Submitted:
04 January 2026
Posted:
05 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Theoretical Analysis and Hypothesis
3.1. Environmental Kuznets Curve: The Inverted U-Shape Relationship Between the Digital Economy and Carbon Dioxide Emission
3.2. Local Government Fiscal Pressure
3.3. Green Finance
3.4. Climate Policy Uncertainty
4. Research Methodology
4.1. Research Models
4.1.1. The Inverted U-Shaped Relationship Between the Digital Economy and Carbon Emissions from the Perspective of EKC
4.1.2. The Shift of the Inflection Point and the Change of the Slope of the EKC Caused by Exogenous shocks
4.1.3. Econometric Methods
4.2. variables and Data
4.2.1. Dependent Variable: Per Capita Carbon Dioxide Emissions, PCO2
4.2.2. Independent Variable: The Level of Development of the Digital Economy, Dig
4.2.3. Exogenous Shock Variables, Z
4.2.4. Control Variables
| Variable | Definition |
|---|---|
| Dependent variable | Per capita carbon dioxide emissions (PCO2) |
| Independent variable | Digital Economy (DIG): digital economy index |
| Z variables | Green Finance (GF): green finance index |
| Local Government Fiscal Pressure (LFP): The ratio of the difference between the local government’s fiscal expenditure and fiscal revenue to the total fiscal revenue | |
| Climate Policy Uncertainty (CPU): Climate Policy Uncertainty index | |
| Control variables | Economic development (PGDP): per capita GDP |
| Openness (TRADE): The ratio of the total value of imports and exports to GDP | |
| Infrastructure (ROAD): The total kilometers of roads in the region | |
| Urbanization (URBAN): The ratio of the permanent resident population in towns to the total permanent resident population | |
| Technological progress (APATENTS): the number of patent applications |
4.3. Descriptive statistics of variables
5. Empirical Results
5.1. Results of Benchmark Regressions
5.2. Benchmark Regression Result of Exogenous Shock
5.2.1. Local Government Fiscal Pressure
5.2.2. Green Finance
5.2.3. Climate Policy Uncertainty
5.3. Heterogeneity Test
5.3.1. Heterogeneity of Regions
5.3.2. Heterogeneity of Coastal–Non-Coastal Divide
5.3.3. Heterogeneity of Urbanization
5.4. Robustness and Endogeneity Testing
5.4.1. Deleting Cities Lagging in the Digital Economy
5.4.2. Altering the Sample Period
5.4.3. Endogeneity Test
6. Conclusions
6.1. Summary of the Findings
6.2. Policy Recommendation
6.3. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
| 1 | The data are all sourced from the “China Digital Economy Development Research Report” and the “China Digital Economy Development White Paper”, both published by the China Academy of Information and Communications Technology. |
| 2 | China Ecological Environment Status Bulletin 2024 |
References
- Liu, X. Structural changes and economic growth in China over the past 40 years of reform and opening-up. China Political Economy 2020, 3(1), 19–38. [Google Scholar] [CrossRef]
- Cavoukian, A.; Tapscott, D. Who knows: safeguarding your privacy in a networked world. McGraw-Hill Professional, 1996. [Google Scholar]
- Yang, G.; Wang, H.; Fan, H.; Yue, Z. The Carbon-Emission-Reduction Effect of the Digital Economy: Theoretical Analysis and Empirical Evidence. China Industrial Economics. 2023, (5), 80–98. [Google Scholar]
- Wang, L.; Chen, L. Resource dependence and air pollution in China: Do the digital economy, income inequality, and industrial upgrading matter? Environment, Development and Sustainability 2024, 26(1), 2069–2109. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, X.; Zhao, J. Can the digital economy development achieve the effect of pollution reduction? Evidence from Chinese Cities. Environmental science and pollution research. 2023, 30(29), 74166–74185. [Google Scholar] [CrossRef]
- Wu, L.; Wan, X.; Li, A.; Murshed, M.; Balsalobre-Lorente, D. Does the digital economy reduce air pollution in China? A perspective from industrial agglomeration. Energy Reports. 2023, 9, 3625–3641. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Lei, Y.; Huang, H. How does digital economy empower pollution mitigation and carbon reduction? Evidence from Chinese cities. Urban Climate 2024, 55, 101946. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Tang, C.; Zhang, Z. Can digitalization reduce industrial pollution? Roles of environmental investment and green innovation. Environmental Research 2024, 240, 117442. [Google Scholar] [CrossRef]
- Bakker, K.; Ritts, M. Smart Earth: A meta-review and implications for environmental governance. Global Environmental Change 2018, 52, 201–211. [Google Scholar] [CrossRef]
- Che, S.; Wang, J. Digital economy development and haze pollution: Evidence from China. Environmental Science and Pollution Research. 2022, 29(48), 73210–73226. [Google Scholar] [CrossRef]
- Li, X.; Yue, S. Blessing or curse? The role of digital technology innovation in carbon emission efficiency. Journal of Environmental Management 2024, 365, 121579. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, J.; Li, X.; Zhong, S. The impact of digital economy on environmental pollution: Evidence from 267 cities in China. PLOS one 2024, 19(1), e0297009. [Google Scholar] [CrossRef]
- Bonsón, E.; Perea, D.; Bednárová, M. Twitter as a tool for citizen engagement: An empirical study of the Andalusian municipalities. Government Information Quarterly 2019, 36(3), 480–489. [Google Scholar] [CrossRef]
- Xue, Q.; Feng, S.; Chen, K.; Li, M. Impact of digital finance on regional carbon emissions: An empirical study of sustainable development in China. Sustainability 2022, 14(14), 8340. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Q.; Wang, L. The impact mechanism and effect evaluation of digital economy development on regional carbon emission reduction: evidence from provincial panel data in China. International Journal of Environmental Research 2024, 18(6), 99. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, P. Myth of the digital economy: Can it continually contribute to a low-carbon status and sustainable development? Environmental Impact Assessment Review 2025, 110, 107688. [Google Scholar] [CrossRef]
- Nizam, H. A.; Zaman, K.; Khan, K. B.; Batool, R.; Khurshid, M. A.; Shoukry, A. M.; Gani, S. Achieving environmental sustainability through information technology: “Digital Pakistan” initiative for green development. Environmental Science and Pollution Research 2020, 27(9), 10011–10026. [Google Scholar] [CrossRef]
- Danish; Khan, N.; Baloch, M. A.; Saud, S.; Fatima, T. The effect of ICT on CO2 emissions in emerging economies: does the level of income matter? Environmental Science and Pollution Research. 2018, 25(23), 22850–22860. [Google Scholar] [CrossRef]
- Lee, J. W.; Brahmasrene, T. ICT, CO2 emissions and economic growth: evidence from a panel of ASEAN. Global Economic Review 2014, 43(2), 93–109. [Google Scholar] [CrossRef]
- Park, Y.; Meng, F.; Baloch, M. A. The effect of ICT, financial development, growth, and trade openness on CO2 emissions: an empirical analysis. Environmental Science and Pollution Research 2018, 25(30), 30708–30719. [Google Scholar] [CrossRef]
- Raheem, I. D.; Tiwari, A. K.; Balsalobre-Lorente, D. The role of ICT and financial development in CO2 emissions and economic growth. Environmental Science and Pollution Research 2020, 27(2), 1912–1922. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Science of the Total Environment 2022, 852, 158403. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L. Resource dependence and air pollution in China: Do the digital economy, income inequality, and industrial upgrading matter? Environment, Development and Sustainability 2024, 26(1), 2069–2109. [Google Scholar] [CrossRef]
- Ding, C.; Liu, C.; Zheng, C.; Li, F. Digital economy, technological innovation and high-quality economic development: Based on spatial effect and mediation effect. Sustainability 2021, 14(1), 216. [Google Scholar] [CrossRef]
- Wang, Q.; Li, C.; Li, R. Could the digital economy increase renewable energy and reduce carbon emissions? Empirical research on EKC in 67 countries. Environmental Science and Pollution Research 2023, 30(31), 77150–77164. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Xiao, H.; Li, J.; Chen, H.; Chen, W. Study on how the digital economy affects urban carbon emissions. Renewable and Sustainable Energy Reviews 2025, 207, 114910. [Google Scholar] [CrossRef]
- Grossman, G. M.; Krueger, A. B. Environmental impacts of a North American free trade agreement; 1991. [Google Scholar]
- Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development; World Employment Research Programme, Working Paper, International Labour Office: Geneva, 1993. [Google Scholar]
- Lei, X.; Ma, Y.; Ke, J.; Zhang, C. The non-linear impact of the digital economy on carbon emissions based on a mediated effects model. Sustainability 2023, 15(9), 7438. [Google Scholar] [CrossRef]
- Bai, L.; Guo, T.; Xu, W.; Liu, Y.; Kuang, M.; Jiang, L. Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model. Energy Policy 2023, 183, 113792. [Google Scholar] [CrossRef]
- Miao, L.; Chen, J.; Fan, T.; Lü, Y. The Impact of Digital Economy Development on Carbon Emissions: Evidence from Panel Data of 278 Prefecture-Level Cities. South China Finance 2022, (2), 45–57. [Google Scholar]
- Wang, Shuailong. Digital economy and urban carbon emissions: “Accelerator” or “speed bump”? China Population, Resources and Environment 2023, 33(6), 11–22. [Google Scholar]
- Li, X.; Liu, J.; Ni, P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability 13(13), 7267. [CrossRef]
- Zhang, Z.; Chen, L.; Li, J.; Ding, S. Digital economy development and carbon emission intensity—mechanisms and evidence from 72 countries. Scientific Reports 2024, 14(1), 28459. [Google Scholar] [CrossRef]
- Liang, C.; Chen, X.; Di, Q. Path to pollution and carbon reduction synergy from the perspective of the digital economy: Fresh evidence from 292 prefecture-level cities in China. Environmental research 2024, 252, 119050. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Wang, Z.; Wang, Z.; Wei, L. Has industrial upgrading improved air pollution? —Evidence from China’s digital economy. Sustainability 2022, 14(14), 8967. [Google Scholar] [CrossRef]
- Cheng, S.; Qu, G. Research on the effect of digital economy on carbon emissions under the background of “double carbon”. International Journal of Environmental Research and Public Health. 2023, 20(6), 4931. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, S.; Li, R. Could information and communication technology (ICT) reduce carbon emissions? The role of trade openness and financial development. Telecommunications Policy 2024, 48(3), 102699. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Lin, W.; Li, Y. Government fiscal decentralization and haze and carbon reduction: Evidence from the fiscal Province-Managing-County reform. Environmental Research 2024, 252, 119020. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Y.; Chen, N.; Wen, F. How does climate policy uncertainty shape corporate investment behavior? Research in International Business and Finance 2025, 74, 102696. [Google Scholar] [CrossRef]
- Zhan, X.; Miao, Z. The Economic Development Quality Effect of Local Fiscal Pressure: Evidence from Panel Data of 282 Prefecture-Level Cities in China. Inquiry into Economic Issues 2019, (6), 57–71. [Google Scholar]
- Xiang, Y.; Zhao, J. Research on the Sustainability of Local Public Finance under the Digital Economy. China Soft Science. 2023, (3), 203–212. [Google Scholar]
- Zhang, X.; Feng, T.; Wang, C.; Li, C. Local fiscal pressure and public health: evidence from China. International Journal of Environmental Research and Public Health 2023, 20(6), 5126. [Google Scholar] [CrossRef]
- Hui, C.; Shen, F.; Tong, L.; Zhang, J.; Liu, B. Fiscal pressure and air pollution in resource-dependent cities: Evidence from China. Frontiers in Environmental Science 2022, 10, 908490. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Hou, J.; Yu, B.; Pan, Y. The effect of economic growth pressure on green technology innovation: Do environmental regulation, government support, and financial development matter? Journal of Environmental Management 2023, 330, 117172. [Google Scholar] [CrossRef]
- Wei, L.; Lin, B.; Zheng, Z.; Wu, W.; Zhou, Y. Does fiscal expenditure promote green technological innovation in China? Evidence from Chinese cities. Environmental Impact Assessment Review 2023, 98, 106945. [Google Scholar] [CrossRef]
- Kong, D.; Zhu, L. Governments’ fiscal squeeze and firms’ pollution emissions: Evidence from a natural experiment in China. Environmental and Resource Economics 2022, 81(4), 833–866. [Google Scholar] [CrossRef]
- Peng, F.; Wang, L.; Peng, L.; Wu, H. Local government fiscal squeeze, environmental regulation and firms’ polluting behavior: Evidence from China. Economic Modelling 2023, 125, 106343. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Yu, Z. Local government debt and corporate digital transformation: Evidence from China. Finance Research Letters 2023, 57, 104282. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y. Green credit policy and the promotion of green innovation. Management World 2021, (6), 173–188+11. [Google Scholar]
- Zhou, X.; Jia, M.; Zhao, X. An Evolutionary Game and Empirical Study on Green Finance Promoting Corporate Green Technology Innovation. China Industrial Economics. 2023, (6), 43–61. [Google Scholar]
- Meo, M. S.; Abd Karim, M. Z. The role of green finance in reducing CO2 emissions: An empirical analysis. Borsa Istanbul Review 2022, 22(1), 169–178. [Google Scholar] [CrossRef]
- Ran, Q.; Liu, L.; Razzaq, A.; Meng, Y.; Yang, X. Does green finance improve carbon emission efficiency? Experimental evidence from China. Environmental Science and Pollution Research 2023, 30(16), 48288–48299. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, F. Green Finance and Green Total Factor Productivity: Carbon-Emission-Reduction Effects under Environmental Regulation. Ecological Economy 2023, 39(8), 43–51. [Google Scholar]
- Wu, Z.; Xu, X.; He, M. The impact of green finance on urban carbon emission efficiency: threshold effects based on the stages of the digital economy in China. Sustainability 2025, 17(3), 854. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, L.; Zhou, J. The impact of green finance and digital economy on regional carbon emission reduction. International Review of Economics & Finance 2025, 97, 103748. [Google Scholar]
- Lee, C. C.; Li, J.; Wang, F. The role of green finance in the construction of new energy system: evidence from China. Energy Economics 2024, 139, 107878. [Google Scholar] [CrossRef]
- Bai, J.; Chen, Z.; Yan, X.; Zhang, Y. Research on the impact of green finance on carbon emissions: evidence from China. Economic research-Ekonomska istraživanja 2022, 35(1), 6965–6984. [Google Scholar] [CrossRef]
- Xu, W.; Feng, X.; Zhu, Y. The impact of green finance on carbon emissions in China: an energy consumption optimization perspective. Sustainability 2023, 15(13), 10610. [Google Scholar] [CrossRef]
- Ma, Y. R.; Liu, Z.; Ma, D.; Zhai, P.; Guo, K.; Zhang, D.; Ji, Q. A news-based climate policy uncertainty index for China. Scientific Data. 2023c, 10(1), 881. [Google Scholar] [CrossRef]
- Sun, G.; Fang, J.; Li, T.; Ai, Y. Effects of climate policy uncertainty on green innovation in Chinese enterprises. International Review of Financial Analysis 2024, 91, 102960. [Google Scholar] [CrossRef]
- Tedeschi, M.; Foglia, M.; Bouri, E.; Dai, P. F. How does climate policy uncertainty affect financial markets? Evidence from Europe. Economics Letters 2024, 234, 111443. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Yan, C.; Gozgor, G. Climate policy uncertainty and firm-level total factor productivity: Evidence from China. Energy Economics 2022, 113, 106209. [Google Scholar] [CrossRef]
- Lin, Y. Climate policy uncertainty and energy transition: Evidence from prefecture-level cities in China. Energy Economics 2024, 139, 107938. [Google Scholar] [CrossRef]
- Bai, D.; Du, L.; Xu, Y.; Abbas, S. Climate policy uncertainty and corporate green innovation: Evidence from Chinese A-share listed industrial corporations. Energy Economics. 2023a, 127, 107020. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, J.; Luo, R.; Feng, Y. How does climate policy uncertainty affect green technology innovation at the corporate level? New evidence from China. Environmental Research 2023, 237, 117003. [Google Scholar] [CrossRef]
- Ren, X.; Li, J.; He, F.; Lucey, B. Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying Granger tests. Renewable and sustainable energy reviews 2023, 173, 113058. [Google Scholar] [CrossRef]
- Persakis, A. The impact of climate policy uncertainty on ESG performance, carbon emission intensity and firm performance: evidence from Fortune 1000 firms. Environment, Development and Sustainability 2024, 26(9), 24031–24081. [Google Scholar] [CrossRef]
- Haans, R. F.; Pieters, C.; He, Z. L. Thinking about U: Theorizing and testing U-and inverted U-shaped relationships in strategy research. Strategic Management Journal. 2016, 37(7), 1177–1195. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurial Vitality and High-Quality Development: Empirical Evidence from Chinese Cities. Management World 2020, (10), 65–75. [Google Scholar]
- Bai, J.; Lu, J.; Li, S. Fiscal pressure, tax competition and environmental pollution. Environmental and resource economics 2019, 73(2), 431–447. [Google Scholar] [CrossRef]
- Liu, H.; He, C. Mechanisms and Empirical Evidence of Green Finance Promoting High-Quality Urban Economic Development: Experience from 272 Prefecture-Level Cities in China. Investment Research 2021, 40(7), 37–52. [Google Scholar]
- Ma, S.; Wei, W.; Li, J. Has the digital economy improved the ecological environment? Empirical evidence from China. Environmental Science and Pollution Research 2023b, 30(40), 91887–91901. [Google Scholar] [CrossRef]
- Baker, S. R.; Bloom, N.; Davis, S. J. Measuring economic policy uncertainty. The Quarterly Journal of Economics 2016, 131(4), 1593–1636. [Google Scholar] [CrossRef]
- Aslam, B.; Hu, J.; Shahab, S.; Ahmad, A.; Saleem, M.; Shah, S. S. A.; Hassan, M. The nexus of industrialization, GDP per capita and CO2 emission in China. Environmental Technology & Innovation 2021, 23, 101674. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. The effects of trade openness on decoupling carbon emissions from economic growth–evidence from 182 countries. Journal of Cleaner Production. 2021, 279, 123838. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.; Pata, U. K.; Li, R.; Kartal, M. T. Digital economy and carbon dioxide emissions: Examining the role of threshold variables. Geoscience Frontiers 2024, 15(3), 101644. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity—empirical evidence from China’s provinces. Energy Strategy Reviews. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Q.; Wang, L. The impact mechanism and effect evaluation of digital economy development on regional carbon emission reduction: evidence from provincial panel data in China. International Journal of Environmental Research 2021, 18(6), 99. [Google Scholar] [CrossRef]
| VarName | Obs | Mean | Median | SD | Min | Max |
|---|---|---|---|---|---|---|
| lnPCO2 | 3204 | 8.765 | 8.797 | 0.865 | 6.712 | 10.961 |
| DIG | 3204 | 0.135 | 0.108 | 0.086 | 0.049 | 0.563 |
| lnPGDP | 3204 | 10.811 | 10.786 | 0.542 | 9.642 | 12.061 |
| TRADE | 3204 | 0.183 | 0.085 | 0.271 | 0.003 | 1.568 |
| lnROAD | 3204 | 9.328 | 9.435 | 0.642 | 7.277 | 10.478 |
| URBAN | 3204 | 0.574 | 0.553 | 0.144 | 0.299 | 0.949 |
| lnAPATENTS | 3204 | 7.993 | 7.889 | 1.564 | 4.554 | 11.759 |
| GF | 3204 | 0.336 | 0.359 | 0.104 | 0.082 | 0.532 |
| LFP | 3204 | 1.802 | 1.350 | 1.539 | 0.020 | 7.646 |
| CPU | 3204 | 1.421 | 1.386 | 0.554 | 0.345 | 2.856 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| lnPCO2 | lnPCO2 | lnPCO2 | lnPCO2 | lnPCO2 | lnPCO2 | |
| DIG | 0.800*** | 0.624*** | 0.621*** | 0.561** | 0.535** | 0.531** |
| (3.42) | (2.72) | (2.72) | (2.47) | (2.35) | (2.32) | |
| DIG2 | -1.787*** | -1.542*** | -1.540*** | -1.443*** | -1.358*** | -1.353*** |
| (-4.56) | (-4.03) | (-4.02) | (-3.81) | (-3.55) | (-3.53) | |
| lnPGDP | 0.092*** | 0.092*** | 0.086*** | 0.088*** | 0.085*** | |
| (4.99) | (4.99) | (4.84) | (4.94) | (4.74) | ||
| lnROAD | -0.010 | -0.006 | -0.007 | -0.006 | ||
| (-0.32) | (-0.19) | (-0.22) | (-0.20) | |||
| URBAN | 0.318*** | 0.306*** | 0.301*** | |||
| (3.74) | (3.61) | (3.56) | ||||
| TRADE | 0.065* | 0.061* | ||||
| (1.84) | (1.73) | |||||
| lnAPATENTS | 0.010 | |||||
| (1.09) | ||||||
| Constant | 8.703*** | 7.728*** | 7.816*** | 7.670*** | 7.654*** | 7.602*** |
| (379.97) | (38.68) | (23.78) | (23.54) | (23.46) | (23.10) | |
| Observations | 3,204 | 3,204 | 3,204 | 3,204 | 3,204 | 3,204 |
| R-squared | 0.981 | 0.981 | 0.981 | 0.981 | 0.981 | 0.981 |
| City FE | YES | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES | YES |
| Variable | Control | Lower Bound | Upper Bound | Extreme Point |
|---|---|---|---|---|
| Dig | NO | 0.627*** | -1.210*** | 0.224 |
| Dig | YES | 0.399** | -0.992*** | 0.196 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| lnPCO2 | lnPCO2 | lnPCO2 | lnPCO2 | lnPCO2 | lnPCO2 | |
| DIG | 0.518** | 0.839*** | 0.541** | 0.346 | 0.526** | 0.565** |
| (2.28) | (2.77) | (2.37) | (1.53) | (2.30) | (2.45) | |
| DIG2 | -1.290*** | -2.474*** | -1.364*** | -1.054*** | -1.346*** | -1.526*** |
| (-3.41) | (-2.95) | (-3.57) | (-2.89) | (-3.52) | (-3.80) | |
| LFP | 0.022*** | 0.018* | ||||
| (2.59) | (1.78) | |||||
| DIG_LFP | 0.463** | |||||
| (2.00) | ||||||
| DIG2_LFP | -1.254** | |||||
| (-2.13) | ||||||
| lnPGDP | 0.107*** | 0.103*** | 0.084*** | 0.079*** | 0.080*** | 0.079*** |
| (5.67) | (5.52) | (4.72) | (4.46) | (4.49) | (4.42) | |
| lnROAD | -0.009 | -0.011 | -0.005 | -0.026 | -0.008 | -0.009 |
| (-0.29) | (-0.36) | (-0.15) | (-0.85) | (-0.26) | (-0.31) | |
| URBAN | 0.319*** | 0.318*** | 0.297*** | 0.259*** | 0.302*** | 0.298*** |
| (3.86) | (3.86) | (3.51) | (3.09) | (3.57) | (3.53) | |
| TRADE | 0.059* | 0.057* | 0.063* | 0.036 | 0.061* | 0.060* |
| (1.70) | (1.66) | (1.79) | (1.13) | (1.71) | (1.70) | |
| lnAPATENTS | 0.011 | 0.011 | 0.012 | 0.008 | 0.009 | 0.009 |
| (1.12) | (1.20) | (1.30) | (0.85) | (0.98) | (0.98) | |
| GF | 0.103*** | 0.225** | 0.330*** | |||
| (5.52) | (2.41) | (3.49) | ||||
| DIG_GF | -3.721** | |||||
| (-2.51) | ||||||
| DIG2_GF | 0.883 | |||||
| (0.37) | ||||||
| CPU | 0.011** | 0.011** | ||||
| (2.12) | (2.17) | |||||
| DIG_CPU | -0.238 | |||||
| (-1.27) | ||||||
| DIG2_CPU | 0.648* | |||||
| (1.70) | ||||||
| Constant | 7.331*** | 7.464*** | 7.503*** | 7.934*** | 7.657*** | 7.739*** |
| (22.59) | (22.76) | (22.54) | (23.45) | (23.39) | (23.37) | |
| Observations | 3,204 | 3,204 | 3,204 | 3,204 | 3,204 | 3,204 |
| R-squared | 0.981 | 0.981 | 0.981 | 0.982 | 0.981 | 0.981 |
| City FE | YES | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
|---|---|---|---|---|---|---|---|
| East | Middle | West | Coastal | Non- Coastal |
High_ Urban |
Low_ Urban |
|
| DIG | 0.498 | 0.106 | 1.196** | 0.509* | 0.541 | 0.373 | 1.310* |
| (1.56) | (0.20) | (2.19) | (1.80) | (1.40) | (1.32) | (1.79) | |
| DIG2 | -1.110** | -1.714 | -2.329** | -1.114** | -1.689** | -0.978** | -4.412** |
| (-2.25) | (-1.29) | (-2.47) | (-2.42) | (-2.34) | (-2.24) | (-2.02) | |
| lnPGDP | -0.007 | 0.129*** | 0.071** | 0.010 | 0.098*** | 0.102*** | 0.029 |
| (-0.25) | (3.79) | (2.00) | (0.38) | (4.03) | (3.75) | (0.99) | |
| lnROAD | 0.026 | -0.016 | -0.019 | 0.030 | -0.035 | -0.028 | -0.024 |
| (0.93) | (-0.28) | (-0.36) | (0.98) | (-0.81) | (-0.82) | (-0.39) | |
| URBAN | 0.148 | 0.580*** | 0.202* | 0.136 | 0.401*** | 0.202 | 0.013 |
| (1.43) | (2.86) | (1.69) | (1.36) | (3.02) | (1.34) | (0.08) | |
| TRADE | 0.080 | 0.074 | -0.000 | 0.087 | 0.006 | 0.014 | 0.115*** |
| (1.25) | (1.43) | (-0.01) | (1.60) | (0.18) | (0.31) | (2.92) | |
| lnAPATENTS | -0.002 | 0.003 | 0.018 | 0.006 | 0.009 | 0.000 | 0.005 |
| (-0.15) | (0.17) | (1.07) | (0.57) | (0.64) | (0.03) | (0.34) | |
| Constant | 8.442*** | 7.215*** | 7.842*** | 8.130*** | 7.757*** | 7.964*** | 8.302*** |
| (20.58) | (11.11) | (12.30) | (19.00) | (15.74) | (17.92) | (11.99) | |
| Observations | 1,176 | 1,176 | 852 | 1,320 | 1,884 | 1,593 | 1,601 |
| R-squared | 0.981 | 0.972 | 0.988 | 0.982 | 0.981 | 0.985 | 0.979 |
| City FE | YES | YES | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) |
|---|---|---|---|---|---|
| lnPCO2 | lnPCO2 | DIG | DIGSQ | lnPCO2 | |
| L1_DIG | 0.500*** | 0.075 | |||
| (0.098) | (0.066) | ||||
| L1_DIGSQ | -0.060 | 0.374** | |||
| (0.204) | (0.155) | ||||
| DIG | 0.513* | 0.458* | 1.099* | ||
| (1.88) | (1.88) | (0.656) | |||
| DIG2 | -1.079** | -1.381*** | -2.454** | ||
| (-2.53) | (-3.41) | (1.100) | |||
| lnPGDP | 0.054*** | 0.087*** | 0.006* | -0.002 | 0.084** |
| (2.69) | (4.69) | (0.003) | (0.002) | (0.020) | |
| lnROAD | -0.063 | -0.005 | -0.013*** | -0.006** | -0.024 |
| (-1.56) | (-0.17) | (0.005) | (0.003) | (0.031) | |
| URBAN | 0.268** | 0.293*** | 0.012 | -0.003 | 0.284*** |
| (2.20) | (3.43) | (0.013) | (0.009) | (0.099) | |
| TRADE | 0.138*** | 0.080** | -0.031* | -0.025* | 0.037 |
| (3.18) | (1.96) | (0.018) | (0.013) | (0.041) | |
| lnAPATENTS | 11.410*** | 0.012 | -0.001 | -0.000 | 0.009 |
| (3.53) | (1.19) | (0.001) | (0.001) | (0.011) | |
| Constant | 8.406*** | 7.550*** | |||
| (22.76) | (22.30) | ||||
| Observations | 2,136 | 3084 | 2937 | 2937 | 2937 |
| R-squared | 0.989 | 0.980 | 0.029 | ||
| City FE | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
