2019, 29(5), 1019–1021. [Google Scholar] [CrossRef]
- Huelsmeier, J.; et al. A C-terminal ataxin-2 disordered region promotes Huntingtin protein aggregation and neurodegeneration in Drosophila models of Huntington's disease . G3 (Bethesda) 2021, 11(12). [Google Scholar] [CrossRef]
- Wijegunawardana, D.; et al. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons . Dev Cell 2025, 60(2), 253–269 e5. [Google Scholar] [CrossRef] [PubMed]
- Salama, N.R.; Chuang, J.S.; Schekman, R.W. Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum . Mol Biol Cell 1997, 8(2), 205–17. [Google Scholar] [CrossRef]
- Tang, B.L.; et al. Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER-Golgi transport . J Biol Chem 2000, 275(18), 13597–604. [Google Scholar] [CrossRef] [PubMed]
- De Bigault Du Granrut, A.; Cacas, J.L. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants? . Front Plant Sci 2016, 7, 1490. [Google Scholar] [CrossRef]
- Lewandowska, M.; Keyl, A.; Feussner, I. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress . New Phytol 2020, 227(3), 698–713. [Google Scholar] [CrossRef]
- Khan, U.M.; et al. Comparative phylogenomic insights of KCS and ELO gene families in Brassica species indicate their role in seed development and stress responsiveness . Sci Rep 2023, 13(1), 3577. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; et al. BREVIS RADIX is involved in cytokinin-mediated inhibition of lateral root initiation in Arabidopsis . Planta 2009, 229(3), 593–603. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; et al. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae . Lipids 2018, 53(7), 663–688. [Google Scholar] [CrossRef]
- Sah, S.K.; et al. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases . Plant Cell Physiol 2024, 65(6), 863–871. [Google Scholar] [CrossRef]
- Zienkiewicz, K.; et al. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights . Biochim Biophys Acta 2016, 1861 9 Pt B, 1269–1281. [Google Scholar] [CrossRef]
- Holecek, M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid . Nutrients 2022, 14(9). [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; et al. Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots . Plant Physiol 1998, 116(2), 725–32. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Kleczkowski, L.A. Corrigendum: The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism . Front Plant Sci 2018, 9, 984. [Google Scholar] [CrossRef]
- Fernandez-Bernal, A.; et al. Mission cholesterol: Uncovering its hidden role in ALS neurodegeneration . Biochim Biophys Acta Mol Basis Dis 2025, 1871(8), 168021. [Google Scholar] [CrossRef]
- Griffiths, W.J.; Wang, Y. Oxysterol research: a brief review . Biochem Soc Trans 2019, 47(2), 517–526. [Google Scholar] [CrossRef]
- Kim, B.Y.; Jin, B.R. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity . Comp Biochem Physiol B Biochem Mol Biol 2015, 182, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Maravilla, E.; et al. Apolipophorin III interaction with phosphatidylglycerol and lipopolysaccharide: A potential mechanism for antimicrobial activity . Chem Phys Lipids 2020, 229, 104909. [Google Scholar] [CrossRef]
- Alencar, M.B.; et al. The role of l-serine and l-threonine in the energy metabolism and nutritional stress response of Trypanosoma cruzi . mSphere 2025, 10(3), p. e0098324. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, M.A.; et al. Serine Deamination Is a New Acid Tolerance Mechanism Observed in Uropathogenic Escherichia coli . mBio 2022, 13(6), p. e0296322. [Google Scholar] [CrossRef]
- Sassa, T.; Kihara, A. Metabolism of very long-chain Fatty acids: genes and pathophysiology . Biomol Ther (Seoul) 2014, 22(2), 83–92. [Google Scholar] [CrossRef]
- Kim, J.G.; Hudson, L.D. Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene . Mol Cell Biol 1992, 12(12), 5632–9. [Google Scholar]
- Nielsen, J.A.; et al. Myelin transcription factor 1 (Myt1) modulates the proliferation and differentiation of oligodendrocyte lineage cells . Mol Cell Neurosci 2004, 25(1), 111–23. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Ribar, T.J.; Means, A.R. The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation . Endocrinology 2011, 152(10), 3668–79. [Google Scholar] [CrossRef]
- Kobayashi, T.; et al. HDL promotes adiponectin gene expression via the CAMKK/CAMKIV pathway . J Mol Endocrinol 2022, 68(2), 89–98. [Google Scholar] [CrossRef]
- Lin, C.; et al. Cholesterol metabolism regulated by CAMKK2-CREB signaling promotes castration-resistant prostate cancer . Cell Rep 2025, 44(6), 115792. [Google Scholar] [CrossRef]
- Zheng, M.; et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1 . Nat Cell Biol 2011, 13(3), 263–72. [Google Scholar] [CrossRef]
- Kostenko, S.; et al. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase . World J Biol Chem 2011, 2(5), 73–89. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; et al. PRAK interacts with DJ-1 and prevents oxidative stress-induced cell death . Oxid Med Cell Longev 2014, 2014, 735618. [Google Scholar] [CrossRef]
- Dancik, G.M.; Varisli, L.; Vlahopoulos, S.A. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia . Int J Mol Sci 2023, 24(11). [Google Scholar] [CrossRef]
- Hellgren, M.; et al. Alcohol dehydrogenase 2 is a major hepatic enzyme for human retinol metabolism . Cell Mol Life Sci 2007, 64(4), 498–505. [Google Scholar] [CrossRef]
- Godi, A.; et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P . Nat Cell Biol 2004, 6(5), 393–404. [Google Scholar] [CrossRef]
- Masgrau, A.; et al. Distinct roles of the polarity factors Boi1 and Boi2 in the control of exocytosis and abscission in budding yeast . Mol Biol Cell 2017, 28(22), 3082–3094. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G.; Carling, D.; Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? . Annu Rev Biochem 1998, 67, 821–55. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pulido, L.; Ponting, C.P. Hexa-Longin domain scaffolds for inter-Rab signalling . Bioinformatics 2020, 36(4), 990–993. [Google Scholar] [CrossRef]
- Chafe, S.C.; Mangroo, D. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex . Mol Biol Cell 2010, 21(14), 2483–99. [Google Scholar] [CrossRef]
- Pelletier, S. SCYL pseudokinases in neuronal function and survival . Neural Regen Res 2016, 11(1), 42–4. [Google Scholar] [CrossRef]
- Schmidt, W.M.; et al. Mutation in the Scyl1 gene encoding amino-terminal kinase-like protein causes a recessive form of spinocerebellar neurodegeneration . EMBO Rep 2007, 8(7), 691–7. [Google Scholar] [CrossRef]
- Burman, J.L.; et al. Scyl1, mutated in a recessive form of spinocerebellar neurodegeneration, regulates COPI-mediated retrograde traffic . J Biol Chem 2008, 283(33), 22774–86. [Google Scholar] [CrossRef]
- Pelletier, S.; et al. An early onset progressive motor neuron disorder in Scyl1-deficient mice is associated with mislocalization of TDP-43 . J Neurosci 2012, 32(47), 16560–73. [Google Scholar] [CrossRef]
- Schmidt, W.M.; et al. Disruptive SCYL1 Mutations Underlie a Syndrome Characterized by Recurrent Episodes of Liver Failure, Peripheral Neuropathy, Cerebellar Atrophy, and Ataxia . Am J Hum Genet 2015, 97(6), 855–61. [Google Scholar] [CrossRef] [PubMed]
- Kuliyev, E.; et al. Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability . J Neurosci 2018, 38(10), 2615–2630. [Google Scholar] [CrossRef]
- Amano, G.; et al. SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis . Mol Biol Cell 2020, 31(18), 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Kaeser-Pebernard, S.; et al. mTORC1 controls Golgi architecture and vesicle secretion by phosphorylation of SCYL1 . Nat Commun 2022, 13(1), 4685. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, G.; et al. The sterol-binding protein Kes1/Osh4p is a regulator of polarized exocytosis . Traffic 2011, 12(11), 1521–36. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. Phosphoesterase domains associated with DNA polymerases of diverse origins . Nucleic Acids Res 1998, 26(16), 3746–52. [Google Scholar] [CrossRef] [PubMed]
- Gakh, O.; Smith, D.Y.t.; Isaya, G. Assembly of the iron-binding protein frataxin in Saccharomyces cerevisiae responds to dynamic changes in mitochondrial iron influx and stress level . J Biol Chem 2008, 283(46), 31500–10. [Google Scholar] [CrossRef]
- Gervason, S.; et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin . Nat Commun 2019, 10(1), p. 3566. [Google Scholar] [CrossRef]
- Lill, R.; Freibert, S.A. Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis . Annu Rev Biochem 2020, 89, 471–499. [Google Scholar] [CrossRef]
- Moss, D.K.; Wilde, A.; Lane, J.D. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase . J Cell Sci 2009, 122 Pt 5, 644–55. [Google Scholar] [CrossRef]
- Hadar, S.; et al. Stress-induced transcriptional readthrough into neighboring genes is linked to intron retention . iScience 2022, 25(12), 105543. [Google Scholar] [CrossRef] [PubMed]
- Vilborg, A.; et al. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough . Proc Natl Acad Sci U S A 2017, 114(40), E8362–E8371. [Google Scholar] [CrossRef]
- Vilborg, A.; Steitz, J.A. Readthrough transcription: How are DoGs made and what do they do? . RNA Biol 2017, 14(5), 632–636. [Google Scholar] [CrossRef] [PubMed]
- Caldas, P.; et al. Transcription readthrough is prevalent in healthy human tissues and associated with inherent genomic features . Commun Biol 2024, 7(1), p. 100. [Google Scholar] [CrossRef]
- Mei, Y.; et al. Comprehensive resource for transcription readthrough events in healthy human tissues . Sci Data 2025, 12(1), 1176. [Google Scholar] [CrossRef]
- Yu, F.; et al. Positive selection of a pre-expansion CAG repeat of the human SCA2 gene . PLoS Genet 2005, 1(3), e41. [Google Scholar] [CrossRef]
- Chitale, G.G.; Kulkarni, S.R.; Bapat, S.A. Chimerism: A whole new perspective in gene regulation . Biochim Biophys Acta Gen Subj 2025, 1869(3), 130767. [Google Scholar] [CrossRef]
- Shine, M.; et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes . Nat Rev Mol Cell Biol 2024, 25(7), 534–554. [Google Scholar] [CrossRef]
- Ciosk, R.; DePalma, M. J.R. Priess, ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 2004, 131(19), 4831–41. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Allada, R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila . Science 2013, 340(6134), 875–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; et al. A role for Drosophila ATX2 in activation of PER translation and circadian behavior . Science 2013, 340(6134), 879–82. [Google Scholar] [CrossRef]
- Sudhakaran, I.P.; et al. FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control . Proc Natl Acad Sci U S A 2014, 111(1), E99–E108. [Google Scholar] [CrossRef] [PubMed]
- Fittschen, M.; et al. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate . Neurogenetics 2015, 16(3), 181–92. [Google Scholar] [CrossRef]
- Dansithong, W.; et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model . PLoS Genet 2015, 11(4), e1005182. [Google Scholar] [CrossRef]
- Lastres-Becker, I.; et al. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation . Biochim Biophys Acta 2016, 1862(9), 1558–69. [Google Scholar] [CrossRef]
- Lee, J.; et al. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons . Mol Cell 2017, 66(1), 129–140 e7. [Google Scholar] [CrossRef]
- Hansen, M.; et al. The RNA-Binding Protein ATXN2 is Expressed during Megakaryopoiesis and May Control Timing of Gene Expression . Int J Mol Sci 2020, 21(3). [Google Scholar] [CrossRef] [PubMed]
- Scoles, D.R.; et al. ALS-associated genes in SCA2 mouse spinal cord transcriptomes . Hum Mol Genet 2020, 29(10), 1658–1672. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; et al. Direct evidence that Ataxin-2 is a translational activator mediating cytoplasmic polyadenylation . J Biol Chem 2020, 295(47), 15810–15825. [Google Scholar] [CrossRef]
- Rounds, J.C.; et al. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology . Genetics 2022, 220(1). [Google Scholar] [CrossRef] [PubMed]
- Vieira de Sa, R.; et al. ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes . Nat Commun 2024, 15(1), 7484. [Google Scholar] [CrossRef]
- Santos, C.C.; et al. Fbxo42 promotes the degradation of Ataxin-2 granules to trigger terminal Xbp1 signaling . Nat Commun 2025, 16(1), 7523. [Google Scholar] [CrossRef]
- DeMille, D.; et al. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1 . Mol Biol Cell 2015, 26(3), 569–82. [Google Scholar] [CrossRef]
- Bar, D.Z.; et al. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor . Proc Natl Acad Sci U S A 2016, 113(32), E4620–9. [Google Scholar] [CrossRef]
- Bar, D.Z.; Charar, C.; Gruenbaum, Y. Small GTPases in C. elegans metabolism . Small GTPases 2018, 9(5), 415–419. [Google Scholar] [CrossRef] [PubMed]
- Perlegos, A.E.; et al. TDP-43 impairs sleep in Drosophila through Ataxin-2-dependent metabolic disturbance . Sci Adv 2024, 10(2), p. eadj4457. [Google Scholar] [CrossRef] [PubMed]
- Meierhofer, D.; et al. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations . Mol Cell Proteomics 2016, 15(5), 1728–39. [Google Scholar] [CrossRef] [PubMed]
- Arsovic, A.; et al. Mouse Ataxin-2 Expansion Downregulates CamKII and Other Calcium Signaling Factors, Impairing Granule-Purkinje Neuron Synaptic Strength . Int J Mol Sci 2020, 21(18). [Google Scholar] [CrossRef]
- Bezprozvanny, I. Role of inositol 1,4,5-trisphosphate receptors in pathogenesis of Huntington's disease and spinocerebellar ataxias . Neurochem Res 2011, 36(7), 1186–97. [Google Scholar] [CrossRef]
- Sen, N.E.; et al. ATXN2 polyglutamine expansion impairs QKI-dependent alternative splicing and oligodendrocyte maintenance . BioRXiv 2025. [Google Scholar]
- Nobrega, C.; et al. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia . Acta Neuropathol 2019, 138(5), 837–858. [Google Scholar] [CrossRef]
- Armstrong, J.; et al. Spinocerebellar ataxia type 2 (SCA2) with white matter involvement . Neurosci Lett 2005, 381(3), 247–51. [Google Scholar] [CrossRef]
- Rub, U.; et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy . Brain Res Rev 2007, 53(2), 235–49. [Google Scholar] [CrossRef]
- Mercadillo, R.E.; et al. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry . J Neurol Sci 2014, 347(1-2), 50–8. [Google Scholar] [CrossRef]
- Hernandez-Castillo, C.R.; et al. Extensive White Matter Alterations and Its Correlations with Ataxia Severity in SCA 2 Patients . PLoS One 2015, 10(8), e0135449. [Google Scholar] [CrossRef]
- Stezin, A.; et al. In vivo microstructural white matter changes in early spinocerebellar ataxia 2 . Acta Neurol Scand 2021, 143(3), 326–332. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; et al. Progressive white matter degeneration in patients with spinocerebellar ataxia type 2 . Neuroradiology 2024, 66(1), 101–108. [Google Scholar] [CrossRef]
- Sha, R.; et al. Global and Regional Brain Grey and White Matter Morphometry Alterations in Type 1, 2, and 3 Spinocerebellar Ataxias (SCAs) Patients . Cerebellum 2024, 24(1), p. 4. [Google Scholar] [CrossRef]
- Velazquez-Perez, L.; et al. Central motor conduction time as prodromal biomarker in spinocerebellar ataxia type 2 . Mov Disord 2016, 31(4), 603–4. [Google Scholar] [CrossRef]
- Velazquez-Perez, L.; et al. Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: A TMS study . Clin Neurophysiol 2016, 127(8), 2713–2719. [Google Scholar] [CrossRef]
- Diallo, A.; et al. Body Mass Index Decline Is Related to Spinocerebellar Ataxia Disease Progression . Mov Disord Clin Pract 2017, 4(5), 689–697. [Google Scholar] [CrossRef]
- Rodriguez-Grana, T.; et al. Weight loss is correlated with disease severity in Spinocerebellar ataxia type 2: a cross-sectional cohort study . Nutr Neurosci 2022, 25(8), 1747–1755. [Google Scholar] [CrossRef]
- Almaguer-Mederos, L.E.; et al. Testosterone Levels Are Decreased and Associated with Disease Duration in Male Spinocerebellar Ataxia Type 2 Patients . Cerebellum 2020, 19(4), 597–604. [Google Scholar] [CrossRef] [PubMed]
- Yasukochi, Y.; et al. Identification of six novel susceptibility loci for dyslipidemia using longitudinal exome-wide association studies in a Japanese population . Genomics 2019, 111(4), 520–533. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Alvarez, M.; Del Pozo, M.A.; Bakal, C. Publisher Correction: AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts . Sci Rep 2018, 8(1), 6476. [Google Scholar] [CrossRef]
- Huang, S.; Xing, Y.; Liu, Y. Emerging roles for the ER stress sensor IRE1alpha in metabolic regulation and disease . J Biol Chem 2019, 294(49), 18726–18741. [Google Scholar] [CrossRef]
- Lachance, V.; et al. Overview of Sigma-1R Subcellular Specific Biological Functions and Role in Neuroprotection . Int J Mol Sci 2023, 24(3). [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; et al. A mitochondrial specific stress response in mammalian cells . EMBO J 2002, 21(17), 4411–9. [Google Scholar] [CrossRef]
- Haynes, C.M.; et al. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans . Dev Cell 2007, 13(4), 467–80. [Google Scholar] [CrossRef] [PubMed]
- Gispert, S.; et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors . Hum Mol Genet 2013, 22(24), 4871–87. [Google Scholar] [CrossRef]
- Quiros, P.M.; et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals . J Cell Biol 2017, 216(7), 2027–2045. [Google Scholar] [CrossRef]
- Bhaskaran, S.; et al. Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance . EMBO Rep 2018, 19(3). [Google Scholar] [CrossRef] [PubMed]
- Maletzko, A.; et al. Increased presence of nuclear DNAJA3 and upregulation of cytosolic STAT1 and of nucleic acid sensors trigger innate immunity in the ClpP-null mouse . Neurogenetics 2021, 22(4), 297–312. [Google Scholar] [CrossRef]
- Liu, Z.; et al. Aberrant mitochondrial aggregation of TDP-43 activated mitochondrial unfolded protein response and contributed to recovery of acetaminophen induced acute liver injury . Toxicol Res (Camb) 2024, 13(1), p. tfae008. [Google Scholar] [CrossRef]
- Auburger, G.; Key, J.; Gispert, S. The Bacterial ClpXP-ClpB Family Is Enriched with RNA-Binding Protein Complexes . Cells 2022, 11(15). [Google Scholar] [CrossRef]
- Key, J.; Gispert, S.; Auburger, G. Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production . Genes (Basel) 2024, 15(6). [Google Scholar] [CrossRef]
- Batsale, M.; et al. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses . Cells 2021, 10(6). [Google Scholar] [CrossRef]
- Barnes-Velez, J.A.; Yasar, F.B. Aksoy; Hu, J. Myelin lipid metabolism and its role in myelination and myelin maintenance . Innovation (Camb) 2023, 4(1), 100360. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.E.; Gispert, S.; Auburger, G. PINK1 and Ataxin-2 as modifiers of growth . Oncotarget 2017, 8(20), 32382–32383. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; et al. ER stress response during the differentiation of H9 cells induced by retinoic acid . Biochem Biophys Res Commun 2012, 417(2), 738–43. [Google Scholar] [CrossRef]
- Li, J.; et al. Involvement of endoplasmic reticulum stress in all-trans-retinal-induced retinal pigment epithelium degeneration . Toxicol Sci 2015, 143(1), 196–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; et al. Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress . J Biol Chem 2017, 292(34), 13959–13969. [Google Scholar] [CrossRef]
- Chen, Y.; et al. Pin1 Downregulation Is Involved in Excess Retinoic Acid-Induced Failure of Neural Tube Closure . Int J Mol Sci 2024, 25(11). [Google Scholar] [CrossRef]
- Pu, J.; et al. All-trans retinoic acid protects piglets from TGEV-induced diarrhea and intestinal epithelial apoptosis by modulating redox status and endoplasmic reticulum stress pathways . J Anim Sci 2025. [Google Scholar] [CrossRef]
- Yoshida, H.; et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor . Cell 2001, 107(7), 881–91. [Google Scholar] [CrossRef]
- Ali, M.M.; et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response . EMBO J 2011, 30(5), 894–905. [Google Scholar] [CrossRef] [PubMed]
- Eletto, D.; et al. Protein disulfide isomerase A6 controls the decay of IRE1alpha signaling via disulfide-dependent association . Mol Cell 2014, 53(4), 562–576. [Google Scholar] [CrossRef]
- Lindholm, D.; Wootz, H.; Korhonen, L. ER stress and neurodegenerative diseases . Cell Death Differ 2006, 13(3), 385–92. [Google Scholar] [CrossRef]
- Yoshida, H.; et al. XBP1 is critical to protect cells from endoplasmic reticulum stress: evidence from Site-2 protease-deficient Chinese hamster ovary cells . Cell Struct Funct 2006, 31(2), 117–25. [Google Scholar] [CrossRef]
- de Mena, L., J. Lopez-Scarim, and D.E. Rincon-Limas, TDP-43 and ER Stress in Neurodegeneration: Friends or Foes? Front Mol Neurosci 2021, 14, 772226. [CrossRef]
- Wang, C.; et al. Dual Role of Inositol-requiring Enzyme 1alpha-X-box Binding protein 1 Signaling in Neurodegenerative Diseases . Neuroscience 2022, 505, 157–170. [Google Scholar] [CrossRef]
- Matus, S.; et al. XBP-1 deficiency in the nervous system reveals a homeostatic switch to activate autophagy . Autophagy 2009, 5(8), 1226–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; et al. Involvement of the IRE1alpha-XBP1 pathway and XBP1s-dependent transcriptional reprogramming in metabolic diseases . DNA Cell Biol 2015, 34(1), 6–18. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; et al. Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology . Int J Mol Sci 2022, 23(5). [Google Scholar] [CrossRef]
- Wen, X.Y.; et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells . Int J Oncol 1999, 15(1), 173–8. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, H.; Hou, J. Coordination of upregulated XBP-1 and downregulated c-myc during myeloma cell differentiation induced by 2-methoxyestradiol . Leuk Res 2007, 31(9), 1259–65. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; et al. IRE1alpha RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers . J Clin Invest 2018, 128(4), 1300–1316. [Google Scholar] [CrossRef]
- Zhao, N.; et al. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer . J Clin Invest 2018, 128(4), 1283–1299. [Google Scholar] [CrossRef]
- Dong, H.; et al. The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc . Nat Immunol 2019, 20(7), 865–878. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.; et al. IRE1alpha is critical for Kaempferol-induced neuroblastoma differentiation . FEBS J 2019, 286(7), 1375–1392. [Google Scholar] [CrossRef]
- Wiedemeyer, R.; et al. Ataxin-2 promotes apoptosis of human neuroblastoma cells . Oncogene 2003, 22(3), 401–11. [Google Scholar] [CrossRef] [PubMed]
- Junjappa, R.P.; et al. IRE1alpha Implications in Endoplasmic Reticulum Stress-Mediated Development and Pathogenesis of Autoimmune Diseases . Front Immunol 2018, 9, 1289. [Google Scholar] [CrossRef]
- Halbach, M.V.; et al. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway . Cerebellum 2017, 16(1), 68–81. [Google Scholar] [CrossRef]
- Tada, M.; Nishizawa, M.; Onodera, O. Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias . Neurochem Int 2016, 94, 1–8. [Google Scholar] [CrossRef]
- He, L.; et al. ATM blocks tunicamycin-induced endoplasmic reticulum stress . FEBS Lett 2009, 583(5), 903–8. [Google Scholar] [CrossRef]
- Hetz, C.; et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy . Genes Dev 2009, 23(19), 2294–306. [Google Scholar] [CrossRef] [PubMed]
- Reichlmeir, M.; et al. The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5 . Neurobiol Dis 2024, 203, 106756. [Google Scholar] [CrossRef]
- Mishra, P.; et al. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich's ataxia iPSC-derived neurons . Front Pharmacol 2024, 15, 1323491. [Google Scholar] [CrossRef]
- Valenzuela, V.; et al. Artificial enforcement of the unfolded protein response reduces disease features in multiple preclinical models of ALS/FTD . Mol Ther 2025, 33(3), 1226–1245. [Google Scholar] [CrossRef]
- Shen, D.; et al. Differential neuronal vulnerability to C9orf72 repeat expansion driven by Xbp1-induced endoplasmic reticulum-associated degradation . Cell Rep 2025, 44(4), 115459. [Google Scholar] [CrossRef]
- Grima, N.; et al. Multi-region brain transcriptomic analysis of amyotrophic lateral sclerosis reveals widespread RNA alterations and substantial cerebellum involvement . Mol Neurodegener 2025, 20(1), p. 40. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, D.; Li, S. IRE1/Xbp1 promotes the clearance of poly(GR) dipeptide repeats in amyotrophic lateral sclerosis . J Biol Chem 2025, 301(11), p. 110764. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T. Transcriptional regulation of a Purkinje cell-specific gene through a functional interaction between ROR alpha and RAR . Genes Cells 1997, 2(4), 263–72. [Google Scholar] [CrossRef]
- Jetten, A.M.; Kurebayashi, S.; Ueda, E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes . Prog Nucleic Acid Res Mol Biol 2001, 69, 205–47. [Google Scholar]
- Agudo, M.; et al. A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord . Neurobiol Dis 2010, 37(1), 147–55. [Google Scholar] [CrossRef]
- Chen, C.T.; et al. Loss of RAR-related orphan receptor alpha (RORalpha) selectively lowers docosahexaenoic acid in developing cerebellum . Prostaglandins Leukot Essent Fatty Acids 2020, 152, 102036. [Google Scholar] [CrossRef] [PubMed]
- Petkovich, M.; Chambon, P. Retinoic acid receptors at 35 years . J Mol Endocrinol 2022, 69(4), T13–T24. [Google Scholar] [CrossRef] [PubMed]
- Chauvet, C.; et al. The gene encoding human retinoic acid-receptor-related orphan receptor alpha is a target for hypoxia-inducible factor 1 . Biochem J 2004, 384 Pt 1, 79–85. [Google Scholar] [CrossRef]
- Boukhtouche, F.; et al. Human retinoic acid receptor-related orphan receptor alpha1 overexpression protects neurones against oxidative stress-induced apoptosis . J Neurochem 2006, 96(6), 1778–89. [Google Scholar] [CrossRef]
- Serra, H.G.; et al. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice . Cell 2006, 127(4), 697–708. [Google Scholar] [CrossRef]
- Fujita, K.; et al. Developmental YAPdeltaC determines adult pathology in a model of spinocerebellar ataxia type 1 . Nat Commun 2017, 8(1), 1864. [Google Scholar] [CrossRef] [PubMed]
- Watanave, M.; et al. Pharmacological enhancement of retinoid-related orphan receptor alpha function mitigates spinocerebellar ataxia type 3 pathology . Neurobiol Dis 2019, 121, 263–273. [Google Scholar] [CrossRef]
- Ajayi, A.; et al. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model . BMC Neurosci 2012, 13, 86. [Google Scholar] [CrossRef]
- Sanz, A.B.; et al. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2 . Nucleic Acids Res 2016, 44(15), 7159–72. [Google Scholar] [CrossRef]
- Napierala, J.S.; et al. Reverse Phase Protein Array Reveals Correlation of Retinoic Acid Metabolism With Cardiomyopathy in Friedreich's Ataxia . Mol Cell Proteomics 2021, 20, 100094. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.D.; Sun, Y.; Price, B.D. Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells . J Biol Chem 2007, 282(22), 16577–84. [Google Scholar] [CrossRef]
- Jarvis, C.I.; et al. Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor's role beyond the cerebellum . Mol Cell Endocrinol 2002, 186(1), 1–5. [Google Scholar] [CrossRef]
- Boukhtouche, F.; Mariani, J.; Tedgui, A. The "CholesteROR" protective pathway in the vascular system . Arterioscler Thromb Vasc Biol 2004, 24(4), 637–43. [Google Scholar] [CrossRef]
- Guissart, C.; et al. Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia . Am J Hum Genet 2018, 102(5), 744–759. [Google Scholar] [CrossRef]
- Talarico, M.; et al. RORA-neurodevelopmental disorder: A unique triad of developmental disabilities, cerebellar anomalies, and myoclonic seizures . Genet Med 2025, 27(4), p. 101347. [Google Scholar] [CrossRef]
- Kaehler, C.; et al. Ataxin-2-like is a regulator of stress granules and processing bodies . PLoS One 2012, 7(11), e50134. [Google Scholar] [CrossRef]
- Kiehl, T.R.; et al. Generation and characterization of Sca2 (ataxin-2) knockout mice . Biochem Biophys Res Commun 2006, 339(1), 17–24. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.; et al. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice . Chronobiol Int 2017, 34(1), 129–137. [Google Scholar] [CrossRef] [PubMed]
- Kiehl, T.R.; Shibata, H.; Pulst, S.M. The ortholog of human ataxin-2 is essential for early embryonic patterning in C. elegans . J Mol Neurosci 2000, 15(3), 231–41. [Google Scholar] [CrossRef]
- Gadgil, A.; Raczynska, K.D. U7 snRNA: A tool for gene therapy . J Gene Med 2021, 23(4), p. e3321. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Gall, J.G. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies . Proc Natl Acad Sci U S A 2007, 104(28), 11655–9. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.Y.; et al. Coiled bodies preferentially associate with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but not with U6 and U7 genes . Mol Biol Cell 1999, 10(5), 1653–63. [Google Scholar] [CrossRef]
- Gadgil, A.; et al. ALS-linked FUS mutants affect the localization of U7 snRNP and replication-dependent histone gene expression in human cells . Sci Rep 2021, 11(1), p. 11868. [Google Scholar] [CrossRef]
- Courel, M.; et al. GC content shapes mRNA storage and decay in human cells . Elife 2019. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
