Preprint
Article

This version is not peer-reviewed.

Numerical Investigation on the Flame Propagation Rate in the High-Speed Train Carriages

Submitted:

06 January 2026

Posted:

07 January 2026

You are already at the latest version

Abstract
Modern high-speed train compartments contain intricate internal configurations. In the event of a fire emergency, the propagation velocity of flames through the passenger cabin is determined by multiple factors, including compartment design, ignition source characteristics, and airflow conditions. This study employed numerical simulation approaches to investigate the effects of fire source power, fire source location, and longitudinal ventilation velocity on the rate of flame progression. The simulation outcomes reveal that, under forward ventilation conditions, the magnitude of fire power has a minimal influence on flame propagation speed. However, stronger fire sources lead to earlier initiation of flame spread along the carriage. Central positioning of the ignition source results in bidirectional flame movement toward both ends of the carriage, with faster propagation rates than those of fires originating at the extremities. Longitudinal airflow patterns significantly. When the airflow speed within the tunnel remains below 3 meters per second, the impact of longitudinal ventilation on fire propagation speed in the train is minimal under forward ventilation conditions. Conversely, in reverse-ventilation scenarios, the rate of flame advancement shows a positive correlation with increasing ventilation speed. Nevertheless, once tunnel ventilation velocities exceed 3 m/s, combustion propagation within high-speed rail carriages becomes impossible due to intact windows, which create oxygen-deficient conditions that prevent the development of fire.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated