Submitted:
04 January 2026
Posted:
06 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Study Subjects
2.2. Data Collection and Measurement
2.3. Coffee Consumption
2.4. MetS
2.5. Evaluation Criteria
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Correlation Between the Amount of Coffee Consumption and Risk Factors of MetS
4. Discussion
Funding
Conflicts of Interest
References
- Kim, A.; Lee, S.J.; Ko, S.H. A study on the importance and satisfaction of consumers in selecting a side dish at a coffee shop. Korean J. Food Cook. Sci. 2013, 29, 169–175. [Google Scholar] [CrossRef]
- dePaula, J.; Farah, A. Caffeine consumption through coffee: Content in the beverage, metabolism, health benefits and risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.Y.; Kim, J. Coffee consumption and the risk of obesity in Korean women. Nutrients 2017, 9, 1340. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.T.; Wong, C.H.; Zhang, X.; Zhou, Y.; Xu, J.; Yuen, K.C.; et al. The association between coffee consumption and metabolic syndrome in adults: A systematic review and meta-analysis. Adv. Nutr. 2021, 12, 708–721. [Google Scholar] [CrossRef]
- Kim, H.J.; Cho, S.; Jacobs, D.R., Jr.; Park, K. Instant coffee consumption may be associated with higher risk of metabolic syndrome in Korean adults. Diabetes Res. Clin. Pract. 2014, 106, 145–153. [Google Scholar] [CrossRef]
- Holtmann, G.; Talley, N.J. The stomach–brain axis. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 967–979. [Google Scholar] [CrossRef]
- Pimentel, G.D.; Zemdegs, J.C.; Theodoro, J.A.; Mota, J.F. Does long-term coffee intake reduce type 2 diabetes mellitus risk? Diabetol. Metab. Syndr. 2009, 1, 6. [Google Scholar] [CrossRef]
- Chrysant, S.G. Coffee consumption and cardiovascular health. Am. J. Cardiol. 2015, 116, 818–821. [Google Scholar] [CrossRef]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the Asia-Pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef]
- Herningtyas, E.H.; Ng, T.S. Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia. BMC Public Health 2019, 19, 377. [Google Scholar] [CrossRef] [PubMed]
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; et al. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; MacCallum, P.R. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia. J. Cardiometab. Syndr. 2009, 4, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Millen, B.E.; Pencina, M.J.; Kimokoti, R.W.; Zhu, L.; Meigs, J.B.; Ordovas, J.M.; et al. Nutritional risk and the metabolic syndrome in women: Opportunities for preventive intervention from the Framingham Nutrition Study. Am. J. Clin. Nutr. 2006, 84, 434–441. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef]
- Takami, H.; Nakamoto, M.; Uemura, H.; Katsuura, S.; Yamaguchi, M.; Hiyoshi, M.; et al. Inverse correlation between coffee consumption and prevalence of metabolic syndrome: Baseline survey of the J-MICC Study in Tokushima, Japan. J. Epidemiol. 2013, 23, 12–20. [Google Scholar] [CrossRef]
- Matsuura, H.; Mure, K.; Nishio, N.; Kitano, N.; Nagai, N.; Takeshita, T. Relationship between coffee consumption and prevalence of metabolic syndrome among Japanese civil servants. J. Epidemiol. 2012, 22, 160–166. [Google Scholar] [CrossRef]
- Driessen, M.T.; Koppes, L.L.; Veldhuis, L.; Samoocha, D.; Twisk, J.W. Coffee consumption is not related to the metabolic syndrome at the age of 36 years: The Amsterdam Growth and Health Longitudinal Study. Eur. J. Clin. Nutr. 2009, 63, 536–542. [Google Scholar] [CrossRef]
- Karabudak, E.; Türközü, D.; Köksal, E. Association between coffee consumption and serum lipid profile. Exp. Ther. Med. 2015, 9, 1841–1846. [Google Scholar] [CrossRef]
- Jee, S.H.; He, J.; Appel, L.J.; Whelton, P.K.; Suh, I.; Klag, M.J. Coffee consumption and serum lipids: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2001, 153, 353–362. [Google Scholar] [CrossRef]
- Balk, L.; Hoekstra, T.; Twisk, J. Relationship between long-term coffee consumption and components of the metabolic syndrome: The Amsterdam Growth and Health Longitudinal Study. Eur. J. Epidemiol. 2009, 24, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Ma, D.; Zhang, Y.; Liu, Z.; Wang, P. The effect of coffee consumption on serum lipids: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2012, 66, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Burr, M.L.; Limb, E.S.; Sweetnam, P.M.; Fehily, A.M.; Amarah, L.; Hutchings, A. Instant coffee and cholesterol: A randomised controlled trial. Eur. J. Clin. Nutr. 1995, 49, 779–784. [Google Scholar] [PubMed]
- Nakanishi, N.; Nakamura, K.; Suzuki, K.; Tatara, K. Lifestyle and the development of dyslipidemia: A 4-year follow-up study of middle-aged Japanese male office workers. Environ. Health Prev. Med. 1999, 4, 140–145. [Google Scholar] [CrossRef]
- Nakanishi, N.; Tatara, K.; Nakamura, K.; Suzuki, K. Association of lifestyle with serum lipid levels: A study of middle-aged Japanese men. J. Epidemiol. 2000, 10, 216–225. [Google Scholar] [CrossRef]
- Vernarelli, J.A.; Lambert, J.D. Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in U.S. adults. Eur. J. Nutr. 2013, 52, 1039–1048. [Google Scholar] [CrossRef]
- Bouchard, D.R.; Ross, R.; Janssen, I. Coffee, tea and their additives: Association with BMI and waist circumference. Obes. Facts 2010, 3, 345–352. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef]
- Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef]

| Men (n=1,531) | Women (n=2,313) | P-value | MetS (-) (n=2,969) | MetS (+) (n=875) | P-value | |||||
| Mean | ±SE | Mean | ±SE | Mean | ±SE | Mean | ±SE | |||
| Age (years) | 44.2 | ±0.6 | 43.9 | ±0.4 | 0.561 | 39.5 | ±0.4 | 48.5 | ±0.5 | < 0.001 |
| Waist circumference (cm) | 84.1 | ±0.3 | 76.6 | ±0.3 | < 0.001 | 77.4 | ±0.2 | 90.0 | ±0.4 | < 0.001 |
| Systolic blood pressure (mmHg) | 117.5 | ±0.5 | 111.9 | ±0.4 | < 0.001 | 111.0 | ±0.4 | 127.3 | ±0.6 | < 0.001 |
| Diastolic blood pressure (mmHg) | 80.9 | ±0.4 | 74.1 | ±0.3 | < 0.001 | 75.1 | ±0.3 | 85.4 | ±0.5 | < 0.001 |
| Fasting plasma glucose (mg/dl)* | 98.3 | ±0.8 | 92.7 | ±0.5 | < 0.001 | 91.3 | ±0.4 | 110.1 | ±1.6 | < 0.001 |
| Total cholesterol (mg/dl)* | 188.8 | ±1.2 | 185.2 | ±0.9 | 0.029 | 183.3 | ±0.8 | 199.8 | ±1.8 | < 0.001 |
| Triglyceride (mg/dl)* | 158.4 | ±4.9 | 102.0 | ±1.9 | < 0.001 | 101.8 | ±1.7 | 227.0 | ±8.0 | < 0.001 |
| HDL-cholesterol (mg/dl) | 46.1 | ±0.3 | 51.8 | ±0.3 | < 0.001 | 51.1 | ±0.3 | 41.7 | ±0.3 | < 0.001 |
| Total energy intake (kcal/day)* | 2550 | ±28 | 1780 | ±19 | < 0.001 | 2158 | ±23 | 2222 | ±40 | 0.116 |
| % | (SE) | % | (SE) | % | (SE) | % | (SE) | |||
| Women | - | - | - | - | NA | 55.8 | (1.0) | 39.1 | (1.8) | < 0.001 |
| Residence: Rural area | 30.3 | (2.5) | 28.5 | (2.3) | 0.207 | 28.4 | (2.3) | 32.7 | (2.8) | 0.030 |
| Marital status: Single | 30.6 | (1.6) | 25.1 | (1.3) | 0.002 | 30.2 | (1.4) | 18.9 | (1.8) | < 0.001 |
| Education level: < 12 years | 17.1 | (1.3) | 26.1 | (1.5) | < 0.001 | 17.6 | (1.2) | 36.9 | (2.2) | < 0.001 |
| Economic inactive or unemployed | 15.7 | (1.3) | 42.7 | (1.4) | < 0.001 | 31.0 | (1.2) | 25.4 | (1.8) | 0.013 |
| The use of antihypertensive drugs | 11.5 | (1.0) | 9.5 | (0.7) | 0.091 | 4.2 | (0.5) | 32.7 | (1.9) | < 0.001 |
| The use of hypoglycemic agents | 4.8 | (0.6) | 2.9 | (0.4) | 0.005 | 1.2 | (0.2) | 13.2 | (1.2) | < 0.001 |
| The use of antidyslipidemic drugs | 3.8 | (0.6) | 3.6 | (0.4) | 0.834 | 1.1 | (0.2) | 13.0 | (1.5) | < 0.001 |
| Smoking | < 0.001 | < 0.001 | ||||||||
| Ex-smoker | 31.5 | (1.5) | 7.7 | (0.8) | 17.5 | (0.8) | 24.9 | (1.9) | ||
| Current smoker | 49.0 | (1.6) | 5.5 | (0.7) | 25.0 | (1.1) | 31.0 | (1.9) | ||
| High risk alcohol consumption | 22.9 | (1.3) | 5.0 | (0.6) | < 0.001 | 12.0 | (0.8) | 18.9 | (1.6) | < 0.001 |
| Regular walking activity | 40.3 | (1.6) | 39.8 | (1.3) | 0.841 | 40.1 | (1.1) | 39.8 | (2.0) | 0.868 |
| Body mass index: ≥ 25 kg/m2 | 38.4 | (1.6) | 24.5 | (1.0) | < 0.001 | 21.0 | (1.0) | 67.3 | (2.1) | < 0.001 |
| Metabolic syndrome | 27.8 | (1.3) | 16.4 | (0.8) | < 0.001 | - | - | - | - | NA |
| Coffee consumption ≥ 1 cup/day | 68.9 | (1.5) | 64.8 | (1.3) | 0.038 | 65.5 | (1.1) | 71.2 | (1.9) | 0.012 |
| Coffee consumption | < 0.001 | 0.081 | ||||||||
| < 1 cup/day | 31.1 | (1.5) | 35.2 | (1.3) | 34.5 | (1.1) | 28.8 | (1.9) | ||
| 1 cup/day | 19.4 | (1.2) | 24.5 | (1.1) | 21.9 | (0.9) | 22.6 | (1.8) | ||
| 2 cups/day | 19.7 | (1.2) | 24.8 | (1.1) | 21.5 | (1.0) | 23.7 | (1.7) | ||
| ≥ 3 cups/day | 29.8 | (1.4) | 15.5 | (1.0) | 22.2 | (0.9) | 24.9 | (2.1) | ||
| Variables by gender | Coffee consumption | P-value | ||||||||
| < 1 cup/day | 1 cup/day | 2 cups/day | ≥ 3 cups/day | |||||||
| Men (n=1,531) | (n=414) | (n=300) | (n=336) | (n=481) | ||||||
| Age (years) | 37.0 | ±0.8 | 41.4 | ±0.9 | 43.6 | ±0.8 | 43.1 | ±0.6 | < 0.001 | |
| Total energy intake (kcal/day)* | 2508 | ±59 | 2372 | ±55 | 2568 | ±59 | 2698 | ±58 | 0.063 | |
| Residence: Rural area | 29.2 | (3.4) | 28.5 | (3.8) | 30.3 | (3.6) | 33.5 | (3.5) | 0.575 | |
| Marital status: Single | 48.4 | (2.9) | 34.9 | (3.4) | 20.5 | (2.9) | 19.1 | (2.3) | < 0.001 | |
| Education level: < 12 years | 11.8 | (1.6) | 19.4 | (2.7) | 16.6 | (2.3) | 18.7 | (2.1) | 0.019 | |
| Economic inactive or unemployed | 27.4 | (2.7) | 19.0 | (3.1) | 10.9 | (1.9) | 6.8 | (1.2) | < 0.001 | |
| Smoking | < 0.001 | |||||||||
| Ex-smoker | 32.1 | (2.5) | 30.1 | (2.7) | 39.0 | (2.8) | 25.4 | (2.3) | ||
| Current smoker | 39.2 | (3.1) | 44.4 | (3.1) | 45.0 | (3.0) | 64.9 | (2.4) | ||
| High risk alcohol consumption | 21.8 | (2.5) | 20.0 | (2.6) | 25.5 | (2.8) | 23.4 | (2.2) | 0.516 | |
| Regular walking activity | 43.1 | (3.0) | 40.7 | (3.3) | 38.8 | (3.1) | 37.3 | (2.5) | 0.449 | |
| Body mass index: ≥ 25 kg/m2 | 34.8 | (3.1) | 38.2 | (3.3) | 38.9 | (3.2) | 41.3 | (2.8) | 0.423 | |
| Women (n=2,313) | (n=806) | (n=598) | (n=570) | (n=339) | ||||||
| Age (years) | 39.0 | ±0.6 | 43.0 | ±0.6 | 42.4 | ±0.6 | 42.6 | ±0.7 | < 0.001 | |
| Total energy intake (kcal/day)* | 1778 | ±34 | 1774 | ±34 | 1783 | ±34 | 1786 | ±48 | 0.985 | |
| Residence: Rural area | 27.8 | (2.5) | 27.4 | (3.0) | 29.1 | (3.2) | 32.0 | (4.3) | 0.646 | |
| Marital status: Single | 33.7 | (2.2) | 27.3 | (2.5) | 17.8 | (2.2) | 20.1 | (3.2) | < 0.001 | |
| Education level: < 12 years | 26.2 | (2.0) | 26.7 | (2.3) | 24.4 | (2.7) | 21.4 | (2.7) | 0.419 | |
| Economic inactive or unemployed | 50.4 | (2.6) | 44.0 | (2.5) | 36.1 | (2.2) | 31.3 | (2.9) | < 0.001 | |
| Smoking | < 0.001 | |||||||||
| Ex-smoker | 7.6 | (1.2) | 7.5 | (1.7) | 6.3 | (1.1) | 9.6 | (2.3) | ||
| Current smoker | 5.2 | (1.1) | 2.8 | (0.8) | 4.2 | (1.2) | 13.0 | (2.3) | ||
| High risk alcohol consumption | 5.0 | (1.0) | 3.9 | (1.1) | 4.3 | (1.1) | 7.5 | (1.7) | 0.198 | |
| Regular walking activity | 39.2 | (2.0) | 41.7 | (2.5) | 37.8 | (2.7) | 42.6 | (3.2) | 0.559 | |
| Body mass index: ≥ 25 kg/m2 | 22.1 | (1.6) | 25.0 | (1.9) | 22.7 | (2.2) | 30.1 | (3.0) | 0.072 | |
| Coffee consumption | P for trend | |||||||||
| < 1 cup/day | 1 cup/day | 2 cups/day | ≥ 3 cups/day | |||||||
| Men | ||||||||||
| Metabolic syndrome | 1 | (reference) | 0.801 | (0.527-1.218) | 1.101 | (0.693-1.747) | 0.843 | (0.565-1.258) | 0.648 | |
| High WC | 1 | (reference) | 1.310 | (0.737-2.330) | 0.743 | (0.411-1.343) | 0.930 | (0.559-1.548) | 0.439 | |
| High BP | 1 | (reference) | 0.845 | (0.568-1.255) | 0.830 | (0.567-1.217) | 0.811 | (0.568-1.159) | 0.272 | |
| High FPG | 1 | (reference) | 0.825 | (0.553-1.230) | 1.066 | (0.697-1.632) | 0.756 | (0.540-1.058) | 0.219 | |
| High TG | 1 | (reference) | 1.145 | (0.784-1.672) | 1.314 | (0.921-1.876) | 1.069 | (0.771-1.481) | 0.586 | |
| Low HDL-C | 1 | (reference) | 0.951 | (0.640-1.415) | 1.080 | (0.730-1.598) | 1.123 | (0.795-1.587) | 0.423 | |
| Women | ||||||||||
| Metabolic syndrome | 1 | (reference) | 1.057 | (0.651-1.716) | 1.032 | (0.643-1.657) | 0.541 | (0.329-0.891) | 0.056 | |
| High WC | 1 | (reference) | 0.950 | (0.588-1.535) | 1.221 | (0.791-1.886) | 1,002 | (0.626-1.603) | 0.623 | |
| High BP | 1 | (reference) | 1.136 | (0.777-1.660) | 1.198 | (0.817-1.755) | 1.234 | (0.782-1.948) | 0.295 | |
| High FPG | 1 | (reference) | 0.988 | (0.694-1.407) | 1.137 | (0.828-1.561) | 0.714 | (0.471-1.081) | 0.346 | |
| High TG | 1 | (reference) | 0.842 | (0.596-1.190) | 0.797 | (0.547-1.162) | 0.563 | (0.362-0.877) | 0.015 | |
| Low HDL-C | 1 | (reference) | 1.033 | (0.788-1.355) | 0.960 | (0.728-1.266) | 0.590 | (0.411-0.846) | 0.011 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
