Submitted:
07 January 2026
Posted:
09 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Vegetation Attributes
2.4. Soil Attributes
2.5. Data Analysis
3. Results
3.1. Vegetation Structure and Diversity
3.2. Species Composition and Its Association with the Invasion of L. camara
3.3. Species Composition
3.4. Effects of L. camara on Soil Nutrients, Species Composition and Diversity
4. Discussion
4.1. Vegetation Structure and Diversity
4.2. Species Composition
4.3. Effects of L. camara on Soil Nutrients, Species Composition, and Diversity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Full Form |
| KAZA TFCA | Kavango Zambezi Transfrontier Conservation Area |
| PERMANOVA | Permutational Multivariate Analysis of Variance |
| ANOSIM | Analysis of Similarities |
| IAPs | Invasive Alien Plants |
| NMDS | Non-metric Multidimensional Scaling |
| NUST | National University of Science and Technology |
| TFCA | Transfrontier Conservation Area |
| VFNP | Victoria Falls National Park |
| VFRF | Victoria Falls Rainforest |
| CCA | Canonical Correspondence Analysis |
| DBH | Diameter at Breast Height |
| DCA | Detrended Correspondence Analysis |
| IAP | Invasive Alien Plant |
| IAS | Invasive Alien Species |
| UTM | Universal Transverse Mercator |
| OC | Organic Carbon |
References
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Gentili, R.; Schaffner, U.; Martinoli, A.; Citterio, S. Invasive alien species and biodiversity: Impacts and management. Biodiversity 2021, 22, 1–3. [Google Scholar] [CrossRef]
- Ssali, F.; Baluku, R.; Drileyo, G.; Muhumuza, M. Associations between Lantana camara L. (Verbenaceae) and common native species in an African savanna. Ecol. Solut. Evid. 2024, 5, e12375. [Google Scholar] [CrossRef]
- Dube, T.; Shoko, C.; Sibanda, M.; Madileng, P.; Maluleke, X.G.; Mokwatedi, V.R.; Tshebesebe, T. Remote sensing of invasive Lantana camara in semiarid savanna rangelands of South Africa. Rangel. Ecol. Manag. 2020, 73, 411–419. [Google Scholar] [CrossRef]
- Mondal, T.; Bhatt, D.; Ramesh, K. Bioclimatic modelling of Lantana camara invasion in the Shivalik landscape of Western Himalaya. Trop. Ecol. 2023, 64, 249–263. [Google Scholar] [CrossRef]
- Barik, S.S.; Sahoo, R.P.; Yadav, M.K. Lantana camara L.: An emerging threat to native flora and livestock: A review. J. Pharmacogn. Phytochem. 2020, 9, 2363–2366. [Google Scholar]
- Negi, G.C.; Sharma, S.; Vishvakarma, S.C.; Samant, S.S.; Maikhuri, R.K.; Palni, L.M. Ecology and use of Lantana camara in India. Bot. Rev. 2019, 85, 109–130. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy of Lantana camara as an invasive plant. Plants 2021, 10, 1028. [Google Scholar] [CrossRef]
- Muvengwi, J.; Ndagurwa, H.G.T. Soil Seed Bank Dynamics and Fertility on a Seasonal Wetland Invaded by Lantana camara in a Savanna Ecosystem. S. Afr. J. Bot. 2015, 100, 190–194. [Google Scholar] [CrossRef]
- Paul, R.; Subudhi, D.K.; Sahoo, C.K.; Banerjee, K. Invasion of Lantana camara and climate change responses in Eastern Ghats. Biologia 2021, 76, 1391–1408. [Google Scholar] [CrossRef]
- Barahukwa, A.; Chapman, C. A.; Namaganda, M.; Eilu, G.; Omeja, P. A.; Lawes, M. J. The effects of the invasive species, Lantana camara, on regeneration of an African rainforest. African Journal of Ecology 2023, 61(2), 451–460. [Google Scholar] [CrossRef]
- Ruwanza, S. Effects of Lantana camara invasion on vegetation diversity and composition in the Vhembe Biosphere Reserve, Limpopo Province of South Africa. Sci. Afr. 2020, 10, e00610. [Google Scholar] [CrossRef]
- Raphela, T.D.; Duffy, K.J. Effects of the density of invasive Lantana camara plants on the biodiversity of large and small mammals in the Groenkloof Nature Reserve (GNR) in South Africa. Biology 2023, 12, 296. [Google Scholar] [CrossRef]
- Choudaj, K.; Wankhade, V. Reduction in avian diversity due to exotic tree plantations on the native savannas of Pune City, India. Trop. Ecol. 2021, 62, 499–507. [Google Scholar] [CrossRef]
- Tomat-Kelly, G.; Flory, S.L. Research gaps in invasion–fire cycles. Biol. Invasions 2023, 25, 693–711. [Google Scholar] [CrossRef]
- Dar, J.A.; Subashree, K.; Sundarapandian, S.; Saikia, P.; Khan, M.L. Invasive species and their impacts on tropical forests of Central India. In Tropical Ecosystems; Springer: Cham, Switzerland, 2019; pp. 69–109. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Verma, A.K.; Joshi, R.K.; Garkoti, S.C. Invasion of Lantana camara and Ageratina adenophora alters the soil physico-chemical characteristics and microbial biomass of chir pine forests in the central Himalaya, India. Catena 2021, 207, 105624. [Google Scholar] [CrossRef]
- Wekhanya, M.N.; Mbugua, P.K.; Mworia, J.K. The effect of invasive species Lantana camara L. on soil nutrients at Ol-Donyo Sabuk National Park, Kenya. Afr. J. Pure Appl. Sci. 2020, 1, 25–32. [Google Scholar] [CrossRef]
- Ruwanza, S.; Shackleton, C.M. Effects of the invasive shrub, Lantana camara, on soil properties in the EasternCape, South Africa. Biol. Manag. 2016, 16, 67–79. [Google Scholar] [CrossRef]
- Simba, Y.R.; Kamweya, A.M.; Mwangi, P.N.; Ochora, J.M. Impact of the invasive shrub, Lantana camara L., onsoil properties in Nairobi National Park, Kenya. Int. J. Biodivers. Conserv. 2013, 5, 803–809. [Google Scholar]
- Mahla, N.; Mlambo, D. Influence of two co-occurring invasive plant species on resident woody species and surface soil properties in Chipinge Safari Area, Zimbabwe. Trop. Ecol. 2019, 60, 129–139. [Google Scholar] [CrossRef]
- Kisaakye, P. The Effect of Lantana camara on Soil Chemical Properties and Germination of Maize Seeds in Mawu Village, Makulubita Subcounty, Luweero District. Ph.D. Thesis, Makerere University, Kampala, Uganda, 2021. Available online: https://dissertations.mak.ac.ug/handle/20.500.12281/8814.
- Dassonville, N.; Vanderhoeven, S.; Vanparys, V.; Hayez, M.; Gruber, W.; Meerts, P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008, 157, 131–140. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, S.; Bhatti, R.C.; Singh, A.N. Sustainability in the Indian Himalayan Region: Understanding the ecosystem services, climate change impacts, land use shifts and their threats. In The Himalayas in the Anthropocene: Environment and Development; Borthakur, A., Singh, P., Eds.; Springer: Cham, Switzerland, 2024; pp. 33–57. [Google Scholar] [CrossRef]
- Stoldt, M.; Göttert, T.; Mann, C.; Zeller, U. Transfrontier Conservation Areas and Human-Wildlife Conflict: The Case of the Namibian Component of the Kavango-Zambezi (KAZA) TFCA. Sci. Rep. 2020, 10, 7964. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, P.; Brekl, J.; Köhler, E.; van Engelen, W. Performing multispecies studies in Southern Africa: Historical legacies, marginalised subjects, reflexive positionalities. Anthropol. S. Afr. 2024, 47, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Muguti, T. Human-wildlife conflicts and livelihoods in Binga District, Zimbabwe: Local communities’ lived experiences. In Living with Wildlife in Zimbabwe; Matanzima, J., Utete, B., Eds.; Springer: Cham, Switzeland, 2024; pp. 41–57. [Google Scholar] [CrossRef]
- Kupika, O.L.; Chanyandura, A.; Chinyavada, J.; Masunga, G. Riparian-based nature-based solutions to climate change in transfrontier components of Botswana and Zimbabwe: Opportunities and challenges. In Handbook of Nature-Based Solutions; Springer: Cham, Switzerland, 2024; pp. 1–22. [Google Scholar] [CrossRef]
- Zimbabwe Vulnerability Assessment Committee (ZimVAC). Food and Nutrition Security Update Report. 2020. Available online: https://fnc.org.zw/wp-content/uploads/2020/03/ZimVAC-2020-Food-and-Nutrition-Security-Update-Report.pdf (accessed on 15 May 2024).
- Tambo, G.; Chabikwa, G.T.; Daga, O.; Dhlomo, J.L. Livestock production system in Ward 12, Tsholotsho District, Zimbabwe: Characterization and potential productivity enhancement. CGIAR Research Program on Livestock Report, 2021. Available online: https://cgspace.cgiar.org/handle/10568/80114 (accessed on 10 June 2024).
- Nhemachena, C.; Mano, R.; Mudombi, S.; Muwanigwa, V. Perceptions on Climate Change and Its Impact on Livelihoods in Hwange District, Zimbabwe. Jàmbá J. Disaster Risk Stud. 2014, 6, 123. [Google Scholar] [CrossRef]
- Nhemachena, C.; Hassan, R.; Chakwizira, J. Analysis of Determinants of Farm-Level Adaptation Measures to Climate Change in Southern Africa. J. Dev. Agric. Econ. 2014, 6, 232–241. [Google Scholar] [CrossRef]
- Arraut, E.M.; Loveridge, A.J.; Valls-Fox, H.; Chamaillé-Jammes, S.; Macdonald, D.W. The 2013–2014 vegetation structure map of Hwange National Park, Zimbabwe, produced using free satellite images and software. Koedoe 2018, 60, 1–10. [Google Scholar] [CrossRef]
- Guerbois, C.; Dufour, A.B.; Mtare, G.; Fritz, H. Insights for integrated conservation from attitudes of people toward protected areas near Hwange National Park, Zimbabwe. Conserv. Biol. 2013, 27, 844–855. [Google Scholar] [CrossRef]
- Ncube, B.; Shekede, M.D.; Gwitira, I.; Dube, T. Spatial modelling the effects of climate change on the distribution of Lantana camara in Southern Zimbabwe. Appl. Geogr. 2020, 117, 102172. [Google Scholar] [CrossRef]
- Salerno, J.; Stevens, F.R.; Gaughan, A.E.; Hilton, T.; Bailey, K.; Bowles, T.; Cassidy, L.; Mupeta-Muyamwa, P.; Biggs, D.; Pricope, N.; et al. Wildlife impacts and changing climate pose compounding threats to human foodsecurity. Curr. Biol. 2021, 31, 5077–5085.e6. [Google Scholar] [CrossRef]
- Chatanga, P.; Kamanda, M.T.; Kundhlande, A.; Imbayarwo-Chikosi, V.E.; Mujawo, T.; Magadza, C.H.; Mujuru, L. Effects of Lantana camara (L.) invasion on the native vegetation of Gonarezhou National Park, Zimbabwe. S. Afr. J. Educ. Sci. Technol. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Van Wyk, B.; van Wyk, P. Field Guide to Trees of Southern Africa; Penguin Random House South Africa: Cape Town, South Africa, 2013. [Google Scholar]
- Ngarakana, E.; Kativu, S. Soil Based Assessment of the Invasive Species Vernonanthura phosphorica (Vell.) H. Rob. (Asteraceae) in Burma Valley, Zimbabwe. Trans. R. Soc. S. Afr. 2017, 72, 225–232. [Google Scholar] [CrossRef]
- Ganamé, M.; Bayen, P.; Ouédraogo, I.; Dimobe, K.; Thiombiano, A. Woody species composition, diversity and vegetation structure of two protected areas along a climatic gradient in Burkina Faso (West Africa). Folia Geobot. 2019, 54, 163–175. [Google Scholar] [CrossRef]
- Gentili, R.; Ambrosini, R.; Montagnani, C.; Caronni, S.; Citterio, S. Effect of soil pH on the growth, reproductive investment and pollen allergenicity of Ambrosia artemisiifolia L. Front. Plant Sci. 2018, 9, 1335. [Google Scholar] [CrossRef]
- Sato, J.H.; Figueiredo, C.C.; Marchão, R.L.; Madari, B.E.; Benedito, L.E.C.; Busato, J.G.; Souza, D.M. Methods of soil organic carbon determination in Brazilian savannah soils. Sci. Agric. 2014, 71, 302–308. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Similarity-based testing for community pattern: the two-way layout with no replication. Mar. Biol. 1994, 118, 167–176. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R Package Version 2.5-7. 2020. [Google Scholar]
- Chen, Y.; Yuan, Z.; Li, P.; Cao, R.; Jia, H.; Ye, Y. Effects of Environment and Space on Species Turnover of Woody Plants across Multiple Forest Dynamic Plots in East Asia. Front. Plant Sci. 2016, 7, 1533. [Google Scholar] [CrossRef]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Chatanga, P.; Kamanda, M.T.; Kundhlande, A.; Imbayarwo-Chikosi, V.E.; Mujawo, T.; Magadza, C.H.; Mujuru, L. Effects of Lantana camara (L.) Invasion on the Native Vegetation of Gonarezhou National Park,Zimbabwe. South. Afr. J. Educ. Sci. Technol. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Gooden, B.; French, K.; Turner, P.J.; Downey, P.O. Impact thresholds for Lantana camara L. on native plantcommunities. Biol. Conserv. 2009, 142, 2631–2641. [Google Scholar] [CrossRef]
- Goyal, N.; Esler, K.J.; Sharma, G.P. What drives performance potential of Lantana camara L. (Sensu lato) in the invaded range? Trop. Ecol. 2018, 59, 57–68. [Google Scholar]
- Lone, P.A.; Dar, J.A.; Subashree, K.; Raha, D.; Pandey, P.K.; Ray, T.; Khare, P.K. Invasive Shrub Lantana camara L. Alters the Flora and Soils in Tropical Dry Deciduous Forests of Central India. Biotropica 2022, 54, 1412–1427. [Google Scholar] [CrossRef]
- Ruwanza, S. Effects of Lantana camara Invasion on Vegetation Diversity and Composition in the Vhembe Biosphere Reserve, Limpopo Province of South Africa. Sci. Afr. 2020, 10, e00610. [Google Scholar] [CrossRef]
- Jevon, T.; Shackleton, C.M. Integrating local knowledge and forest surveys to assess Lantana camara impacts on indigenous species recruitment in Mazeppa Bay, South Africa. Hum. Ecol. 2015, 43, 247–254. [Google Scholar] [CrossRef]
- Taylor, S.; Kumar, L.; Reid, N.; Kriticos, D.J. Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L. PLoS ONE 2012, 7, e35565. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Verma, A.K.; Garkoti, S.C. Lantana camara and Ageratina adenophora Invasion Alter the Understory Species Composition and Diversity of Chir Pine Forest in Central Himalaya, India. Acta Oecol 2020, 109, 103642. [Google Scholar] [CrossRef]



| Variables | Communal area | Park area | Test Statistic | |||
|---|---|---|---|---|---|---|
| Invaded | Uninvaded | Invaded | Uninvaded | value | p-value | |
| Native Woody Species | ||||||
| Stem height (m) | 5.1±1.6c | 9.5±0.6ab | 8.5±2.0b | 10.7±0.8a | 31.52 | 0.001 |
| Stem diameter (m) | 0.4±0.1b | 0.6±0.02a | 0.7±0.4a | 0.8±0.1a | 24.68 | 0.001 |
| Density/ha | 228±308b | 1 308±432a | 479±284a | 1 561±706a | 18.59 | 0.002 |
| Canopy cover (%) | 6.6±5.9b | 81±14.7a | 9±10.5b | 72.5±9.4a | 7.26 | 0.01 |
| Shannon-Wiener index | 0.4±0.6c | 2.8±0.4a | 1.6±0.5b | 3.2±0.4a | 74.97 | 0.001 |
| Species richness | 5.4±3.3d | 21.3±5.1b | 12.7±4.1c | 33.5±0.3a | 51.02 | 0.001 |
| L. camara | Z-value | p-value | ||||
| Stem height (m) | 2.2±0.8a | N/A | 1.8±0.1b | N/A | 3.4 | 0.001 |
| Stem diameter (m) | 0.04±0.01b | N/A | 0.07±0.10a | N/A | 1.1 | 0.04 |
| Density/ha | 5 542±4 747a | N/A | 747±567b | N/A | 4.5 | 0.001 |
| Canopy (%) | 47.4±27.8a | N/A | 10.3 ±2.0b | N/A | 4.2 | 0.001 |
| Species Name | Communal area | Park area | ||
|---|---|---|---|---|
| Invaded | Uninvaded | Invaded | Uninvaded | |
| Adansonia digitata | 0 | 0 | 9 | 100 |
| Afzelia quanzensis | 3 | 75 | 17 | 83 |
| Albizia harveyi | 12 | 100 | 25 | 100 |
| Antidesma venosum | 0 | 0 | 9 | 50 |
| Azanza garkeana | 0 | 0 | 0 | 50 |
| Baikiaea plurijuga | 3 | 63 | 33 | 33 |
| Bauhinia petersiana | 30 | 100 | 68 | 83 |
| Berchemia discolor | 0 | 0 | 33 | 83 |
| Brachystegia spiciformis | 12 | 75 | 9 | 50 |
| Bridelia mollis | 0 | 0 | 25 | 67 |
| Burkea africana | 6 | 75 | 0 | 0 |
| Colophospermum mopane | 15 | 75 | 50 | 83 |
| Combretum apiculatum | 0 | 63 | 9 | 17 |
| Combretum hereroense | 0 | 0 | 17 | 83 |
| Combretum imberbe | 53 | 88 | 92 | 100 |
| Combretum molle | 44 | 75 | 17 | 33 |
| Corymbia gummifera | 0 | 0 | 0 | 67 |
| Dichrostachys cinerea | 9 | 75 | 50 | 100 |
| Diospyros lycioides | 0 | 0 | 17 | 83 |
| Diospyros mespiliformis | 0 | 0 | 50 | 50 |
| Diospyros quiloensis | 0 | 0 | 42 | 33 |
| Diplorhynchus condylocarpon | 21 | 100 | 17 | 100 |
| Euclea divinorum | 38 | 88 | 33 | 100 |
| Ficus natalensis | 6 | 88 | 17 | 33 |
| Ficus petersii | 0 | 0 | 9 | 50 |
| Grewia flavescens | 24 | 100 | 75 | 100 |
| Gymosporia senegalensis | 9 | 75 | 25 | 50 |
| Hyphaene coriacea | 0 | 0 | 9 | 8 |
| Kigelia africana | 0 | 0 | 9 | 33 |
| Lantana camara | 100 | 0 | 100 | 0 |
| Manilkara mochisia | 0 | 0 | 9 | 50 |
| Ozoroa reticulata | 0 | 0 | 33 | 67 |
| Peltophorum africanum | 0 | 0 | 25 | 83 |
| Philenoptera violacea | 0 | 0 | 17 | 50 |
| Phoenix reclinata | 0 | 0 | 9 | 83 |
| Piliostigma thonningii | 0 | 0 | 9 | 100 |
| Pseudolachnostylis maprouneifolia | 0 | 0 | 17 | 50 |
| Pterocarpus rotundifolius | 3 | 100 | 25 | 33 |
| Sclerocarya birrea subsp. caffra | 18 | 75 | 25 | 33 |
| Senegalia galpinii | 32 | 63 | 33 | 67 |
| Senegalia nigrescens | 12 | 88 | 9 | 17 |
| Strychnos potatorum | 0 | 0 | 0 | 50 |
| Terminalia sericea | 21 | 88 | 67 | 100 |
| Terminalia stuhlmanii | 0 | 0 | 42 | 67 |
| Trichilia emetica | 0 | 0 | 17 | 100 |
| Vachellia erioloba | 15 | 50 | 25 | 83 |
| Vachellia karroo | 12 | 63 | 33 | 67 |
| Vangueria infausta | 24 | 50 | 8 | 100 |
| Ximenia caffra | 0 | 0 | 17 | 33 |
| Ziziphus mucronata | 15 | 88 | 25 | 83 |
| Groups | Global R: 0.62; p = 0.001 | |
|---|---|---|
| R-Statistic | Significance Level (p-value) | |
| Invaded Communal, Uninvaded Communal | 0.8 | 0.001 |
| Invaded Communal, Invaded Park | 0.4 | 0.002 |
| Invaded Communal, Uninvaded Park | 0.9 | 0.001 |
| Invaded Communal, Invaded Park | 0.7 | 0.001 |
| Uninvaded Communal, Uninvaded Park | 0.5 | 0.001 |
| Invaded Park, Uninvaded Park | 0.6 | 0.002 |
| Variable | Communal area | Park area | F-value | p-value | ||
| Invaded | Uninvaded | Invaded | Uninvaded | |||
| pH | 6.8±0.5bc | 7.6±0.6a | 6.1±0.3c | 7.0±0.8ac | 6.3 | 0.001 |
| NO3--N (mg/kg) | 2.3±1.5a | 1.1± 0.7a | 6.7±6.2a | 7.5±13a | 1.4 | 0.3 |
| P (mg/kg) | 3.8±5.6ab | 0.2±0.4b | 10.7±8.8a | 10.5±0.001a | 3.5 | 0.03 |
| K (mg/kg) | 4 040±3 453a | 2 050±1 629a | 1 660±523a | 1 087±554a | 1.8 | 0.2 |
| OC (%) | 1.8± 1.1ab | 0.95±0.93b | 1.9± 0.84ab | 2.9± 0.6a | 2.6 | 0.04 |
| CCA properties | CCA1 | CCA2 |
|---|---|---|
| Eigen value | 0.21 | 0.24 |
| Variance explained | 0.21 | 0.24 |
| Cumulative variance | 0.21 | 0.54 |
| Soil variables | F-value | p-value |
| pH | 1.52 | 0.03 |
| NO3- | 1.65 | 0.11 |
| P | 1.53 | 0.01 |
| K | 1.02 | 0.37 |
| C | 1.74 | 0.03 |
| Species diversity/vegetation attributes | pH | NO3- | P | K | OC |
|---|---|---|---|---|---|
| Shannon index | 0.20 | 0.15 | -0.06 | -0.09 | 0.14 |
| Species richness | 0.21 | 0.28 | -0.09 | -0.09 | 0.18 |
| Native woody species density/ha | -0.19 | -0.10 | -0.10 | -0.13 | -0.19 |
| Native woody species height (m) | 0.13 | 0.21 | -0.04 | -0.21 | 0.12 |
| Native woody species diameter (m) | -0.008** | 0.09 | -0.07 | -0.18 | -0.04* |
| Native woody species cover (%) | 0.28 | 0.10 | -0.19 | -0.01 | 0.17 |
| L. camara density/ha | -0.20 | -0.12 | -0.08 | -0.11 | -0.19 |
| L. camara height (m) | -0.27 | -0.11 | 0.15 | 0.043* | -0.17 |
| L. camara canopy (%) | -0.17 | -0.06 | -0.02 | -0.03* | -0.12 |
| L. camara diameter (m) | -0.03 | 0.02 | -0.06 | 0.04 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
