Submitted:
07 January 2026
Posted:
08 January 2026
You are already at the latest version
Abstract
Keywords:
1. The Mediator Complex in Transcriptional Regulation
2. Structural Organization and Modular Architecture
3. The Many Roles of the Mediator Complex
4. Mediator Dysregulation in Disease: A Modular Vulnerability Map
4.1. Head Module
4.2. Middle Module
4.3. Tail Module
4.4. Kinase Module
5. Therapeutic Implications and Future Directions
5.1. Targeting the Mediator Kinase Module
5.2. Disrupting Mediator-Centered Protein–Protein Interactions
6. Perspectives and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nonet, M. L.; Young, R. A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 1989, 123(4), 715–724. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, R. J., 3rd; Flanagan, P. M.; Kornberg, R. D. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 1990, 61(7), 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C. M.; Koleske, A. J.; Chao, D. M.; Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993, 73(7), 1361–1375. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. J.; Bjorklund, S.; Li, Y.; Sayre, M. H.; Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994, 77(4), 599–608. [Google Scholar] [CrossRef]
- Richter, W. F.; Nayak, S.; Iwasa, J.; Taatjes, D. J. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022, 23(11), 732–749. [Google Scholar] [CrossRef]
- Tsai, K. L.; Tomomori-Sato, C.; Sato, S.; Conaway, R. C.; Conaway, J. W.; Asturias, F. J. Subunit Architecture and Functional Modular Rearrangements of the Transcriptional Mediator Complex. Cell 2014, 158(2), 463. [Google Scholar] [CrossRef]
- Yin, J. W.; Wang, G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014, 141(5), 977–987. [Google Scholar] [CrossRef]
- Nozawa, K.; Schneider, T. R.; Cramer, P. Core Mediator structure at 3.4 A extends model of transcription initiation complex. Nature 2017, 545(7653), 248–251. [Google Scholar] [CrossRef]
- Cevher, M. A.; Shi, Y.; Li, D.; Chait, B. T.; Malik, S.; Roeder, R. G. Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit. Nat Struct Mol Biol 2014, 21(12), 1028–1034. [Google Scholar] [CrossRef]
- Plaschka, C.; Lariviere, L.; Wenzeck, L.; Seizl, M.; Hemann, M.; Tegunov, D.; Petrotchenko, E. V.; Borchers, C. H.; Baumeister, W.; Herzog, F.; Villa, E.; Cramer, P. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 2015, 518(7539), 376–380. [Google Scholar] [CrossRef]
- Knuesel, M. T.; Meyer, K. D.; Bernecky, C.; Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 2009, 23(4), 439–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, D. H.; Mattoo, R. U. H.; Bushnell, D. A.; Wang, Y.; Yuan, C.; Wang, L.; Wang, C.; Davis, R. E.; Nie, Y.; Kornberg, R. D. Mediator structure and conformation change. Mol Cell 2021, 81(8), 1781–1788 e4. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yin, X.; Li, J.; Wu, Z.; Qi, Y.; Wang, X.; Liu, W.; Xu, Y. Structures of the human Mediator and Mediator-bound preinitiation complex. Science 2021, 372(6546). [Google Scholar] [CrossRef] [PubMed]
- Schilbach, S.; Hantsche, M.; Tegunov, D.; Dienemann, C.; Wigge, C.; Urlaub, H.; Cramer, P. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 2017, 551(7679), 204–209. [Google Scholar] [CrossRef]
- El Khattabi, L.; Zhao, H.; Kalchschmidt, J.; Young, N.; Jung, S.; Van Blerkom, P.; Kieffer-Kwon, P.; Kieffer-Kwon, K. R.; Park, S.; Wang, X.; Krebs, J.; Tripathi, S.; Sakabe, N.; Sobreira, D. R.; Huang, S. C.; Rao, S. S. P.; Pruett, N.; Chauss, D.; Sadler, E.; Lopez, A.; Nobrega, M. A.; Aiden, E. L.; Asturias, F. J.; Casellas, R. A Pliable Mediator Acts as a Functional Rather Than an Architectural Bridge between Promoters and Enhancers. Cell 2019, 178(5), 1145–1158 e20. [Google Scholar] [CrossRef]
- Maalouf, C. A.; Alberti, A.; Soutourina, J. Mediator complex in transcription regulation and DNA repair: Relevance for human diseases. DNA Repair (Amst) 2024, 141, 103714. [Google Scholar] [CrossRef]
- Takahashi, H.; Parmely, T. J.; Sato, S.; Tomomori-Sato, C.; Banks, C. A.; Kong, S. E.; Szutorisz, H.; Swanson, S. K.; Martin-Brown, S.; Washburn, M. P.; Florens, L.; Seidel, C. W.; Lin, C.; Smith, E. R.; Shilatifard, A.; Conaway, R. C.; Conaway, J. W. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 2011, 146(1), 92–104. [Google Scholar] [CrossRef]
- Takahashi, H.; Ranjan, A.; Chen, S.; Suzuki, H.; Shibata, M.; Hirose, T.; Hirose, H.; Sasaki, K.; Abe, R.; Chen, K.; He, Y.; Zhang, Y.; Takigawa, I.; Tsukiyama, T.; Watanabe, M.; Fujii, S.; Iida, M.; Yamamoto, J.; Yamaguchi, Y.; Suzuki, Y.; Matsumoto, M.; Nakayama, K. I.; Washburn, M. P.; Saraf, A.; Florens, L.; Sato, S.; Tomomori-Sato, C.; Conaway, R. C.; Conaway, J. W.; Hatakeyama, S. The role of Mediator and Little Elongation Complex in transcription termination. Nature communications 2020, 11(1), 1063. [Google Scholar] [CrossRef]
- Sabari, B. R.; Dall'Agnese, A.; Boija, A.; Klein, I. A.; Coffey, E. L.; Shrinivas, K.; Abraham, B. J.; Hannett, N. M.; Zamudio, A. V.; Manteiga, J. C.; Li, C. H.; Guo, Y. E.; Day, D. S.; Schuijers, J.; Vasile, E.; Malik, S.; Hnisz, D.; Lee, T. I.; Cisse, II; Roeder, R. G.; Sharp, P. A.; Chakraborty, A. K.; Young, R. A. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361(6400). [Google Scholar] [CrossRef]
- Cho, W. K.; Spille, J. H.; Hecht, M.; Lee, C.; Li, C.; Grube, V.; Cisse, II. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 2018, 361(6400), 412–415. [Google Scholar] [CrossRef]
- Boija, A.; Klein, I. A.; Sabari, B. R.; Dall'Agnese, A.; Coffey, E. L.; Zamudio, A. V.; Li, C. H.; Shrinivas, K.; Manteiga, J. C.; Hannett, N. M.; Abraham, B. J.; Afeyan, L. K.; Guo, Y. E.; Rimel, J. K.; Fant, C. B.; Schuijers, J.; Lee, T. I.; Taatjes, D. J.; Young, R. A. Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell 2018, 175(7), 1842–1855.e16. [Google Scholar] [CrossRef] [PubMed]
- Luyties, O.; Taatjes, D. J. The Mediator kinase module: an interface between cell signaling and transcription. Trends Biochem Sci 2022, 47(4), 314–327. [Google Scholar] [CrossRef] [PubMed]
- Soutourina, J. Transcription regulation by the Mediator complex. Nature Reviews Molecular Cell Biology 2018, 19(4), 262–274. [Google Scholar] [CrossRef] [PubMed]
- Kagey, M. H.; Newman, J. J.; Bilodeau, S.; Zhan, Y.; Orlando, D. A.; van Berkum, N. L.; Ebmeier, C. C.; Goossens, J.; Rahl, P. B.; Levine, S. S.; Taatjes, D. J.; Dekker, J.; Young, R. A. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467(7314), 430–435. [Google Scholar] [CrossRef]
- Ramasamy, S.; Aljahani, A.; Karpinska, M. A.; Cao, T. B. N.; Velychko, T.; Cruz, J. N.; Lidschreiber, M.; Oudelaar, A. M. The Mediator complex regulates enhancer-promoter interactions. Nat Struct Mol Biol 2023, 30(7), 991–1000. [Google Scholar] [CrossRef]
- Whyte, W. A.; Orlando, D. A.; Hnisz, D.; Abraham, B. J.; Lin, C. Y.; Kagey, M. H.; Rahl, P. B.; Lee, T. I.; Young, R. A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153(2), 307–319. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, D.; Wang, S.; Wang, B.; Li, Y.; Wang, G.; Wang, X.; Shi, C.; Tian, Y.; Zhu, K.; Feng, J. Identification of the role of MED6 in the development and prognosis of lung adenocarcinoma based on multi-omics profiling. J Cancer 2025, 16(7), 2362–2374. [Google Scholar] [CrossRef]
- Jin, X.; Song, Y.; An, Z.; Wu, S.; Cai, D.; Fu, Y.; Zhang, C.; Chen, L.; Tang, W.; Zheng, Z.; Lu, H.; Lian, J. A Predictive Model for Prognosis and Therapeutic Response in Hepatocellular Carcinoma Based on a Panel of Three MED8-Related Immunomodulators. Frontiers in oncology 2022, 12, 868411. [Google Scholar] [CrossRef]
- Syring, I.; Klümper, N.; Offermann, A.; Braun, M.; Deng, M.; Boehm, D.; Queisser, A.; von Mässenhausen, A.; Brägelmann, J.; Vogel, W.; Schmidt, D.; Majores, M.; Schindler, A.; Kristiansen, G.; Müller, S. C.; Ellinger, J.; Adler, D.; Perner, S. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types. Oncotarget 2016, 7(17), 23043–23055. [Google Scholar] [CrossRef]
- Cali, E.; Lin, S. J.; Rocca, C.; Sahin, Y.; Al Shamsi, A.; El Chehadeh, S.; Chaabouni, M.; Mankad, K.; Galanaki, E.; Efthymiou, S.; Sudhakar, S.; Athanasiou-Fragkouli, A.; Celik, T.; Narli, N.; Bianca, S.; Murphy, D.; De Carvalho Moreira, F. M.; Group, S. Y. S.; Andrea, A.; Petree, C.; Huang, K.; Monastiri, K.; Edizadeh, M.; Nardello, R.; Ognibene, M.; De Marco, P.; Ruggieri, M.; Zara, F.; Striano, P.; Sahin, Y.; Al-Gazali, L.; Abi Warde, M. T.; Gerard, B.; Zifarelli, G.; Beetz, C.; Fortuna, S.; Soler, M.; Valente, E. M.; Varshney, G.; Maroofian, R.; Salpietro, V.; Houlden, H. A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease. Genet Med 2022, 24(10), 2194–2203. [Google Scholar]
- Terabayashi, T.; Hashimoto, S. Increased unfolded protein responses caused by MED17 mutations. Neurogenetics 2021, 22(4), 353–357. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, R.; Straussberg, R.; Mandel, H.; Fattal-Valevski, A.; Ben-Zeev, B.; Naamati, A.; Shaag, A.; Zenvirt, S.; Konen, O.; Mimouni-Bloch, A.; Dobyns, W. B.; Edvardson, S.; Pines, O.; Elpeleg, O. Infantile cerebral and cerebellar atrophy is associated with a mutation in the MED17 subunit of the transcription preinitiation mediator complex. American journal of human genetics 2010, 87(5), 667–670. [Google Scholar] [CrossRef] [PubMed]
- Vodopiutz, J.; Schmook, M. T.; Konstantopoulou, V.; Plecko, B.; Greber-Platzer, S.; Creus, M.; Seidl, R.; Janecke, A. R. MED20 mutation associated with infantile basal ganglia degeneration and brain atrophy. Eur J Pediatr 2015, 174(1), 113–118. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P. Q.; Unnersjo-Jess, D.; Zambrano, S. S.; Guo, J.; Moller-Hackbarth, K.; Blom, H.; Jahnukainen, T.; Ebarasi, L.; Patrakka, J. Inactivation of mediator complex protein 22 in podocytes results in intracellular vacuole formation, podocyte loss and premature death. Scientific reports 2020, 10(1), 20037. [Google Scholar] [CrossRef]
- Lv, Y.; Gu, G.; Zeng, R.; Liu, Z.; Wu, J.; Zheng, Y. Proteomics analysis of carotid body tumor revealed potential mechanisms and molecular differences among Shamblin classifications. Exp Biol Med (Maywood) 2023, 248(20), 1785–1798. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Yu, Q.; Zheng, X.; Yin, C.; Yan, X.; Liu, G.; Song, Z. Development of a novel lipid metabolism-based risk score model in hepatocellular carcinoma patients. BMC Gastroenterol 2021, 21(1), 68. [Google Scholar] [CrossRef]
- Maroofian, R.; Kaiyrzhanov, R.; Cali, E.; Zamani, M.; Zaki, M. S.; Ferla, M.; Tortora, D.; Sadeghian, S.; Saadi, S. M.; Abdullah, U.; Karimiani, E. G.; Efthymiou, S.; Yesil, G.; Alavi, S.; Al Shamsi, A. M.; Tajsharghi, H.; Abdel-Hamid, M. S.; Saadi, N. W.; Al Mutairi, F.; Alabdi, L.; Beetz, C.; Ali, Z.; Toosi, M. B.; Rudnik-Schoneborn, S.; Babaei, M.; Isohanni, P.; Muhammad, J.; Khan, S.; Al Shalan, M.; Hickey, S. E.; Marom, D.; Elhanan, E.; Kurian, M. A.; Marafi, D.; Saberi, A.; Hamid, M.; Spaull, R.; Meng, L.; Lalani, S.; Maqbool, S.; Rahman, F.; Seeger, J.; Palculict, T. B.; Lau, T.; Murphy, D.; Mencacci, N. E.; Steindl, K.; Begemann, A.; Rauch, A.; Akbas, S.; Aslanger, A. D.; Salpietro, V.; Yousaf, H.; Ben-Shachar, S.; Ejeskar, K.; Al Aqeel, A. I.; High, F. A.; Armstrong-Javors, A. E.; Zahraei, S. M.; Seifi, T.; Zeighami, J.; Shariati, G.; Sedaghat, A.; Asl, S. N.; Shahrooei, M.; Zifarelli, G.; Burglen, L.; Ravelli, C.; Zschocke, J.; Schatz, U. A.; Ghavideldarestani, M.; Kamel, W. A.; Van Esch, H.; Hackenberg, A.; Taylor, J. C.; Al-Gazali, L.; Bauer, P.; Gleeson, J. J.; Alkuraya, F. S.; Lupski, J. R.; Galehdari, H.; Azizimalamiri, R.; Chung, W. K.; Baig, S. M.; Houlden, H.; Severino, M., Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders. Brain 2023, 146(12), 5031–5043.
- Li, X.; Yiliyaer, N.; Guo, T.; Zhao, H.; Lei, Y.; Gu, S. The indispensable role of Mediator complex subunit 27 during neurodevelopment. Cell Biosci 2025, 15(1), 83. [Google Scholar] [CrossRef]
- Li, L.; Walsh, R. M.; Wagh, V.; James, M. F.; Beauchamp, R. L.; Chang, Y. S.; Gusella, J. F.; Hochedlinger, K.; Ramesh, V. Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency. PLoS One 2015, 10(10), e0140192. [Google Scholar] [CrossRef]
- Arkush, L.; van Woerden, G. M.; Ziv, L.; Marek-Yagel, D.; Fonseca, R.; Breve, E.; Barel, O.; Shalva, N.; Veber, A.; Anikster, Y.; Ben-Ami Raichman, D.; Musallam, B.; Marcu, S.; Nissenkorn, A.; Mandel, H.; Kushner, S. A.; Ben Zeev, B.; Heimer, G. Biallelic MED29 variants cause pontocerebellar hypoplasia with cataracts. Eur J Hum Genet 2025, 33(10), 1271–1280. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, J.; Qiao, Y.; Pathak, J. L.; Zou, R.; Piao, Z.; Xie, S.; Liang, J.; Ouyang, K. CHRDL1 inhibits OSCC metastasis via MAPK signaling-mediated inhibition of MED29. Mol Med 2024, 30(1), 187. [Google Scholar] [CrossRef] [PubMed]
- Kuuselo, R.; Savinainen, K.; Sandstrom, S.; Autio, R.; Kallioniemi, A. MED29, a component of the mediator complex, possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer. Int J Cancer 2011, 129(11), 2553–2565. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhu, S.; Chen, Z.; Liu, C.; Li, Y. E.; Zhu, M.; Zhang, Z.; Zhang, Z.; Zhang, L.; Gu, Y.; Liang, Z.; Boyer, T. G.; Ouyang, K.; Evans, S. M.; Fang, X. Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genet 2021, 17(9), e1009785. [Google Scholar] [CrossRef]
- Leonard, M.; Zhang, X. Estrogen receptor coactivator Mediator Subunit 1 (MED1) as a tissue-specific therapeutic target in breast cancer. J Zhejiang Univ Sci B 2019, 20(5), 381–390. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Leonard, M.; Luo, Z.; Yeo, S.; Bick, G.; Hao, M.; Cai, C.; Charif, M.; Wang, J.; Guan, J. L.; Lower, E. E.; Zhang, X. Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer. Cell Rep 2021, 34(10), 108822. [Google Scholar] [CrossRef]
- Lando, M.; Holden, M.; Bergersen, L. C.; Svendsrud, D. H.; Stokke, T.; Sundfor, K.; Glad, I. K.; Kristensen, G. B.; Lyng, H. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer. PLoS Genet 2009, 5(11), e1000719. [Google Scholar] [CrossRef]
- Dehainault, C.; Garancher, A.; Castera, L.; Cassoux, N.; Aerts, I.; Doz, F.; Desjardins, L.; Lumbroso, L.; Montes de Oca, R.; Almouzni, G.; Stoppa-Lyonnet, D.; Pouponnot, C.; Gauthier-Villars, M.; Houdayer, C. The survival gene MED4 explains low penetrance retinoblastoma in patients with large RB1 deletion. Hum Mol Genet 2014, 23(19), 5243–5250. [Google Scholar] [CrossRef]
- Joseph, C.; Macnamara, O.; Craze, M.; Russell, R.; Provenzano, E.; Nolan, C. C.; Diez-Rodriguez, M.; Sonbul, S. N.; Aleskandarany, M. A.; Green, A. R.; Rakha, E. A.; Ellis, I. O.; Mukherjee, A. Mediator complex (MED) 7: a biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes. Br J Cancer 2018, 118(8), 1142–1151. [Google Scholar] [CrossRef]
- Chen, Z. L.; Ma, Y. Y.; Mou, X. Z.; Zhang, J. G. Upregulation of MED7 was associated with progression in hepatocellular carcinoma. Cancer Biomark 2023, 38(4), 603–611. [Google Scholar] [CrossRef]
- Franzese, M.; Zanfardino, M.; Soricelli, A.; Coppola, A.; Maiello, C.; Salvatore, M.; Schiano, C.; Napoli, C. Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. International journal of molecular sciences 2024, 25(5). [Google Scholar] [CrossRef]
- Wu, C. C.; Wang, Y. H.; Hu, S. W.; Wu, W. L.; Yeh, C. T.; Bamodu, O. A. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Frontiers in oncology 2021, 11, 744937. [Google Scholar]
- Liu, J.; Lv, Y.; Liu, K.; Li, Z.; Chen, B.; Bu, Y. MED10 as a Novel Oncogenic Driver in HCC: Promoting Cell Cycle Progression and Proliferation Through RAF1 Activation. Front Biosci (Landmark Ed) 2025, 30(8), 39944. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, J.; Yan, M.; Aili, M. Methylation factor MRPL15 identified as a potential biological target in Alzheimer's disease. Aging (Albany NY) 2021, 13(10), 13560–13570. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Li, W.; Wu, K.; Liu, Y.; Lv, Y.; Zhu, Y.; Luo, H.; Cui, L. The SP1-Induced Long Noncoding RNA, LINC00339, Promotes Tumorigenesis in Colorectal Cancer via the miR-378a-3p/MED19 Axis. Onco Targets Ther 2020, 13, 11711–11724. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, D.; Fang, K.; Guo, Z.; Li, L. Med19 is targeted by miR-101-3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett 2019, 444, 105–115. [Google Scholar] [CrossRef]
- Imberg-Kazdan, K.; Ha, S.; Greenfield, A.; Poultney, C. S.; Bonneau, R.; Logan, S. K.; Garabedian, M. J. A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells. Genome Res 2013, 23(4), 581–591. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, P.; Xu, X.; Li, M.; Huang, H.; Yan, J.; Zhou, Y. Mediator Complex Subunit 19 Promotes the Development of Hepatocellular Carcinoma by Regulating the AKT/mTOR Signaling Pathway. Frontiers in oncology 2021, 11, 792285. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, S.; Cui, Y.; Men, C.; Yang, D.; Gao, Z.; Zhu, Z.; Wu, J. Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway. J Cell Mol Med 2017, 21(12), 3254–3263. [Google Scholar] [CrossRef]
- Sato, S.; Tomomori-Sato, C.; Tsai, K. L.; Yu, X.; Sardiu, M.; Saraf, A.; Washburn, M. P.; Florens, L.; Asturias, F. J.; Conaway, R. C.; Conaway, J. W. Role for the MED21-MED7 Hinge in Assembly of the Mediator-RNA Polymerase II Holoenzyme. J Biol Chem 2016, 291(52), 26886–26898. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Xiang, Y.; Malik, S.; Vartak, S. V.; Veronezi, G. M. B.; Young, N.; Riney, M.; Kalchschmidt, J.; Conte, A.; Jung, S. K.; Ramachandran, S.; Roeder, R. G.; Shi, Y.; Casellas, R.; Asturias, F. J. An IDR-dependent mechanism for nuclear receptor control of Mediator interaction with RNA polymerase II. Mol Cell 2024, 84(14), 2648–2664 e10. [Google Scholar] [CrossRef]
- Beadle, E. P.; Straub, J. A.; Bunnell, B. A.; Newman, J. J. MED31 involved in regulating self-renewal and adipogenesis of human mesenchymal stem cells. Molecular biology reports 2018, 45(5), 1545–1550. [Google Scholar] [CrossRef]
- Lopez-Cerdan, A.; Andreu, Z.; Hidalgo, M. R.; Grillo-Risco, R.; Catala-Senent, J. F.; Soler-Saez, I.; Neva-Alejo, A.; Gordillo, F.; de la Iglesia-Vaya, M.; Garcia-Garcia, F. Unveiling sex-based differences in Parkinson's disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2022, 13(1), 68. [Google Scholar] [CrossRef]
- Baris, Y.; Jabbar, J.; Yozgat, Y.; Dinccelik-Aslan, M.; Cigirgan, E.; Erden, M.; Bay, S.; Aslan, V.; Cevher, M. A. N-terminal half of MED14 is critical for Mediator-RNA polymerase II interaction and the resulting transcription. J Biol Chem 2025, 301(12), 110837. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Burrows, J. T.; Scott, I. C. Med14 cooperates with brg1 in the differentiation of skeletogenic neural crest. BMC developmental biology 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Burrows, J. T.; Pearson, B. J.; Scott, I. C. An in vivo requirement for the mediator subunit med14 in the maintenance of stem cell populations. Stem Cell Reports 2015, 4(4), 670–684. [Google Scholar] [CrossRef] [PubMed]
- Schiano, C.; Napoli, C. Mediator complex: update of key insights into transcriptional regulation of ancestral framework and its role in cardiovascular diseases. Eur J Med Res 2025, 30(1), 507. [Google Scholar] [CrossRef]
- Hua, X.; Ge, S.; Zhang, L.; Jiang, Q.; Chen, J.; Xiao, H.; Liang, C. MED15 is upregulated by HIF-2alpha and promotes proliferation and metastasis in clear cell renal cell carcinoma via activation of SREBP-dependent fatty acid synthesis. Cell Death Discov 2024, 10(1), 188. [Google Scholar] [CrossRef]
- Weiten, R.; Muller, T.; Schmidt, D.; Steiner, S.; Kristiansen, G.; Muller, S. C.; Ellinger, J.; Syring, I. The Mediator complex subunit MED15, a promoter of tumour progression and metastatic spread in renal cell carcinoma. Cancer Biomark 2018, 21(4), 839–847. [Google Scholar] [CrossRef]
- Adler, D.; Offermann, A.; Halbach, R.; Vogel, W.; Braun, M.; Kristiansen, G.; Bootz, F.; Wenzel, J.; Mikut, R.; Lengerke, C.; Reischl, M.; Schrock, A.; Perner, S. Clinical and molecular implications of MED15 in head and neck squamous cell carcinoma. Am J Pathol 2015, 185(4), 1114–1122. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.; Yuan, C.; Wang, J.; Zhao, X.; Yang, M.; Xiong, D.; Yang, Y.; Dai, Y.; Gao, Y.; Wang, Y.; Xue, L.; Wang, G. A phosphorylation switch in the Mediator MED15 controls cellular senescence and cognitive decline. Cell Discov 2025, 11(1), 69. [Google Scholar] [CrossRef]
- Guillouet, C.; Agostini, V.; Baujat, G.; Cocciadiferro, D.; Pippucci, T.; Lesieur-Sebellin, M.; Georget, M.; Schatz, U.; Fauth, C.; Louie, R. J.; Rogers, C.; Davis, J. M.; Konstantopoulou, V.; Mayr, J. A.; Bouman, A.; Wilke, M.; VanNoy, G. E.; England, E. M.; Park, K. L.; Brown, K.; Saenz, M.; Novelli, A.; Digilio, M. C.; Mastromoro, G.; Rongioletti, M. C. A.; Piacentini, G.; Kaiyrzhanov, R.; Guliyeva, S.; Hasanova, L.; Shears, D.; Bhatnagar, I.; Stals, K.; Klaas, O.; Horvath, J.; University of Washington Center for Mendelian, G.; Bouvagnet, P.; Witmer, P. D.; MacCarrick, G.; Cisarova, K.; Good, J. M.; Gorokhova, S.; Boute, O.; Smol, T.; Bruel, A. L.; Patat, O.; Broadbent, J. R.; Tan, T. Y.; Tan, N. B.; Lyonnet, S.; Busa, T.; Graziano, C.; Amiel, J.; Gordon, C. T. Bi-allelic MED16 variants cause a MEDopathy with intellectual disability, motor delay, and craniofacial, cardiac, and limb malformations. American journal of human genetics 2025, 112(4), 829–845. [Google Scholar] [CrossRef]
- Huang, Y.; Xiang, Z.; Xiang, Y.; Pan, H.; He, M.; Guo, Z.; Kanca, O.; Liu, C.; Zhang, Z.; Zhan, H.; Wang, Y.; Bai, Q. R.; Bellen, H. J.; Wang, H.; Bian, S.; Mao, X. Biallelic MED16 variants disrupt neural development and lead to an intellectual disability syndrome. J Genet Genomics 2025, 52(10), 1189–1198. [Google Scholar] [CrossRef]
- Trehan, A.; Brady, J. M.; Maduro, V.; Bone, W. P.; Huang, Y.; Golas, G. A.; Kane, M. S.; Lee, P. R.; Thurm, A.; Gropman, A. L.; Paul, S. M.; Vezina, G.; Markello, T. C.; Gahl, W. A.; Boerkoel, C. F.; Tifft, C. J. MED23-associated intellectual disability in a non-consanguineous family. Am J Med Genet A 2015, 167(6), 1374–1380. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Chen, Z.; Zhang, Y.; Tian, Q.; Sun, M.; Zhang, S.; Yu, M.; Wang, G. An intellectual disability-related MED23 mutation dysregulates gene expression by altering chromatin conformation and enhancer activities. Nucleic Acids Res 2023, 51(5), 2137–2150. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Willson, C. J.; Janardhan, K. S.; Wu, S. P.; Li, J. L.; DeMayo, F. J. ERBB2 Regulates MED24 during Cancer Progression in Mice with Pten and Smad4 Deletion in the Pulmonary Epithelium. Cells 2019, 8(6). [Google Scholar] [CrossRef]
- Basel-Vanagaite, L.; Smirin-Yosef, P.; Essakow, J. L.; Tzur, S.; Lagovsky, I.; Maya, I.; Pasmanik-Chor, M.; Yeheskel, A.; Konen, O.; Orenstein, N.; Weisz Hubshman, M.; Drasinover, V.; Magal, N.; Peretz Amit, G.; Zalzstein, Y.; Zeharia, A.; Shohat, M.; Straussberg, R.; Monte, D.; Salmon-Divon, M.; Behar, D. M. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet 2015, 134(6), 577–587. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xie, M.; Jing, X.; Jiang, H.; Wu, X.; Wang, X.; Shu, Y. Loss of miR-26b-5p promotes gastric cancer progression via miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop. J Transl Med 2023, 21(1), 77. [Google Scholar] [CrossRef]
- Broude, E. V.; Gyorffy, B.; Chumanevich, A. A.; Chen, M.; McDermott, M. S.; Shtutman, M.; Catroppo, J. F.; Roninson, I. B. Expression of CDK8 and CDK8-interacting Genes as Potential Biomarkers in Breast Cancer. Curr Cancer Drug Targets 2015, 15(8), 739–749. [Google Scholar] [CrossRef] [PubMed]
- Offermann, A.; Joerg, V.; Becker, F.; Roesch, M. C.; Kang, D.; Lemster, A. L.; Tharun, L.; Behrends, J.; Merseburger, A. S.; Culig, Z.; Sailer, V.; Bragelmann, J.; Kirfel, J.; Perner, S. Inhibition of Cyclin-Dependent Kinase 8/Cyclin-Dependent Kinase 19 Suppresses Its Pro-Oncogenic Effects in Prostate Cancer. Am J Pathol 2022, 192(5), 813–823. [Google Scholar] [CrossRef] [PubMed]
- Pelish, H. E.; Liau, B. B.; Nitulescu, II; Tangpeerachaikul, A.; Poss, Z. C.; Da Silva, D. H.; Caruso, B. T.; Arefolov, A.; Fadeyi, O.; Christie, A. L.; Du, K.; Banka, D.; Schneider, E. V.; Jestel, A.; Zou, G.; Si, C.; Ebmeier, C. C.; Bronson, R. T.; Krivtsov, A. V.; Myers, A. G.; Kohl, N. E.; Kung, A. L.; Armstrong, S. A.; Lemieux, M. E.; Taatjes, D. J.; Shair, M. D. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 2015, 526(7572), 273–276. [Google Scholar] [CrossRef]
- Poss, Z. C.; Ebmeier, C. C.; Odell, A. T.; Tangpeerachaikul, A.; Lee, T.; Pelish, H. E.; Shair, M. D.; Dowell, R. D.; Old, W. M.; Taatjes, D. J. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics. Cell Rep 2016, 15(2), 436–450. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Nakata, D.; Kakoi, Y.; Kunitomo, M.; Murai, S.; Ebara, S.; Hata, A.; Hara, T. CDK8/19 inhibition induces premature G1/S transition and ATR-dependent cell death in prostate cancer cells. Oncotarget 2018, 9(17), 13474–13487. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, II; Meyer, S. C.; Wen, Q. J.; Crispino, J. D.; Lemieux, M. E.; Levine, R. L.; Pelish, H. E.; Shair, M. D. Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine 2017, 26, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Plassche, S. V.; Brouwer, A. P. MED12-Related (Neuro)Developmental Disorders: A Question of Causality. Genes (Basel) 2021, 12(5). [Google Scholar]
- Kampjarvi, K.; Jarvinen, T. M.; Heikkinen, T.; Ruppert, A. S.; Senter, L.; Hoag, K. W.; Dufva, O.; Kontro, M.; Rassenti, L.; Hertlein, E.; Kipps, T. J.; Porkka, K.; Byrd, J. C.; de la Chapelle, A.; Vahteristo, P. Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget 2015, 6(3), 1884–1888. [Google Scholar] [CrossRef]
- Kampjarvi, K.; Kim, N. H.; Keskitalo, S.; Clark, A. D.; von Nandelstadh, P.; Turunen, M.; Heikkinen, T.; Park, M. J.; Makinen, N.; Kivinummi, K.; Lintula, S.; Hotakainen, K.; Nevanlinna, H.; Hokland, P.; Bohling, T.; Butzow, R.; Bohm, J.; Mecklin, J. P.; Jarvinen, H.; Kontro, M.; Visakorpi, T.; Taipale, J.; Varjosalo, M.; Boyer, T. G.; Vahteristo, P. Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate 2016, 76(1), 22–31. [Google Scholar] [CrossRef]
- Nagai, K.; Asano, R.; Sekiguchi, F.; Asai-Sato, M.; Miyagi, Y.; Miyagi, E. MED12 mutations in uterine leiomyomas: prediction of volume reduction by gonadotropin-releasing hormone agonists. Am J Obstet Gynecol 2023, 228(2), 207 e1–207 e9. [Google Scholar] [CrossRef]
- Siraj, A. K.; Masoodi, T.; Bu, R.; Pratheeshkumar, P.; Al-Sanea, N.; Ashari, L. H.; Abduljabbar, A.; Alhomoud, S.; Al-Dayel, F.; Alkuraya, F. S.; Al-Kuraya, K. S. MED12 is recurrently mutated in Middle Eastern colorectal cancer. Gut 2018, 67(4), 663–671. [Google Scholar]
- Lae, M.; Gardrat, S.; Rondeau, S.; Richardot, C.; Caly, M.; Chemlali, W.; Vacher, S.; Couturier, J.; Mariani, O.; Terrier, P.; Bieche, I. MED12 mutations in breast phyllodes tumors: evidence of temporal tumoral heterogeneity and identification of associated critical signaling pathways. Oncotarget 2016, 7(51), 84428–84438. [Google Scholar] [CrossRef]
- Muncke, N.; Jung, C.; Rüdiger, H.; Ulmer, H.; Roeth, R.; Hubert, A.; Goldmuntz, E.; Driscoll, D.; Goodship, J.; Schön, K.; Rappold, G. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 2003, 108(23), 2843–2850. [Google Scholar] [CrossRef]
- Adegbola, A.; Musante, L.; Callewaert, B.; Maciel, P.; Hu, H.; Isidor, B.; Picker-Minh, S.; Le Caignec, C.; Delle Chiaie, B.; Vanakker, O.; Menten, B.; Dheedene, A.; Bockaert, N.; Roelens, F.; Decaestecker, K.; Silva, J.; Soares, G.; Lopes, F.; Najmabadi, H.; Kahrizi, K.; Cox, G. F.; Angus, S. P.; Staropoli, J. F.; Fischer, U.; Suckow, V.; Bartsch, O.; Chess, A.; Ropers, H. H.; Wienker, T. F.; Hübner, C.; Kaindl, A. M.; Kalscheuer, V. M. Redefining the MED13L syndrome. Eur J Hum Genet 2015, 23(10), 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, R.; Oneda, B.; Sheth, F.; Azzarello-Burri, S.; Baldinger, R.; Joset, P.; Latal, B.; Knirsch, W.; Desai, S.; Baumer, A.; Houge, G.; Andrieux, J.; Rauch, A. Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. European Journal of Human Genetics 2013, 21(10), 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Trivisano, M.; De Dominicis, A.; Micalizzi, A.; Ferretti, A.; Dentici, M. L.; Terracciano, A.; Calabrese, C.; Vigevano, F.; Novelli, G.; Novelli, A.; Specchio, N. MED13 mutation: A novel cause of developmental and epileptic encephalopathy with infantile spasms. Seizure 2022, 101, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ponce, J. M.; Coen, G.; Spitler, K. M.; Dragisic, N.; Martins, I.; Hinton, A., Jr.; Mungai, M.; Tadinada, S. M.; Zhang, H.; Oudit, G. Y.; Song, L. S.; Li, N.; Sicinski, P.; Strack, S.; Abel, E. D.; Mitchell, C.; Hall, D. D.; Grueter, C. E. Stress-Induced Cyclin C Translocation Regulates Cardiac Mitochondrial Dynamics. J Am Heart Assoc 2020, 9(7), e014366. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; List, J.; Klampfl, T.; Klein, K.; Prchal-Murphy, M.; Witalisz-Siepracka, A.; Bellutti, F.; Fava, L. L.; Heller, G.; Stummer, S.; Testori, P.; Den Boer, M. L.; Boer, J. M.; Marinovic, S.; Hoermann, G.; Walter, W.; Villunger, A.; Sicinski, P.; Sexl, V.; Gotthardt, D. Cyclin C promotes development and progression of B-cell acute lymphoblastic leukemia by counteracting p53-mediated stress responses. Haematologica 2025, 110(4), 877–892. [Google Scholar] [CrossRef]
- Guzman, J.; Hart, M.; Weigelt, K.; Neumann, A.; Aigner, A.; Andolfi, C.; Handle, F.; Rheinheimer, S.; Fischer, U.; Immel, U. D.; Lieb, V.; Meese, E.; Culig, Z.; Wullich, B.; Taubert, H.; Wach, S. The MicroRNA miR-454 and the mediator complex component MED12 are regulators of the androgen receptor pathway in prostate cancer. Scientific reports 2025, 15(1), 10272. [Google Scholar] [CrossRef]
- Freitas, K. A.; Belk, J. A.; Sotillo, E.; Quinn, P. J.; Ramello, M. C.; Malipatlolla, M.; Daniel, B.; Sandor, K.; Klysz, D.; Bjelajac, J.; Xu, P.; Burdsall, K. A.; Tieu, V.; Duong, V. T.; Donovan, M. G.; Weber, E. W.; Chang, H. Y.; Majzner, R. G.; Espinosa, J. M.; Satpathy, A. T.; Mackall, C. L. Enhanced T cell effector activity by targeting the Mediator kinase module. Science 2022, 378(6620), eabn5647. [Google Scholar] [CrossRef]
- Musunuru, K.; Grandinette, S. A.; Wang, X.; Hudson, T. R.; Briseno, K.; Berry, A. M.; Hacker, J. L.; Hsu, A.; Silverstein, R. A.; Hille, L. T.; Ogul, A. N.; Robinson-Garvin, N. A.; Small, J. C.; McCague, S.; Burke, S. M.; Wright, C. M.; Bick, S.; Indurthi, V.; Sharma, S.; Jepperson, M.; Vakulskas, C. A.; Collingwood, M.; Keogh, K.; Jacobi, A.; Sturgeon, M.; Brommel, C.; Schmaljohn, E.; Kurgan, G.; Osborne, T.; Zhang, H.; Kinney, K.; Rettig, G.; Barbosa, C. J.; Semple, S. C.; Tam, Y. K.; Lutz, C.; George, L. A.; Kleinstiver, B. P.; Liu, D. R.; Ng, K.; Kassim, S. H.; Giannikopoulos, P.; Alameh, M. G.; Urnov, F. D.; Ahrens-Nicklas, R. C. Patient-Specific In Vivo Gene Editing to Treat a Rare Genetic Disease. N Engl J Med 2025, 392(22), 2235–2243. [Google Scholar] [CrossRef]
- Ashmore-Harris, C.; Fruhwirth, G. O. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin Transl Med 2020, 9(1), 15. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Yan, Y. Y.; Jin, D.; Wang, Y.; Zhang, X. X.; Liu, X. H. Discovery of novel and potent CDK8 inhibitors for the treatment of acute myeloid leukaemia. J Enzyme Inhib Med Chem 2024, 39(1), 2305852. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Zhang, L.; Wang, L.; Cheng, C.; Ji, H.; Altilia, S.; Ding, X.; Cai, G.; Altomare, D.; Shtutman, M.; Byrum, S. D.; Mackintosh, S. G.; Feoktistov, A.; Soshnikova, N.; Mogila, V. A.; Tatarskiy, V.; Erokhin, M.; Chetverina, D.; Prawira, A.; Ni, Y.; Urban, S.; McInnes, C.; Broude, E. V.; Roninson, I. B. CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res 2023, 51(14), 7288–7313. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, M.; Zhai, Y.; Lin, Q. The Mediator Complex: A Regulatory Hub for Transcriptional Activity of Nuclear Receptors. Cells 2025, 14(17). [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, X. W.; Sun, J. J.; Lv, L. Y.; Xie, L.; Song, X. R. Knockdown of Med19 suppresses proliferation and enhances chemo-sensitivity to cisplatin in non-small cell lung cancer cells. Asian Pacific journal of cancer prevention: APJCP 2015, 16(3), 875–880. [Google Scholar] [CrossRef] [PubMed]
- Agaesse, G.; Barbollat-Boutrand, L.; Sulpice, E.; Bhajun, R.; El Kharbili, M.; Berthier-Vergnes, O.; Degoul, F.; de la Fouchardiere, A.; Berger, E.; Voeltzel, T.; Lamartine, J.; Gidrol, X.; Masse, I. A large-scale RNAi screen identifies LCMR1 as a critical regulator of Tspan8-mediated melanoma invasion. Oncogene 2017, 36(4), 446–457. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, Y.; Zhao, L.; Qu, C. Mediator complex subunit 19 regulates the proliferation, migration and invasion of human breast cancer cells. Tropical Journal of Pharmaceutical Research 2021, 19(11), 2273–2278. [Google Scholar]
- Laval, F.; Coppin, G.; Twizere, J. C.; Vidal, M. Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease. International journal of molecular sciences 2023, 24(11). [Google Scholar] [CrossRef]
- Gastelum, S.; Michael, A. F.; Bolger, T. A. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. Wiley Interdiscip Rev RNA 2023, e1814. [Google Scholar] [CrossRef]
- Ilchuk, L. A.; Kubekina, M. V.; Okulova, Y. D.; Silaeva, Y. Y.; Tatarskiy, V. V.; Filatov, M. A.; Bruter, A. V. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. International journal of molecular sciences 2023, 24(11). [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
