Preprint
Review

This version is not peer-reviewed.

The Mediator Complex: Progress over the Past Decade

Submitted:

07 January 2026

Posted:

08 January 2026

You are already at the latest version

Abstract
The Mediator complex is a central regulator of eukaryotic transcription, functioning as a dynamic molecular bridge between gene-specific transcription factors and RNA polymerase II (Pol II). Although decades of research have established its modular architecture and fundamental role in transcriptional control, recent advances have significantly expanded our understanding of its structural conformations, subunit-specific functions, and links to human disease. This review provides a comprehensive overview of the Mediator complex, highlighting key structural and functional discoveries from the past decade and synthesizing its diverse roles in transcriptional regulation. We further discuss emerging concepts and future directions for therapeutically targeting Mediator, particularly in cancer. Together, these insights position the Mediator complex as a highly conserved yet adaptable, signal-responsive regulatory hub with broad implications for both normal physiology and disease pathogenesis.
Keywords: 
;  ;  ;  ;  

1. The Mediator Complex in Transcriptional Regulation

The Mediator complex lies at the very heart of eukaryotic gene regulation, coordinating communication between DNA-bound transcription factors (TFs) and RNA polymerase II (Pol II). This multi-subunit complex was originally identified through pioneering studies investigating how TFs regulate Pol II–mediated transcription in yeast [1,2,3,4]. Mediator is conserved from yeast to humans; however, its subunit composition and primary sequences vary substantially across species. In Saccharomyces cerevisiae, Mediator comprises approximately 25 subunits and has a molecular mass of ~0.8 MDa, whereas the human Mediator complex contains roughly 30 subunits and reaches ~1.4 MDa in size [5,6].
Over the past decade, advances in structural, biophysical, and functional analyses have fundamentally reshaped our understanding of Mediator. Rather than functioning as a static coactivator, Mediator is now recognized as a dynamic, centralized, and signal-responsive regulatory hub [7]. Groundbreaking cryogenic electron microscopy (cryo-EM) studies-including near-atomic-resolution models of the Mediator–Pol II preinitiation complex (PIC)-have revealed remarkable structural flexibility and a modular architecture in which the kinase, head, middle, and tail modules undergo coordinated rearrangements to promote transcription initiation [5,8].
Together, these findings establish the Mediator complex as a dynamic integrator of transcriptional regulation whose roles extend well beyond traditional models. In this review, we summarize recent advances in defining the modular organization and functional versatility of Mediator, with a particular focus on its roles in development and disease. We also discuss emerging therapeutic directions that have gained attention over the past decade, including inhibition of the Mediator kinase module, disruption of Mediator-centered protein–protein interactions (PPIs), and growing evidence that mediator complex subunit 19 (MED19) represents a potential transcriptional vulnerability in cancer.
This review was conducted as a scoping analysis aimed at capturing the breadth of current evidence on Mediator complex structure, function, disease relevance, and therapeutic potential, with a primary focus on advances reported between 2015 and 2025.

2. Structural Organization and Modular Architecture

Recent advances in cryo-electron microscopy (cryo-EM) and X-ray crystallography have transformed our understanding of the Mediator complex, revealing its evolution from a putative scaffold into a highly intricate and dynamic modular assembly. Mediator is organized into four major modules—head, middle, tail, and kinase—each contributing distinct structural and regulatory functions (Figure 1). A central architectural feature of the complex is mediator complex subunit 14 (MED14), which spans nearly the entire assembly. MED14 acts as a structural backbone, tightly linking the head and middle modules while anchoring the tail module at the base of Mediator. Although the precise modular assignment of MED14 remains debated, we consider MED14 as a subunit of the tail module in accordance with the reference [6].
The head and middle modules, together with MED14, form the so-called core Mediator (cMed). Within this core, MED14 is indispensable for robust interaction with RNA Pol II. While the head and middle modules alone can assemble into a stable complex, association with MED14 is required to reconstitute a fully functional Mediator capable of productive transcriptional engagement. In contrast, the kinase module—commonly referred to as the CDK8 kinase module (CKM)—associates with Mediator in a reversible manner, providing an additional layer of regulatory flexibility [9,10,11].
High-resolution structural insights have been instrumental in defining functional interfaces within Mediator. The 3.4 Å crystal structure of Schizosaccharomyces pombe cMed, encompassing the head and middle modules, revealed that multiple disease-associated mutations cluster at the interface between mediator complex subunit 6 (Med6) and mediator complex subunit 17 (Med17), which connect to the middle module. This clustering highlights critical structural hotspots essential for Mediator integrity and activity [8]. More recently, near-atomic-resolution cryo-EM structures have resolved nearly the entire tail module, as well as MED1-containing regions of the middle module, providing direct visualization of how transcriptional activator binding and Pol II engagement induce long-range conformational changes that propagate from the head to the tail modules [12].
Mediator is now recognized to adopt at least two major conformational states: an extended and a bent configuration. Notably, the PIC preferentially engages Mediator in the bent conformation, indicating that PIC architecture itself influences Mediator structural rearrangement [13]. Complementary high-resolution cryo-EM studies of yeast Mediator–PIC assemblies further demonstrate that PIC binding drives precise reorganization of the middle module, particularly within the hook, knob, and beam regions [14].
Collectively, these findings underscore the remarkable structural plasticity of Mediator. Rather than serving as a static architectural scaffold, Mediator functions as a dynamic and signal-responsive hub that integrates regulatory inputs and transmits them across enhancers and promoters, acting as a truly “functional bridge” in transcriptional regulation [15].

3. The Many Roles of the Mediator Complex

The Mediator complex plays numerous essential roles in eukaryotic transcriptional regulation, acting as a central integrator of regulatory signals throughout the transcription cycle. At the onset of transcription, Mediator functions as a molecular bridge that connects DNA-bound transcription factors with RNA Pol II, thereby facilitating assembly of the PIC [16]. Beyond this bridging role, Mediator actively stimulates transcription by promoting phosphorylation of the C-terminal domain of Pol II, leading to increased basal transcriptional output [4].
Mediator also plays critical roles during transcriptional elongation and termination. In particular, mediator complex subunit 26 (MED26) serves as a docking platform for elongation-associated factors, enabling efficient transition of Pol II into productive elongation [17]. In parallel, MED26 contributes to transcription termination by engaging the little elongation complex (LEC), thereby ensuring efficient and coordinated Pol II release at gene ends [18].
In addition to its canonical functions, Mediator has been implicated in higher-order mechanisms of transcriptional regulation. The formation of Mediator-containing biomolecular condensates at clusters of enhancers has been proposed as a mechanism to concentrate transcriptional machinery and enhance gene activation [19,20,21]. Moreover, the reversible association of the kinase module with Mediator allows cellular signaling pathways—including metabolic and developmental cues—to be integrated into transcriptional outputs by modulating enhancer activity, Pol II elongation, and chromatin organization [22].
Mediator is preferentially recruited to enhancer regions, where it plays a central role in transcriptional regulation [23]. At these sites, Mediator physically and functionally cooperates with cohesin, a ring-shaped protein complex capable of tethering distant DNA segments. Co-occupancy of Mediator and cohesin at enhancers promotes enhancer–promoter DNA looping, a structural feature essential for robust gene activation [24]. Consistent with this model, acute depletion of Mediator reduces enhancer–promoter interactions, leading to decreased gene expression and diminished cohesin occupancy at enhancers [25].
These mechanisms are particularly prominent in pluripotent embryonic stem cells (ESCs), where master transcription factors bind enhancer elements and recruit Mediator to activate cell identity gene programs. This process underscores the critical role of super-enhancers in maintaining mammalian cell fate and transcriptional robustness [26].

4. Mediator Dysregulation in Disease: A Modular Vulnerability Map

Disease phenotypes are rarely caused by complete loss of the Mediator complex. Instead, pathological states typically arise from the selective dysfunction or hijacking of specific Mediator subunits distributed across its four modules. Accumulating genetic, genomic, and functional studies now reveal that individual Mediator subunits represent discrete points of vulnerability, giving rise to diverse disease manifestations. Below, we summarize disease associations linked to Mediator subunits, organized by module (Figure 1).

4.1. Head Module

Over the past decade, the Mediator head module—which comprises mediator complex subunits MED6, MED8, MED11, MED17, MED18, MED20, and MED22, as well as proximally tethered subunits MED27, MED28, MED29, and MED30—has emerged as a major vulnerability center in a wide range of human diseases.
Mediator complex subunit 6 (MED6).
MED6 has been proposed as a predictive biomarker in lung adenocarcinoma (LUAD). A 2025 multi-omics analysis demonstrated that MED6 promotes tumor cell proliferation and is associated with poor prognosis, while also identifying candidate therapeutic agents—including paclitaxel, afatinib, and brivanib—that may be effective in MED6-high tumors [27].
Mediator complex subunit 8 (MED8).
MED8 is frequently overexpressed in hepatocellular carcinoma (HCC), where elevated expression correlates with adverse clinical outcomes. Functional knockdown studies showed that MED8 depletion suppresses tumor cell proliferation, migration, and colony formation. Moreover, a MED8-centered immunomodulatory prediction model was shown to improve survival stratification of HCC patients [28]. MED8 has also been implicated in the pathogenesis of renal cell carcinoma (RCC) [29].
Mediator complex subunit 11 (MED11).
Homozygous mutations in MED11 cause severe neurodevelopmental impairment characterized by myoclonic seizures and premature death. Zebrafish models recapitulated these phenotypes, providing strong in vivo evidence for MED11’s essential developmental role [30].
Mediator complex subunit 17 (MED17).
Biallelic variants in MED17 are associated with progressive microcephaly, intellectual disability (ID), and seizures. Patient-derived fibroblasts harboring MED17 mutations exhibit pronounced activation of the unfolded protein response, indicating proteostasis stress as a key pathogenic mechanism [31,32].
Mediator complex subunit 20 (MED20).
Mutations in MED20 cause infantile basal ganglia degeneration, a neurodegenerative disorder marked by cerebellar atrophy and basal ganglia abnormalities detectable by MRI [33].
Mediator complex subunit 22 (MED22).
The strongest functional evidence for MED22 in human disease comes from podocyte-specific Med22 knockout mice, which develop progressive glomerular disease and succumb to renal failure, highlighting a critical role for MED22 in kidney physiology [34]. In cancer, proteomic analyses of carotid body tumors identified MED22 as a differentially expressed protein [35]. In addition, MED22-together with MED10 and meiosis-arrested-at-leptotene-1 (MEL1)-was found to be upregulated in HCC, forming a three-gene prognostic signature predictive of patient outcome [36].
Mediator complex subunit 27 (MED27).
Loss-of-function variants in MED27 cause an autosomal recessive neurodevelopmental syndrome characterized by global developmental delay, dystonia, cerebellar hypoplasia, spasticity, and cataracts. Zebrafish loss-of-function models failed to rescue developmental defects and revealed disrupted downstream transcription factor networks, including forkhead box O3A (foxo3a) and fosab [37,38].
Mediator complex subunit 28 (MED28).
Mouse knockout studies demonstrate that MED28 is essential for peri-implantation development and maintenance of pluripotency. Loss of Med28 results in early embryonic lethality accompanied by reduced expression of pluripotency regulators POU domain, class 5, transcription factor 1 (OCT4) and Nanog homeobox (NANOG) [39].
Mediator complex subunit 29 (MED29).
A 2025 study identified biallelic MED29 variants as the cause of pontocerebellar hypoplasia with cataracts, establishing MED29 as a novel risk gene for this disorder [40]. In oncology, MED29 expression is elevated in oral squamous cell carcinoma (OSCC), where it promotes epithelial–mesenchymal transition (EMT); MED29 knockdown suppresses pithelial-mesenchymal transition (EMT) and cell migration [41]. MED29 has also been shown to play context-dependent oncogenic and tumor-suppressive roles in pancreatic cancer (PaCa) [42].
Mediator complex subunit 30 (MED30).
MED30 deletions have been linked to congenital disorders, including Langer–Giedion syndrome and Cornelia de Lange syndrome, underscoring its importance in human development [43].
Together, these studies demonstrate that although the Mediator head module functions as a cohesive structural entity, its individual subunits display distinct and disease-specific vulnerabilities. These vulnerabilities manifest as cancer, neurodevelopmental disorders, renal disease, or congenital syndromes. This emerging modular disease map argues strongly for subunit-specific therapeutic strategies, rather than generalized approaches to Mediator dysregulation.

4.2. Middle Module

The Mediator middle module comprises mediator complex subunits MED1, MED4, MED7, MED9, MED10, MED19, MED21, MED26, and MED31. This module functions as both a structural scaffold and a regulatory hub within the Mediator complex. Although these subunits are integrated into a single architectural unit, accumulating evidence indicates that they play distinct and sometimes divergent roles in human disease.
Mediator complex subunit 1 (MED1).
MED1 is frequently amplified or overexpressed in cancer, most notably within the human epidermal growth factor receptor 2 (HER2) amplicon in breast cancer (BCa). Elevated MED1 levels promote EMT and cancer stem cell formation, thereby contributing to tumor aggressiveness and therapy resistance [44,45].
Mediator complex subunit 4 (MED4).
Relatively little is known about the role of MED4 in carcinogenesis. One study associated MED4 deletion and downregulation with poor clinical outcomes in cervical cancer (CC) and identified MED4 as a driver of chemo-radiotherapy resistance[46]. MED4 has also been identified as a survival gene in retinoblastoma (Rb) [47].
Mediator complex subunit 7 (MED7).
MED7 serves as a significant prognostic marker in BCa, particularly in estrogen receptor–positive (ER⁺) luminal subtypes, where higher MED7 expression correlates with improved survival [48]. In contrast, MED7 is upregulated in hepatocellular carcinoma (HCC) and contributes to tumor progression [49], highlighting context-dependent functions.
Mediator complex subunit 9 (MED9).
Recent studies have linked MED9 to human disease, with the short isoform of MED9 being strongly upregulated in familial dilated cardiomyopathy, suggesting a role in cardiac pathology [50].
Mediator complex subunit 10 (MED10).
MED10 has been implicated in multiple disease contexts, including bladder cancer and HCC [51,52]. In addition, MED10 has been identified among Alzheimer’s disease (AD) risk-associated genes, pointing to broader roles beyond cancer [53].
Mediator complex subunit 19 (MED19).
MED19 is consistently upregulated across a wide spectrum of malignancies—including lung, liver, prostate, breast, colorectal, bladder, laryngeal cancers, osteosarcoma, and melanoma—where it promotes tumor cell proliferation, migration, and resistance to therapy [54,55,56,57,58].
Mediator complex subunit 21 (MED21).
MED21 is essential for maintaining the structural integrity of the Mediator-Pol II interface. siRNA-mediated depletion of MED21 disrupts the Mediator-Pol II holoenzyme and attenuates transcriptional activation of NF-κB target genes, underscoring its central architectural role in transcription [59].
Mediator complex subunit 26 (MED26).
Deletion of MED26 in B cells leads to genome-wide reductions in Pol II recruitment and transcript abundance. Enhancers enriched for MED26 display elevated Pol II occupancy and activity, confirming a key role for MED26 in transcriptional regulation and enhancer function [60].
Mediator complex subunit 31 (MED31).
MED31 regulates self-renewal and adipogenic differentiation of human mesenchymal stem cells [61]. Notably, a study of Parkinson’s disease (PD) reported sex-biased expression of MED31, with significantly increased levels observed in the frontal cortex of female patients [62].
Together, these findings underscore the dual nature of the Mediator middle module. While some subunits function primarily as disease-associated regulatory cofactors, others play indispensable roles in maintaining the transcriptional architecture required for Pol II function. This functional heterogeneity further reinforces the concept that Mediator dysregulation operates at the level of individual subunits and interfaces, rather than through wholesale disruption of the complex.

4.3. Tail Module

The Mediator tail module comprises mediator complex subunits MED14, MED15, MED16, MED23, MED24, and MED25. This module is positioned at the interface between transcription factors and the core Mediator architecture, enabling signal-responsive regulation of gene expression.
Mediator complex subunit 14 (MED14).
Among Mediator subunits, MED14 is unique in its dual role as a central structural scaffold and a functional regulator of Pol II engagement. MED14 coordinates interactions between multiple Mediator subunits and enhances Mediator–Pol II association, thereby stabilizing the overall architecture of the complex [9]. A recent study further demonstrated that the N-terminal half of MED14 is essential for Pol II interaction and for efficient recruitment of Pol II to gene promoters [63]. Beyond its general role in transcription, specific Med14 mutant alleles have been linked to impaired neural crest development [64] and defects in stem cell maintenance in zebrafish [65].
Mediator complex subunit 15 (MED15).
MED15 has emerging relevance in cardiovascular disease biology. A 2025 systems-level review identified MED15 as a regulatory node in lipid metabolism, inflammatory signaling, and oxidative stress, acting through SREBP, NF-κB, and NRF2 pathways that are central to the pathogenesis of atherosclerosis and coronary artery disease [66]. In cancer, MED15 contributes to tumor progression and metastatic dissemination in renal cell carcinoma (RCC) [67,68] and head and neck squamous cell carcinoma (HNSCC) [69]. Notably, phosphorylation of MED15 at threonine 603 (T603) functions as a molecular switch controlling senescence-associated secretory phenotype production, implicating MED15 as a novel regulator of tissue aging and cognitive decline [70].
Mediator complex subunit 16 (MED16).
Biallelic variants in MED16 have been identified in 25 individuals presenting with neurodevelopmental delay and ID. These findings position MED16 among a growing group of genes associated with so-called “MEDopathies,” a term describing neurodevelopmental disorders caused by mutations in Mediator subunit genes [71,72].
Mediator complex subunit 23 (MED23).
MED23 plays both mechanistic and pathophysiological roles in transcriptional regulation. Loss-of-function and missense variants in MED23 (including R617Q) are associated with ID, epilepsy, and widespread dysregulation of gene expression. Mechanistically, MED23 mutations reprogram enhancer activity and chromatin architecture, underscoring its importance in transcriptional network stability [73,74].
Mediator complex subunit 24 (MED24).
MED24 has been identified as a critical oncogenic target of erb-b2 receptor tyrosine kinase 2 (ERBB2) in lung tumorigenesis. Elevated MED24 expression correlates with poor survival in patients with non-small cell lung cancer (NSCLC), suggesting that MED24 represents a promising therapeutic target, particularly in ERBB2-mutant tumors [75].
Mediator complex subunit 25 (MED25).
A homozygous missense mutation in MED25 (p.Tyr39Cys) has been identified as the cause of severe ID characterized by congenital eye defects, growth retardation, and additional developmental abnormalities, highlighting the essential role of MED25 in human development [76].
Collectively, these findings illustrate that the Mediator tail module serves as a signal-integration interface that couples transcription factor inputs to core Mediator architecture. Disease-associated alterations in tail subunits frequently disrupt transcriptional responsiveness rather than basal Pol II function, leading to context-dependent pathologies ranging from neurodevelopmental disorders to cancer, cardiovascular disease, and aging-related dysfunction. The enrichment of regulatory phosphorylation sites, activator-binding surfaces, and disease-associated variants within tail subunits underscores their potential as selective therapeutic entry points for modulating transcriptional programs without globally impairing Mediator integrity.

4.4. Kinase Module

The CDK8/19 kinase module (CKM) is a reversibly associated subcomplex of Mediator that regulates gene expression primarily through phosphorylation of transcription factors (TFs) and Mediator subunits. Increasing evidence implicates CKM components in a wide range of diseases, particularly cancer. The kinase module comprises cyclin-dependent kinase 8 (CDK8) or its paralog cyclin-dependent kinase 19 (CDK19), mediator complex subunit 12 (MED12 and its paralog MED12L), mediator complex subunit 13 (MED13 and MED13L), and cyclin C (CCNC). Disease associations linked to individual subunits are summarized below.
Cyclin-dependent kinase 8 and 19 (CDK8/CDK19).
CDK8 and CDK19 play central roles in signal-dependent transcriptional regulation. In inflammation-associated gastric cancer (GCa), the miR-26b-5p–PDE4B/CDK8–STAT3 feedback loop has been identified as a critical regulatory circuit. By directly targeting phosphodiesterase 4B (PDE4B) and CDK8, miR-26b-5p suppresses STAT3 phosphorylation and nuclear translocation, thereby restraining gastric cancer cell proliferation [77]. In breast cancer (BCa), CDK8 expression and that of its interacting genes show strong correlation, supporting their utility as prognostic biomarkers [78].
In prostate cancer (PCa), CDK8 and CDK19 contribute to disease progression. Pharmacological inhibition of CDK8/CDK19 enhances tumor cell sensitivity to androgen deprivation while reducing migratory potential, highlighting these kinases as therapeutic targets [79]. The selective CDK8/CDK19 inhibitor cortistatin A (CA) has provided key mechanistic insights, demonstrating that kinase inhibition activates super-enhancer–associated genes in acute myeloid leukemia (AML) and disrupts phosphorylation networks involving DNA-binding TFs, chromatin-associated proteins, DNA repair factors, and Pol II. These findings extend CKM function beyond transcription to DNA repair and cellular metabolism [80,81,82]. Consistent with this, inhibition of CDK8/CDK19 suppresses solid tumor growth, including PCa [80,81,82].
Mechanistically, phosphorylation of signal transducer and activator of transcription 1 (STAT1) at serine 727 by the Mediator kinase stimulates AML cell proliferation in conjunction with JAK–STAT signaling. In contrast, CA-mediated inhibition of this phosphorylation induces growth arrest, reduces colony formation in patient-derived samples, and lowers leukemic allele burden in mouse models, underscoring the therapeutic potential of CKM inhibition [83].
Mediator complex subunit 12 (MED12).
Pathogenic mutations in MED12 underlie a spectrum of X-linked ID syndromes, including FG, Lujan–Fryns, and Ohdo syndromes, as well as non-syndromic ID in hemizygous males. In females, de novo MED12 missense variants have been linked to Hardikar syndrome without ID [84]. MED12 mutations have also been identified in multiple cancers, including chronic lymphocytic leukemia (CLL) [85], uterine leiomyomas, and PCa [86]. Importantly, MED12 mutation status has been proposed as a predictive biomarker for response to gonadotropin-releasing hormone agonists in uterine leiomyoma [87] and colorectal cancer (CRC) [88]. Over the past decade, MED12 dysregulation has emerged as a key driver of breast fibroepithelial tumors, with associated alterations in WNT, TGF-β, and thyroid hormone receptor alpha (THRA) signaling pathways [89].
Mediator complex subunit 13 and MED13L (MED13/MED13L).
MED13 was initially linked to severe congenital heart defects [90]. MED13L haploinsufficiency syndrome is now recognized as a distinct neurodevelopmental disorder characterized by global developmental delay, ID, hypotonia, speech impairment, and variable brain MRI abnormalities. Foundational studies by Asadollahi and Adegbola and colleagues established this syndrome through analyses of copy number variants affecting MED13L [91,92]. Subsequent work has expanded the role of the MED13/MED13L axis to cardiac and metabolic regulation, with variants also implicated in developmental and epileptic encephalopathies [93].
Cyclin C (CCNC).
CCNC plays a direct role in cardiac stress responses. Under stress conditions, CCNC translocates from the nucleus to mitochondria, where it modulates mitochondrial dynamics and cardiac function [94]. In oncology, CCNC contributes to B-cell acute lymphoblastic leukemia (ALL) progression by suppressing p53-mediated stress responses, thereby promoting leukemogenesis [95].
Collectively, these findings establish the kinase module as a signal-responsive regulatory arm of the Mediator complex that integrates extracellular cues with transcriptional, metabolic, and DNA repair programs. Disease-associated alterations in CKM components frequently operate through aberrant phosphorylation networks rather than disruption of core Mediator architecture. The demonstrated pharmacological tractability of CDK8/CDK19, combined with the pleiotropic disease relevance of MED12, MED13, and CCNC, positions the kinase module as one of the most promising Mediator-derived targets for therapeutic intervention. Importantly, selective modulation of kinase module activity offers a strategy to reshape pathological transcriptional states while preserving essential basal transcription.

5. Therapeutic Implications and Future Directions

Over the past decade, the Mediator complex—long appreciated as a central coordinator of transcription—has emerged as a compelling therapeutic target. In particular, research has converged on specific Mediator modules and subunits whose dysregulation contributes to disease, revealing actionable vulnerabilities rather than global Mediator failure. Below, we discuss major therapeutic strategies that have gained momentum in recent years and consider future directions for translating Mediator biology into clinical intervention.

5.1. Targeting the Mediator Kinase Module

Among Mediator components, the kinase module has attracted the most attention as a druggable entry point. In prostate cancer (PCa), recent studies have identified MED12 as a potential therapeutic vulnerability, suggesting that selective modulation of this subunit may offer new options for a disease that remains challenging to treat [96]. Beyond tumor cells, the kinase module also plays a critical role in shaping immune responses. Deletion of MED12 or CCNC markedly enhances effector T-cell expansion, cytokine production, metabolic fitness, and persistence under chronic stimulation—properties that are highly desirable for antitumor immunity [97].
Encouragingly, advances in genome-editing technologies, including CRISPR–Cas9, zinc-finger nucleases, TALENs, and base editors, are rapidly moving toward clinical application, making therapeutic manipulation of kinase module components increasingly feasible [98,99]. A major inflection point for the field was the discovery that the natural product CA is a highly selective inhibitor of CDK8 and CDK19. This landmark finding established that Mediator kinase activity is not only druggable but also biologically consequential in disease models [81]. Subsequent medicinal chemistry efforts have yielded potent, orally bioavailable CDK8 inhibitors with promising activity in AML [100].
However, the therapeutic window for kinase module inhibition is complex. While CDK8/19 are essential for signal-induced transcriptional reprogramming—making them attractive targets in signaling-driven cancers—their inhibition can elicit compensatory responses. Specifically, blockade of kinase activity has been shown to stabilize or upregulate components of the core Mediator complex, raising the possibility that prolonged inhibition may dampen efficacy or introduce new transcriptional imbalances [80,101]. These observations suggest that optimized dosing regimens, intermittent schedules, or combination therapies may be required to fully realize the therapeutic potential of Mediator kinase inhibition.

5.2. Disrupting Mediator-Centered Protein–Protein Interactions

A second therapeutic strategy focuses on disrupting critical PPIs within the Mediator complex. Many disease-associated transcriptional programs depend on highly specific interactions between transcriptional activators and Mediator subunits—for example, the well-characterized interaction between nuclear receptors and MED1. Dysregulation of such interactions contributes to cancer, metabolic disorders, and neurological disease [102]. Consequently, there is growing interest in developing small molecules or peptides that selectively disrupt Mediator-centered PPIs. This approach offers the potential to fine-tune pathological transcriptional outputs while preserving essential basal gene expression.
Among individual Mediator subunits, MED19 has emerged as a particularly promising target for anticancer therapy. Although Mediator functions as an integrated complex, accumulating evidence indicates that MED19 plays a disproportionately important role in sustaining oncogenic transcriptional programs across diverse tumor types.
In non-small cell lung cancer (NSCLC), MED19 knockdown induces G0/G1 cell-cycle arrest and enhances sensitivity to cisplatin-induced apoptosis, underscoring its role in maintaining proliferative capacity and drug resistance [103]. Similar findings have been reported in melanoma, bladder cancer, breast cancer, and other malignancies, where reduced MED19 expression suppresses tumor growth, inhibits migration and invasion, and disrupts oncogenic signaling pathways [58,104,105].
Taken together, these observations position MED19 as a valuable therapeutic node. Future studies integrating genomic, proteomic, and structural approaches will be essential to define the precise molecular mechanisms by which MED19 drives tumor biology and to guide the development of MED19-targeted strategies for precision oncology.

6. Perspectives and Future Directions

A decade of intensive research has firmly established the Mediator complex as more than a passive transcriptional scaffold. Instead, it represents a dynamic regulatory hub whose modular organization creates selective vulnerabilities exploitable for therapy. Realizing this potential will require a multidisciplinary strategy that integrates structural and chemical biology, multi-omics–based patient profiling, and rational combination therapies designed to target tumor-specific dependencies while sparing essential transcriptional programs in normal cells.
Emerging technologies are accelerating this transition. Artificial intelligence–based protein interaction modeling, coupled with large-scale CRISPR–Cas screening, is enabling the identification of regulatory “hotspots” within Mediator–nuclear receptor pathways. These computational approaches can also be applied to clinical datasets to support patient stratification and therapeutic personalization. A deeper understanding of how Mediator interfaces with nuclear receptors and other signaling pathways may ultimately yield more precise treatments for cancer, metabolic disease, and neurological disorders [102].
At the same time, continued integration of biochemical and biophysical assays with live-cell imaging, genome-wide profiling, and computational modeling is steadily advancing our understanding of Mediator function. The high degree of evolutionary conservation across species enables complementary use of diverse model systems: yeast remains invaluable for dissecting PPIs [106] and conserved regulatory mechanisms [107], while whole-organism models such as knockout mice provide essential insights into tissue-specific and physiological contexts[108].
Looking forward, a central challenge will be to place Mediator within a broader regulatory framework that extends beyond transcriptional activation alone. Accumulating evidence points to important roles for Mediator in chromatin organization, genome stability, and the coordination of signaling networks, suggesting that its contributions to disease may be both more extensive and more context-dependent than previously appreciated. Defining how individual subunits and modules participate in these processes—often in a cell type– or stimulus-specific manner—will be critical for understanding disease mechanisms and identifying actionable therapeutic nodes.
Future progress will therefore depend not only on deeper mechanistic dissection of individual Mediator components, but also on integrative strategies that bridge molecular detail with physiological and clinical relevance. As experimental and computational tools continue to mature, Mediator research is well positioned to move from descriptive models toward predictive and translational frameworks, ultimately enabling the rational targeting of Mediator-dependent vulnerabilities in human disease.

Author Contributions

S.I. drafted the manuscript together with T.I. and T.N., under the supervision of N.H. All authors contributed to manuscript revision and approved the final version.

Funding

This research received no external funding.

Acknowledgments

We thank the Otsuka Toshimi Scholarship Foundation for financial support to S.I.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Nonet, M. L.; Young, R. A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 1989, 123(4), 715–724. [Google Scholar] [CrossRef] [PubMed]
  2. Kelleher, R. J., 3rd; Flanagan, P. M.; Kornberg, R. D. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 1990, 61(7), 1209–1215. [Google Scholar] [CrossRef] [PubMed]
  3. Thompson, C. M.; Koleske, A. J.; Chao, D. M.; Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993, 73(7), 1361–1375. [Google Scholar] [CrossRef] [PubMed]
  4. Kim, Y. J.; Bjorklund, S.; Li, Y.; Sayre, M. H.; Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994, 77(4), 599–608. [Google Scholar] [CrossRef]
  5. Richter, W. F.; Nayak, S.; Iwasa, J.; Taatjes, D. J. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022, 23(11), 732–749. [Google Scholar] [CrossRef]
  6. Tsai, K. L.; Tomomori-Sato, C.; Sato, S.; Conaway, R. C.; Conaway, J. W.; Asturias, F. J. Subunit Architecture and Functional Modular Rearrangements of the Transcriptional Mediator Complex. Cell 2014, 158(2), 463. [Google Scholar] [CrossRef]
  7. Yin, J. W.; Wang, G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014, 141(5), 977–987. [Google Scholar] [CrossRef]
  8. Nozawa, K.; Schneider, T. R.; Cramer, P. Core Mediator structure at 3.4 A extends model of transcription initiation complex. Nature 2017, 545(7653), 248–251. [Google Scholar] [CrossRef]
  9. Cevher, M. A.; Shi, Y.; Li, D.; Chait, B. T.; Malik, S.; Roeder, R. G. Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit. Nat Struct Mol Biol 2014, 21(12), 1028–1034. [Google Scholar] [CrossRef]
  10. Plaschka, C.; Lariviere, L.; Wenzeck, L.; Seizl, M.; Hemann, M.; Tegunov, D.; Petrotchenko, E. V.; Borchers, C. H.; Baumeister, W.; Herzog, F.; Villa, E.; Cramer, P. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 2015, 518(7539), 376–380. [Google Scholar] [CrossRef]
  11. Knuesel, M. T.; Meyer, K. D.; Bernecky, C.; Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 2009, 23(4), 439–451. [Google Scholar] [CrossRef] [PubMed]
  12. Zhang, H.; Chen, D. H.; Mattoo, R. U. H.; Bushnell, D. A.; Wang, Y.; Yuan, C.; Wang, L.; Wang, C.; Davis, R. E.; Nie, Y.; Kornberg, R. D. Mediator structure and conformation change. Mol Cell 2021, 81(8), 1781–1788 e4. [Google Scholar] [CrossRef] [PubMed]
  13. Chen, X.; Yin, X.; Li, J.; Wu, Z.; Qi, Y.; Wang, X.; Liu, W.; Xu, Y. Structures of the human Mediator and Mediator-bound preinitiation complex. Science 2021, 372(6546). [Google Scholar] [CrossRef] [PubMed]
  14. Schilbach, S.; Hantsche, M.; Tegunov, D.; Dienemann, C.; Wigge, C.; Urlaub, H.; Cramer, P. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 2017, 551(7679), 204–209. [Google Scholar] [CrossRef]
  15. El Khattabi, L.; Zhao, H.; Kalchschmidt, J.; Young, N.; Jung, S.; Van Blerkom, P.; Kieffer-Kwon, P.; Kieffer-Kwon, K. R.; Park, S.; Wang, X.; Krebs, J.; Tripathi, S.; Sakabe, N.; Sobreira, D. R.; Huang, S. C.; Rao, S. S. P.; Pruett, N.; Chauss, D.; Sadler, E.; Lopez, A.; Nobrega, M. A.; Aiden, E. L.; Asturias, F. J.; Casellas, R. A Pliable Mediator Acts as a Functional Rather Than an Architectural Bridge between Promoters and Enhancers. Cell 2019, 178(5), 1145–1158 e20. [Google Scholar] [CrossRef]
  16. Maalouf, C. A.; Alberti, A.; Soutourina, J. Mediator complex in transcription regulation and DNA repair: Relevance for human diseases. DNA Repair (Amst) 2024, 141, 103714. [Google Scholar] [CrossRef]
  17. Takahashi, H.; Parmely, T. J.; Sato, S.; Tomomori-Sato, C.; Banks, C. A.; Kong, S. E.; Szutorisz, H.; Swanson, S. K.; Martin-Brown, S.; Washburn, M. P.; Florens, L.; Seidel, C. W.; Lin, C.; Smith, E. R.; Shilatifard, A.; Conaway, R. C.; Conaway, J. W. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 2011, 146(1), 92–104. [Google Scholar] [CrossRef]
  18. Takahashi, H.; Ranjan, A.; Chen, S.; Suzuki, H.; Shibata, M.; Hirose, T.; Hirose, H.; Sasaki, K.; Abe, R.; Chen, K.; He, Y.; Zhang, Y.; Takigawa, I.; Tsukiyama, T.; Watanabe, M.; Fujii, S.; Iida, M.; Yamamoto, J.; Yamaguchi, Y.; Suzuki, Y.; Matsumoto, M.; Nakayama, K. I.; Washburn, M. P.; Saraf, A.; Florens, L.; Sato, S.; Tomomori-Sato, C.; Conaway, R. C.; Conaway, J. W.; Hatakeyama, S. The role of Mediator and Little Elongation Complex in transcription termination. Nature communications 2020, 11(1), 1063. [Google Scholar] [CrossRef]
  19. Sabari, B. R.; Dall'Agnese, A.; Boija, A.; Klein, I. A.; Coffey, E. L.; Shrinivas, K.; Abraham, B. J.; Hannett, N. M.; Zamudio, A. V.; Manteiga, J. C.; Li, C. H.; Guo, Y. E.; Day, D. S.; Schuijers, J.; Vasile, E.; Malik, S.; Hnisz, D.; Lee, T. I.; Cisse, II; Roeder, R. G.; Sharp, P. A.; Chakraborty, A. K.; Young, R. A. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361(6400). [Google Scholar] [CrossRef]
  20. Cho, W. K.; Spille, J. H.; Hecht, M.; Lee, C.; Li, C.; Grube, V.; Cisse, II. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 2018, 361(6400), 412–415. [Google Scholar] [CrossRef]
  21. Boija, A.; Klein, I. A.; Sabari, B. R.; Dall'Agnese, A.; Coffey, E. L.; Zamudio, A. V.; Li, C. H.; Shrinivas, K.; Manteiga, J. C.; Hannett, N. M.; Abraham, B. J.; Afeyan, L. K.; Guo, Y. E.; Rimel, J. K.; Fant, C. B.; Schuijers, J.; Lee, T. I.; Taatjes, D. J.; Young, R. A. Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell 2018, 175(7), 1842–1855.e16. [Google Scholar] [CrossRef] [PubMed]
  22. Luyties, O.; Taatjes, D. J. The Mediator kinase module: an interface between cell signaling and transcription. Trends Biochem Sci 2022, 47(4), 314–327. [Google Scholar] [CrossRef] [PubMed]
  23. Soutourina, J. Transcription regulation by the Mediator complex. Nature Reviews Molecular Cell Biology 2018, 19(4), 262–274. [Google Scholar] [CrossRef] [PubMed]
  24. Kagey, M. H.; Newman, J. J.; Bilodeau, S.; Zhan, Y.; Orlando, D. A.; van Berkum, N. L.; Ebmeier, C. C.; Goossens, J.; Rahl, P. B.; Levine, S. S.; Taatjes, D. J.; Dekker, J.; Young, R. A. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467(7314), 430–435. [Google Scholar] [CrossRef]
  25. Ramasamy, S.; Aljahani, A.; Karpinska, M. A.; Cao, T. B. N.; Velychko, T.; Cruz, J. N.; Lidschreiber, M.; Oudelaar, A. M. The Mediator complex regulates enhancer-promoter interactions. Nat Struct Mol Biol 2023, 30(7), 991–1000. [Google Scholar] [CrossRef]
  26. Whyte, W. A.; Orlando, D. A.; Hnisz, D.; Abraham, B. J.; Lin, C. Y.; Kagey, M. H.; Rahl, P. B.; Lee, T. I.; Young, R. A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153(2), 307–319. [Google Scholar] [CrossRef]
  27. Yang, C.; Cheng, D.; Wang, S.; Wang, B.; Li, Y.; Wang, G.; Wang, X.; Shi, C.; Tian, Y.; Zhu, K.; Feng, J. Identification of the role of MED6 in the development and prognosis of lung adenocarcinoma based on multi-omics profiling. J Cancer 2025, 16(7), 2362–2374. [Google Scholar] [CrossRef]
  28. Jin, X.; Song, Y.; An, Z.; Wu, S.; Cai, D.; Fu, Y.; Zhang, C.; Chen, L.; Tang, W.; Zheng, Z.; Lu, H.; Lian, J. A Predictive Model for Prognosis and Therapeutic Response in Hepatocellular Carcinoma Based on a Panel of Three MED8-Related Immunomodulators. Frontiers in oncology 2022, 12, 868411. [Google Scholar] [CrossRef]
  29. Syring, I.; Klümper, N.; Offermann, A.; Braun, M.; Deng, M.; Boehm, D.; Queisser, A.; von Mässenhausen, A.; Brägelmann, J.; Vogel, W.; Schmidt, D.; Majores, M.; Schindler, A.; Kristiansen, G.; Müller, S. C.; Ellinger, J.; Adler, D.; Perner, S. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types. Oncotarget 2016, 7(17), 23043–23055. [Google Scholar] [CrossRef]
  30. Cali, E.; Lin, S. J.; Rocca, C.; Sahin, Y.; Al Shamsi, A.; El Chehadeh, S.; Chaabouni, M.; Mankad, K.; Galanaki, E.; Efthymiou, S.; Sudhakar, S.; Athanasiou-Fragkouli, A.; Celik, T.; Narli, N.; Bianca, S.; Murphy, D.; De Carvalho Moreira, F. M.; Group, S. Y. S.; Andrea, A.; Petree, C.; Huang, K.; Monastiri, K.; Edizadeh, M.; Nardello, R.; Ognibene, M.; De Marco, P.; Ruggieri, M.; Zara, F.; Striano, P.; Sahin, Y.; Al-Gazali, L.; Abi Warde, M. T.; Gerard, B.; Zifarelli, G.; Beetz, C.; Fortuna, S.; Soler, M.; Valente, E. M.; Varshney, G.; Maroofian, R.; Salpietro, V.; Houlden, H. A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease. Genet Med 2022, 24(10), 2194–2203. [Google Scholar]
  31. Terabayashi, T.; Hashimoto, S. Increased unfolded protein responses caused by MED17 mutations. Neurogenetics 2021, 22(4), 353–357. [Google Scholar] [CrossRef] [PubMed]
  32. Kaufmann, R.; Straussberg, R.; Mandel, H.; Fattal-Valevski, A.; Ben-Zeev, B.; Naamati, A.; Shaag, A.; Zenvirt, S.; Konen, O.; Mimouni-Bloch, A.; Dobyns, W. B.; Edvardson, S.; Pines, O.; Elpeleg, O. Infantile cerebral and cerebellar atrophy is associated with a mutation in the MED17 subunit of the transcription preinitiation mediator complex. American journal of human genetics 2010, 87(5), 667–670. [Google Scholar] [CrossRef] [PubMed]
  33. Vodopiutz, J.; Schmook, M. T.; Konstantopoulou, V.; Plecko, B.; Greber-Platzer, S.; Creus, M.; Seidl, R.; Janecke, A. R. MED20 mutation associated with infantile basal ganglia degeneration and brain atrophy. Eur J Pediatr 2015, 174(1), 113–118. [Google Scholar] [CrossRef] [PubMed]
  34. Rodriguez, P. Q.; Unnersjo-Jess, D.; Zambrano, S. S.; Guo, J.; Moller-Hackbarth, K.; Blom, H.; Jahnukainen, T.; Ebarasi, L.; Patrakka, J. Inactivation of mediator complex protein 22 in podocytes results in intracellular vacuole formation, podocyte loss and premature death. Scientific reports 2020, 10(1), 20037. [Google Scholar] [CrossRef]
  35. Lv, Y.; Gu, G.; Zeng, R.; Liu, Z.; Wu, J.; Zheng, Y. Proteomics analysis of carotid body tumor revealed potential mechanisms and molecular differences among Shamblin classifications. Exp Biol Med (Maywood) 2023, 248(20), 1785–1798. [Google Scholar] [CrossRef]
  36. Wang, W.; Zhang, C.; Yu, Q.; Zheng, X.; Yin, C.; Yan, X.; Liu, G.; Song, Z. Development of a novel lipid metabolism-based risk score model in hepatocellular carcinoma patients. BMC Gastroenterol 2021, 21(1), 68. [Google Scholar] [CrossRef]
  37. Maroofian, R.; Kaiyrzhanov, R.; Cali, E.; Zamani, M.; Zaki, M. S.; Ferla, M.; Tortora, D.; Sadeghian, S.; Saadi, S. M.; Abdullah, U.; Karimiani, E. G.; Efthymiou, S.; Yesil, G.; Alavi, S.; Al Shamsi, A. M.; Tajsharghi, H.; Abdel-Hamid, M. S.; Saadi, N. W.; Al Mutairi, F.; Alabdi, L.; Beetz, C.; Ali, Z.; Toosi, M. B.; Rudnik-Schoneborn, S.; Babaei, M.; Isohanni, P.; Muhammad, J.; Khan, S.; Al Shalan, M.; Hickey, S. E.; Marom, D.; Elhanan, E.; Kurian, M. A.; Marafi, D.; Saberi, A.; Hamid, M.; Spaull, R.; Meng, L.; Lalani, S.; Maqbool, S.; Rahman, F.; Seeger, J.; Palculict, T. B.; Lau, T.; Murphy, D.; Mencacci, N. E.; Steindl, K.; Begemann, A.; Rauch, A.; Akbas, S.; Aslanger, A. D.; Salpietro, V.; Yousaf, H.; Ben-Shachar, S.; Ejeskar, K.; Al Aqeel, A. I.; High, F. A.; Armstrong-Javors, A. E.; Zahraei, S. M.; Seifi, T.; Zeighami, J.; Shariati, G.; Sedaghat, A.; Asl, S. N.; Shahrooei, M.; Zifarelli, G.; Burglen, L.; Ravelli, C.; Zschocke, J.; Schatz, U. A.; Ghavideldarestani, M.; Kamel, W. A.; Van Esch, H.; Hackenberg, A.; Taylor, J. C.; Al-Gazali, L.; Bauer, P.; Gleeson, J. J.; Alkuraya, F. S.; Lupski, J. R.; Galehdari, H.; Azizimalamiri, R.; Chung, W. K.; Baig, S. M.; Houlden, H.; Severino, M., Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders. Brain 2023, 146(12), 5031–5043.
  38. Li, X.; Yiliyaer, N.; Guo, T.; Zhao, H.; Lei, Y.; Gu, S. The indispensable role of Mediator complex subunit 27 during neurodevelopment. Cell Biosci 2025, 15(1), 83. [Google Scholar] [CrossRef]
  39. Li, L.; Walsh, R. M.; Wagh, V.; James, M. F.; Beauchamp, R. L.; Chang, Y. S.; Gusella, J. F.; Hochedlinger, K.; Ramesh, V. Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency. PLoS One 2015, 10(10), e0140192. [Google Scholar] [CrossRef]
  40. Arkush, L.; van Woerden, G. M.; Ziv, L.; Marek-Yagel, D.; Fonseca, R.; Breve, E.; Barel, O.; Shalva, N.; Veber, A.; Anikster, Y.; Ben-Ami Raichman, D.; Musallam, B.; Marcu, S.; Nissenkorn, A.; Mandel, H.; Kushner, S. A.; Ben Zeev, B.; Heimer, G. Biallelic MED29 variants cause pontocerebellar hypoplasia with cataracts. Eur J Hum Genet 2025, 33(10), 1271–1280. [Google Scholar] [CrossRef]
  41. Huang, S.; Zhang, J.; Qiao, Y.; Pathak, J. L.; Zou, R.; Piao, Z.; Xie, S.; Liang, J.; Ouyang, K. CHRDL1 inhibits OSCC metastasis via MAPK signaling-mediated inhibition of MED29. Mol Med 2024, 30(1), 187. [Google Scholar] [CrossRef] [PubMed]
  42. Kuuselo, R.; Savinainen, K.; Sandstrom, S.; Autio, R.; Kallioniemi, A. MED29, a component of the mediator complex, possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer. Int J Cancer 2011, 129(11), 2553–2565. [Google Scholar] [CrossRef] [PubMed]
  43. Tan, C.; Zhu, S.; Chen, Z.; Liu, C.; Li, Y. E.; Zhu, M.; Zhang, Z.; Zhang, Z.; Zhang, L.; Gu, Y.; Liang, Z.; Boyer, T. G.; Ouyang, K.; Evans, S. M.; Fang, X. Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genet 2021, 17(9), e1009785. [Google Scholar] [CrossRef]
  44. Leonard, M.; Zhang, X. Estrogen receptor coactivator Mediator Subunit 1 (MED1) as a tissue-specific therapeutic target in breast cancer. J Zhejiang Univ Sci B 2019, 20(5), 381–390. [Google Scholar] [CrossRef] [PubMed]
  45. Yang, Y.; Leonard, M.; Luo, Z.; Yeo, S.; Bick, G.; Hao, M.; Cai, C.; Charif, M.; Wang, J.; Guan, J. L.; Lower, E. E.; Zhang, X. Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer. Cell Rep 2021, 34(10), 108822. [Google Scholar] [CrossRef]
  46. Lando, M.; Holden, M.; Bergersen, L. C.; Svendsrud, D. H.; Stokke, T.; Sundfor, K.; Glad, I. K.; Kristensen, G. B.; Lyng, H. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer. PLoS Genet 2009, 5(11), e1000719. [Google Scholar] [CrossRef]
  47. Dehainault, C.; Garancher, A.; Castera, L.; Cassoux, N.; Aerts, I.; Doz, F.; Desjardins, L.; Lumbroso, L.; Montes de Oca, R.; Almouzni, G.; Stoppa-Lyonnet, D.; Pouponnot, C.; Gauthier-Villars, M.; Houdayer, C. The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion. Hum Mol Genet 2014, 23(19), 5243–5250. [Google Scholar] [CrossRef]
  48. Joseph, C.; Macnamara, O.; Craze, M.; Russell, R.; Provenzano, E.; Nolan, C. C.; Diez-Rodriguez, M.; Sonbul, S. N.; Aleskandarany, M. A.; Green, A. R.; Rakha, E. A.; Ellis, I. O.; Mukherjee, A. Mediator complex (MED) 7: a biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes. Br J Cancer 2018, 118(8), 1142–1151. [Google Scholar] [CrossRef]
  49. Chen, Z. L.; Ma, Y. Y.; Mou, X. Z.; Zhang, J. G. Upregulation of MED7 was associated with progression in hepatocellular carcinoma. Cancer Biomark 2023, 38(4), 603–611. [Google Scholar] [CrossRef]
  50. Franzese, M.; Zanfardino, M.; Soricelli, A.; Coppola, A.; Maiello, C.; Salvatore, M.; Schiano, C.; Napoli, C. Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. International journal of molecular sciences 2024, 25(5). [Google Scholar] [CrossRef]
  51. Wu, C. C.; Wang, Y. H.; Hu, S. W.; Wu, W. L.; Yeh, C. T.; Bamodu, O. A. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Frontiers in oncology 2021, 11, 744937. [Google Scholar]
  52. Liu, J.; Lv, Y.; Liu, K.; Li, Z.; Chen, B.; Bu, Y. MED10 as a Novel Oncogenic Driver in HCC: Promoting Cell Cycle Progression and Proliferation Through RAF1 Activation. Front Biosci (Landmark Ed) 2025, 30(8), 39944. [Google Scholar] [CrossRef] [PubMed]
  53. Gao, L.; Li, J.; Yan, M.; Aili, M. Methylation factor MRPL15 identified as a potential biological target in Alzheimer's disease. Aging (Albany NY) 2021, 13(10), 13560–13570. [Google Scholar] [CrossRef] [PubMed]
  54. Ye, H.; Li, W.; Wu, K.; Liu, Y.; Lv, Y.; Zhu, Y.; Luo, H.; Cui, L. The SP1-Induced Long Noncoding RNA, LINC00339, Promotes Tumorigenesis in Colorectal Cancer via the miR-378a-3p/MED19 Axis. Onco Targets Ther 2020, 13, 11711–11724. [Google Scholar] [CrossRef]
  55. Zhang, X.; Gao, D.; Fang, K.; Guo, Z.; Li, L. Med19 is targeted by miR-101-3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett 2019, 444, 105–115. [Google Scholar] [CrossRef]
  56. Imberg-Kazdan, K.; Ha, S.; Greenfield, A.; Poultney, C. S.; Bonneau, R.; Logan, S. K.; Garabedian, M. J. A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells. Genome Res 2013, 23(4), 581–591. [Google Scholar] [CrossRef]
  57. Zhang, Y.; Qin, P.; Xu, X.; Li, M.; Huang, H.; Yan, J.; Zhou, Y. Mediator Complex Subunit 19 Promotes the Development of Hepatocellular Carcinoma by Regulating the AKT/mTOR Signaling Pathway. Frontiers in oncology 2021, 11, 792285. [Google Scholar] [CrossRef]
  58. Yuan, H.; Yu, S.; Cui, Y.; Men, C.; Yang, D.; Gao, Z.; Zhu, Z.; Wu, J. Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway. J Cell Mol Med 2017, 21(12), 3254–3263. [Google Scholar] [CrossRef]
  59. Sato, S.; Tomomori-Sato, C.; Tsai, K. L.; Yu, X.; Sardiu, M.; Saraf, A.; Washburn, M. P.; Florens, L.; Asturias, F. J.; Conaway, R. C.; Conaway, J. W. Role for the MED21-MED7 Hinge in Assembly of the Mediator-RNA Polymerase II Holoenzyme. J Biol Chem 2016, 291(52), 26886–26898. [Google Scholar] [CrossRef]
  60. Zhao, H.; Li, J.; Xiang, Y.; Malik, S.; Vartak, S. V.; Veronezi, G. M. B.; Young, N.; Riney, M.; Kalchschmidt, J.; Conte, A.; Jung, S. K.; Ramachandran, S.; Roeder, R. G.; Shi, Y.; Casellas, R.; Asturias, F. J. An IDR-dependent mechanism for nuclear receptor control of Mediator interaction with RNA polymerase II. Mol Cell 2024, 84(14), 2648–2664 e10. [Google Scholar] [CrossRef]
  61. Beadle, E. P.; Straub, J. A.; Bunnell, B. A.; Newman, J. J. MED31 involved in regulating self-renewal and adipogenesis of human mesenchymal stem cells. Molecular biology reports 2018, 45(5), 1545–1550. [Google Scholar] [CrossRef]
  62. Lopez-Cerdan, A.; Andreu, Z.; Hidalgo, M. R.; Grillo-Risco, R.; Catala-Senent, J. F.; Soler-Saez, I.; Neva-Alejo, A.; Gordillo, F.; de la Iglesia-Vaya, M.; Garcia-Garcia, F. Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022, 13(1), 68. [Google Scholar] [CrossRef]
  63. Baris, Y.; Jabbar, J.; Yozgat, Y.; Dinccelik-Aslan, M.; Cigirgan, E.; Erden, M.; Bay, S.; Aslan, V.; Cevher, M. A. N-terminal half of MED14 is critical for Mediator-RNA polymerase II interaction and the resulting transcription. J Biol Chem 2025, 301(12), 110837. [Google Scholar] [CrossRef] [PubMed]
  64. Lou, X.; Burrows, J. T.; Scott, I. C. Med14 cooperates with brg1 in the differentiation of skeletogenic neural crest. BMC developmental biology 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
  65. Burrows, J. T.; Pearson, B. J.; Scott, I. C. An in vivo requirement for the mediator subunit med14 in the maintenance of stem cell populations. Stem Cell Reports 2015, 4(4), 670–684. [Google Scholar] [CrossRef] [PubMed]
  66. Schiano, C.; Napoli, C. Mediator complex: update of key insights into transcriptional regulation of ancestral framework and its role in cardiovascular diseases. Eur J Med Res 2025, 30(1), 507. [Google Scholar] [CrossRef]
  67. Hua, X.; Ge, S.; Zhang, L.; Jiang, Q.; Chen, J.; Xiao, H.; Liang, C. MED15 is upregulated by HIF-2alpha and promotes proliferation and metastasis in clear cell renal cell carcinoma via activation of SREBP-dependent fatty acid synthesis. Cell Death Discov 2024, 10(1), 188. [Google Scholar] [CrossRef]
  68. Weiten, R.; Muller, T.; Schmidt, D.; Steiner, S.; Kristiansen, G.; Muller, S. C.; Ellinger, J.; Syring, I. The Mediator complex subunit MED15, a promoter of tumour progression and metastatic spread in renal cell carcinoma. Cancer Biomark 2018, 21(4), 839–847. [Google Scholar] [CrossRef]
  69. Adler, D.; Offermann, A.; Halbach, R.; Vogel, W.; Braun, M.; Kristiansen, G.; Bootz, F.; Wenzel, J.; Mikut, R.; Lengerke, C.; Reischl, M.; Schrock, A.; Perner, S. Clinical and molecular implications of MED15 in head and neck squamous cell carcinoma. Am J Pathol 2015, 185(4), 1114–1122. [Google Scholar] [CrossRef]
  70. Li, H.; Zheng, Y.; Yuan, C.; Wang, J.; Zhao, X.; Yang, M.; Xiong, D.; Yang, Y.; Dai, Y.; Gao, Y.; Wang, Y.; Xue, L.; Wang, G. A phosphorylation switch in the Mediator MED15 controls cellular senescence and cognitive decline. Cell Discov 2025, 11(1), 69. [Google Scholar] [CrossRef]
  71. Guillouet, C.; Agostini, V.; Baujat, G.; Cocciadiferro, D.; Pippucci, T.; Lesieur-Sebellin, M.; Georget, M.; Schatz, U.; Fauth, C.; Louie, R. J.; Rogers, C.; Davis, J. M.; Konstantopoulou, V.; Mayr, J. A.; Bouman, A.; Wilke, M.; VanNoy, G. E.; England, E. M.; Park, K. L.; Brown, K.; Saenz, M.; Novelli, A.; Digilio, M. C.; Mastromoro, G.; Rongioletti, M. C. A.; Piacentini, G.; Kaiyrzhanov, R.; Guliyeva, S.; Hasanova, L.; Shears, D.; Bhatnagar, I.; Stals, K.; Klaas, O.; Horvath, J.; University of Washington Center for Mendelian, G.; Bouvagnet, P.; Witmer, P. D.; MacCarrick, G.; Cisarova, K.; Good, J. M.; Gorokhova, S.; Boute, O.; Smol, T.; Bruel, A. L.; Patat, O.; Broadbent, J. R.; Tan, T. Y.; Tan, N. B.; Lyonnet, S.; Busa, T.; Graziano, C.; Amiel, J.; Gordon, C. T. Bi-allelic MED16 variants cause a MEDopathy with intellectual disability, motor delay, and craniofacial, cardiac, and limb malformations. American journal of human genetics 2025, 112(4), 829–845. [Google Scholar] [CrossRef]
  72. Huang, Y.; Xiang, Z.; Xiang, Y.; Pan, H.; He, M.; Guo, Z.; Kanca, O.; Liu, C.; Zhang, Z.; Zhan, H.; Wang, Y.; Bai, Q. R.; Bellen, H. J.; Wang, H.; Bian, S.; Mao, X. Biallelic MED16 variants disrupt neural development and lead to an intellectual disability syndrome. J Genet Genomics 2025, 52(10), 1189–1198. [Google Scholar] [CrossRef]
  73. Trehan, A.; Brady, J. M.; Maduro, V.; Bone, W. P.; Huang, Y.; Golas, G. A.; Kane, M. S.; Lee, P. R.; Thurm, A.; Gropman, A. L.; Paul, S. M.; Vezina, G.; Markello, T. C.; Gahl, W. A.; Boerkoel, C. F.; Tifft, C. J. MED23-associated intellectual disability in a non-consanguineous family. Am J Med Genet A 2015, 167(6), 1374–1380. [Google Scholar] [CrossRef]
  74. Yang, Y.; Li, C.; Chen, Z.; Zhang, Y.; Tian, Q.; Sun, M.; Zhang, S.; Yu, M.; Wang, G. An intellectual disability-related MED23 mutation dysregulates gene expression by altering chromatin conformation and enhancer activities. Nucleic Acids Res 2023, 51(5), 2137–2150. [Google Scholar] [CrossRef]
  75. Liu, J.; Wang, T.; Willson, C. J.; Janardhan, K. S.; Wu, S. P.; Li, J. L.; DeMayo, F. J. ERBB2 Regulates MED24 during Cancer Progression in Mice with Pten and Smad4 Deletion in the Pulmonary Epithelium. Cells 2019, 8(6). [Google Scholar] [CrossRef]
  76. Basel-Vanagaite, L.; Smirin-Yosef, P.; Essakow, J. L.; Tzur, S.; Lagovsky, I.; Maya, I.; Pasmanik-Chor, M.; Yeheskel, A.; Konen, O.; Orenstein, N.; Weisz Hubshman, M.; Drasinover, V.; Magal, N.; Peretz Amit, G.; Zalzstein, Y.; Zeharia, A.; Shohat, M.; Straussberg, R.; Monte, D.; Salmon-Divon, M.; Behar, D. M. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet 2015, 134(6), 577–587. [Google Scholar] [CrossRef] [PubMed]
  77. Xu, T.; Xie, M.; Jing, X.; Jiang, H.; Wu, X.; Wang, X.; Shu, Y. Loss of miR-26b-5p promotes gastric cancer progression via miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop. J Transl Med 2023, 21(1), 77. [Google Scholar] [CrossRef]
  78. Broude, E. V.; Gyorffy, B.; Chumanevich, A. A.; Chen, M.; McDermott, M. S.; Shtutman, M.; Catroppo, J. F.; Roninson, I. B. Expression of CDK8 and CDK8-interacting Genes as Potential Biomarkers in Breast Cancer. Curr Cancer Drug Targets 2015, 15(8), 739–749. [Google Scholar] [CrossRef] [PubMed]
  79. Offermann, A.; Joerg, V.; Becker, F.; Roesch, M. C.; Kang, D.; Lemster, A. L.; Tharun, L.; Behrends, J.; Merseburger, A. S.; Culig, Z.; Sailer, V.; Bragelmann, J.; Kirfel, J.; Perner, S. Inhibition of Cyclin-Dependent Kinase 8/Cyclin-Dependent Kinase 19 Suppresses Its Pro-Oncogenic Effects in Prostate Cancer. Am J Pathol 2022, 192(5), 813–823. [Google Scholar] [CrossRef] [PubMed]
  80. Pelish, H. E.; Liau, B. B.; Nitulescu, II; Tangpeerachaikul, A.; Poss, Z. C.; Da Silva, D. H.; Caruso, B. T.; Arefolov, A.; Fadeyi, O.; Christie, A. L.; Du, K.; Banka, D.; Schneider, E. V.; Jestel, A.; Zou, G.; Si, C.; Ebmeier, C. C.; Bronson, R. T.; Krivtsov, A. V.; Myers, A. G.; Kohl, N. E.; Kung, A. L.; Armstrong, S. A.; Lemieux, M. E.; Taatjes, D. J.; Shair, M. D. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 2015, 526(7572), 273–276. [Google Scholar] [CrossRef]
  81. Poss, Z. C.; Ebmeier, C. C.; Odell, A. T.; Tangpeerachaikul, A.; Lee, T.; Pelish, H. E.; Shair, M. D.; Dowell, R. D.; Old, W. M.; Taatjes, D. J. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics. Cell Rep 2016, 15(2), 436–450. [Google Scholar] [CrossRef] [PubMed]
  82. Nakamura, A.; Nakata, D.; Kakoi, Y.; Kunitomo, M.; Murai, S.; Ebara, S.; Hata, A.; Hara, T. CDK8/19 inhibition induces premature G1/S transition and ATR-dependent cell death in prostate cancer cells. Oncotarget 2018, 9(17), 13474–13487. [Google Scholar] [CrossRef] [PubMed]
  83. Nitulescu, II; Meyer, S. C.; Wen, Q. J.; Crispino, J. D.; Lemieux, M. E.; Levine, R. L.; Pelish, H. E.; Shair, M. D. Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine 2017, 26, 112–125. [Google Scholar] [CrossRef] [PubMed]
  84. Plassche, S. V.; Brouwer, A. P. MED12-Related (Neuro)Developmental Disorders: A Question of Causality. Genes (Basel) 2021, 12(5). [Google Scholar]
  85. Kampjarvi, K.; Jarvinen, T. M.; Heikkinen, T.; Ruppert, A. S.; Senter, L.; Hoag, K. W.; Dufva, O.; Kontro, M.; Rassenti, L.; Hertlein, E.; Kipps, T. J.; Porkka, K.; Byrd, J. C.; de la Chapelle, A.; Vahteristo, P. Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget 2015, 6(3), 1884–1888. [Google Scholar] [CrossRef]
  86. Kampjarvi, K.; Kim, N. H.; Keskitalo, S.; Clark, A. D.; von Nandelstadh, P.; Turunen, M.; Heikkinen, T.; Park, M. J.; Makinen, N.; Kivinummi, K.; Lintula, S.; Hotakainen, K.; Nevanlinna, H.; Hokland, P.; Bohling, T.; Butzow, R.; Bohm, J.; Mecklin, J. P.; Jarvinen, H.; Kontro, M.; Visakorpi, T.; Taipale, J.; Varjosalo, M.; Boyer, T. G.; Vahteristo, P. Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate 2016, 76(1), 22–31. [Google Scholar] [CrossRef]
  87. Nagai, K.; Asano, R.; Sekiguchi, F.; Asai-Sato, M.; Miyagi, Y.; Miyagi, E. MED12 mutations in uterine leiomyomas: prediction of volume reduction by gonadotropin-releasing hormone agonists. Am J Obstet Gynecol 2023, 228(2), 207 e1–207 e9. [Google Scholar] [CrossRef]
  88. Siraj, A. K.; Masoodi, T.; Bu, R.; Pratheeshkumar, P.; Al-Sanea, N.; Ashari, L. H.; Abduljabbar, A.; Alhomoud, S.; Al-Dayel, F.; Alkuraya, F. S.; Al-Kuraya, K. S. MED12 is recurrently mutated in Middle Eastern colorectal cancer. Gut 2018, 67(4), 663–671. [Google Scholar]
  89. Lae, M.; Gardrat, S.; Rondeau, S.; Richardot, C.; Caly, M.; Chemlali, W.; Vacher, S.; Couturier, J.; Mariani, O.; Terrier, P.; Bieche, I. MED12 mutations in breast phyllodes tumors: evidence of temporal tumoral heterogeneity and identification of associated critical signaling pathways. Oncotarget 2016, 7(51), 84428–84438. [Google Scholar] [CrossRef]
  90. Muncke, N.; Jung, C.; Rüdiger, H.; Ulmer, H.; Roeth, R.; Hubert, A.; Goldmuntz, E.; Driscoll, D.; Goodship, J.; Schön, K.; Rappold, G. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 2003, 108(23), 2843–2850. [Google Scholar] [CrossRef]
  91. Adegbola, A.; Musante, L.; Callewaert, B.; Maciel, P.; Hu, H.; Isidor, B.; Picker-Minh, S.; Le Caignec, C.; Delle Chiaie, B.; Vanakker, O.; Menten, B.; Dheedene, A.; Bockaert, N.; Roelens, F.; Decaestecker, K.; Silva, J.; Soares, G.; Lopes, F.; Najmabadi, H.; Kahrizi, K.; Cox, G. F.; Angus, S. P.; Staropoli, J. F.; Fischer, U.; Suckow, V.; Bartsch, O.; Chess, A.; Ropers, H. H.; Wienker, T. F.; Hübner, C.; Kaindl, A. M.; Kalscheuer, V. M. Redefining the MED13L syndrome. Eur J Hum Genet 2015, 23(10), 1308–1317. [Google Scholar] [CrossRef] [PubMed]
  92. Asadollahi, R.; Oneda, B.; Sheth, F.; Azzarello-Burri, S.; Baldinger, R.; Joset, P.; Latal, B.; Knirsch, W.; Desai, S.; Baumer, A.; Houge, G.; Andrieux, J.; Rauch, A. Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. European Journal of Human Genetics 2013, 21(10), 1100–1104. [Google Scholar] [CrossRef] [PubMed]
  93. Trivisano, M.; De Dominicis, A.; Micalizzi, A.; Ferretti, A.; Dentici, M. L.; Terracciano, A.; Calabrese, C.; Vigevano, F.; Novelli, G.; Novelli, A.; Specchio, N. MED13 mutation: A novel cause of developmental and epileptic encephalopathy with infantile spasms. Seizure 2022, 101, 211–217. [Google Scholar] [CrossRef] [PubMed]
  94. Ponce, J. M.; Coen, G.; Spitler, K. M.; Dragisic, N.; Martins, I.; Hinton, A., Jr.; Mungai, M.; Tadinada, S. M.; Zhang, H.; Oudit, G. Y.; Song, L. S.; Li, N.; Sicinski, P.; Strack, S.; Abel, E. D.; Mitchell, C.; Hall, D. D.; Grueter, C. E. Stress-Induced Cyclin C Translocation Regulates Cardiac Mitochondrial Dynamics. J Am Heart Assoc 2020, 9(7), e014366. [Google Scholar] [CrossRef]
  95. Trifinopoulos, J.; List, J.; Klampfl, T.; Klein, K.; Prchal-Murphy, M.; Witalisz-Siepracka, A.; Bellutti, F.; Fava, L. L.; Heller, G.; Stummer, S.; Testori, P.; Den Boer, M. L.; Boer, J. M.; Marinovic, S.; Hoermann, G.; Walter, W.; Villunger, A.; Sicinski, P.; Sexl, V.; Gotthardt, D. Cyclin C promotes development and progression of B-cell acute lymphoblastic leukemia by counteracting p53-mediated stress responses. Haematologica 2025, 110(4), 877–892. [Google Scholar] [CrossRef]
  96. Guzman, J.; Hart, M.; Weigelt, K.; Neumann, A.; Aigner, A.; Andolfi, C.; Handle, F.; Rheinheimer, S.; Fischer, U.; Immel, U. D.; Lieb, V.; Meese, E.; Culig, Z.; Wullich, B.; Taubert, H.; Wach, S. The MicroRNA miR-454 and the mediator complex component MED12 are regulators of the androgen receptor pathway in prostate cancer. Scientific reports 2025, 15(1), 10272. [Google Scholar] [CrossRef]
  97. Freitas, K. A.; Belk, J. A.; Sotillo, E.; Quinn, P. J.; Ramello, M. C.; Malipatlolla, M.; Daniel, B.; Sandor, K.; Klysz, D.; Bjelajac, J.; Xu, P.; Burdsall, K. A.; Tieu, V.; Duong, V. T.; Donovan, M. G.; Weber, E. W.; Chang, H. Y.; Majzner, R. G.; Espinosa, J. M.; Satpathy, A. T.; Mackall, C. L. Enhanced T cell effector activity by targeting the Mediator kinase module. Science 2022, 378(6620), eabn5647. [Google Scholar] [CrossRef]
  98. Musunuru, K.; Grandinette, S. A.; Wang, X.; Hudson, T. R.; Briseno, K.; Berry, A. M.; Hacker, J. L.; Hsu, A.; Silverstein, R. A.; Hille, L. T.; Ogul, A. N.; Robinson-Garvin, N. A.; Small, J. C.; McCague, S.; Burke, S. M.; Wright, C. M.; Bick, S.; Indurthi, V.; Sharma, S.; Jepperson, M.; Vakulskas, C. A.; Collingwood, M.; Keogh, K.; Jacobi, A.; Sturgeon, M.; Brommel, C.; Schmaljohn, E.; Kurgan, G.; Osborne, T.; Zhang, H.; Kinney, K.; Rettig, G.; Barbosa, C. J.; Semple, S. C.; Tam, Y. K.; Lutz, C.; George, L. A.; Kleinstiver, B. P.; Liu, D. R.; Ng, K.; Kassim, S. H.; Giannikopoulos, P.; Alameh, M. G.; Urnov, F. D.; Ahrens-Nicklas, R. C. Patient-Specific In Vivo Gene Editing to Treat a Rare Genetic Disease. N Engl J Med 2025, 392(22), 2235–2243. [Google Scholar] [CrossRef]
  99. Ashmore-Harris, C.; Fruhwirth, G. O. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin Transl Med 2020, 9(1), 15. [Google Scholar] [CrossRef]
  100. Chen, Z.; Wang, Q.; Yan, Y. Y.; Jin, D.; Wang, Y.; Zhang, X. X.; Liu, X. H. Discovery of novel and potent CDK8 inhibitors for the treatment of acute myeloid leukaemia. J Enzyme Inhib Med Chem 2024, 39(1), 2305852. [Google Scholar] [CrossRef]
  101. Chen, M.; Li, J.; Zhang, L.; Wang, L.; Cheng, C.; Ji, H.; Altilia, S.; Ding, X.; Cai, G.; Altomare, D.; Shtutman, M.; Byrum, S. D.; Mackintosh, S. G.; Feoktistov, A.; Soshnikova, N.; Mogila, V. A.; Tatarskiy, V.; Erokhin, M.; Chetverina, D.; Prawira, A.; Ni, Y.; Urban, S.; McInnes, C.; Broude, E. V.; Roninson, I. B. CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res 2023, 51(14), 7288–7313. [Google Scholar] [CrossRef]
  102. Zhou, L.; Zhao, M.; Zhai, Y.; Lin, Q. The Mediator Complex: A Regulatory Hub for Transcriptional Activity of Nuclear Receptors. Cells 2025, 14(17). [Google Scholar] [CrossRef] [PubMed]
  103. Wei, L.; Wang, X. W.; Sun, J. J.; Lv, L. Y.; Xie, L.; Song, X. R. Knockdown of Med19 suppresses proliferation and enhances chemo-sensitivity to cisplatin in non-small cell lung cancer cells. Asian Pacific journal of cancer prevention: APJCP 2015, 16(3), 875–880. [Google Scholar] [CrossRef] [PubMed]
  104. Agaesse, G.; Barbollat-Boutrand, L.; Sulpice, E.; Bhajun, R.; El Kharbili, M.; Berthier-Vergnes, O.; Degoul, F.; de la Fouchardiere, A.; Berger, E.; Voeltzel, T.; Lamartine, J.; Gidrol, X.; Masse, I. A large-scale RNAi screen identifies LCMR1 as a critical regulator of Tspan8-mediated melanoma invasion. Oncogene 2017, 36(4), 446–457. [Google Scholar] [CrossRef] [PubMed]
  105. Dong, Y.; Liu, Y.; Zhao, L.; Qu, C. Mediator complex subunit 19 regulates the proliferation, migration and invasion of human breast cancer cells. Tropical Journal of Pharmaceutical Research 2021, 19(11), 2273–2278. [Google Scholar]
  106. Laval, F.; Coppin, G.; Twizere, J. C.; Vidal, M. Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease. International journal of molecular sciences 2023, 24(11). [Google Scholar] [CrossRef]
  107. Gastelum, S.; Michael, A. F.; Bolger, T. A. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. Wiley Interdiscip Rev RNA 2023, e1814. [Google Scholar] [CrossRef]
  108. Ilchuk, L. A.; Kubekina, M. V.; Okulova, Y. D.; Silaeva, Y. Y.; Tatarskiy, V. V.; Filatov, M. A.; Bruter, A. V. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. International journal of molecular sciences 2023, 24(11). [Google Scholar] [CrossRef]
Figure 1. Disease-associated landscape of the human Mediator complex. Schematic overview of the human Mediator complex showing the spatial organization of its four modules: Head (green), Middle (pink), Tail (yellow), and Kinase (blue). Individual Mediator subunits are annotated with associated human diseases; references supporting each disease association are shown. Abbreviations: AD, Alzheimer’s disease; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BCa, breast cancer; CC, cervical cancer; CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; ID, intellectual disability; PaCa, pancreatic cancer; PCa, prostate cancer; PCH, pontocerebellar hypoplasia; PD, Parkinson’s disease.
Figure 1. Disease-associated landscape of the human Mediator complex. Schematic overview of the human Mediator complex showing the spatial organization of its four modules: Head (green), Middle (pink), Tail (yellow), and Kinase (blue). Individual Mediator subunits are annotated with associated human diseases; references supporting each disease association are shown. Abbreviations: AD, Alzheimer’s disease; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BCa, breast cancer; CC, cervical cancer; CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; ID, intellectual disability; PaCa, pancreatic cancer; PCa, prostate cancer; PCH, pontocerebellar hypoplasia; PD, Parkinson’s disease.
Preprints 193280 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated