Modern high-speed train compartments contain intricate internal configurations. In the event of a fire emergency, the propagation velocity of flames through the passenger cabin is determined by multiple factors, including compartment design, ignition source characteristics, and airflow conditions. This study employed numerical simulation approaches to investigate the effects of fire source power, fire source location, and longitudinal ventilation velocity on the rate of flame progression. The simulation outcomes reveal that, under forward ventilation conditions, the magnitude of fire power has a minimal influence on flame propagation speed. However, stronger fire sources lead to earlier initiation of flame spread along the carriage. Central positioning of the ignition source results in bidirectional flame movement toward both ends of the carriage, with faster propagation rates than those of fires originating at the extremities. Longitudinal airflow patterns significantly. When the airflow speed within the tunnel remains below 3 meters per second, the impact of longitudinal ventilation on fire propagation speed in the train is minimal under forward ventilation conditions. Conversely, in reverse-ventilation scenarios, the rate of flame advancement shows a positive correlation with increasing ventilation speed. Nevertheless, once tunnel ventilation velocities exceed 3 m/s, combustion propagation within high-speed rail carriages becomes impossible due to intact windows, which create oxygen-deficient conditions that prevent the development of fire.