Submitted:
31 December 2025
Posted:
01 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Clinical Audit
3. Results
3.1. Literature Review
3.2. Clinical Experience: An Audit of Accuracy of Nutritional Screening GO Surgical Patients in a UK Tertiary Hospital
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
- -
- Gynae-oncology surgical patients
- -
- Assessment of nutrition in pre-, peri- or post-operative period
- -
- Adults (18+ years old)
- -
- English language
- -
- Data where assessment of nutrition under routine clinical care can be extracted
- -
- Published within the last 10 years
- -
- Reviews
- -
- Conference abstracts
- -
- Not undergone or undergoing gynae-oncology (GO) surgery
- -
- Non-English language
- -
- < 18 years old
- -
- Mixed cohort where it is not possible to separate nutritional data for GO surgical patients
- -
- Nutritional assessment integrated with other assessments (e.g. frailty), where results on nutrition status cannot be isolated
- -
- Dietary/nutritional intervention studies where pre-intervention or without-intervention data cannot be isolated
- -
- Focus on assessing nutritional status for another treatment modality, such as chemotherapy or radiotherapy, where nutritional data for surgery cannot be isolated
- -
- Case studies
- -
- Published >10 years ago
- -
- No details on method of nutritional screening or assessment tool provided
References
- Goins, E.C.; Weber, J.M.; Truong, T.; Moss, H.A.; Previs, R.A.; Davidson, B.A.; Havrilesky, L.J. Malnutrition as a risk factor for post-operative morbidity in gynecologic cancer: Analysis using a national surgical outcomes database. Gynecol Oncol 2022, 165, 309–316. [Google Scholar] [CrossRef]
- Raia, G.; Del Grande, M.; Colombo, I.; Nerone, M.; Manganaro, L.; Gasparri, M.L.; Papadia, A.; Del Grande, F.; Rizzo, S. Whole-Body Composition Features by Computed Tomography in Ovarian Cancer: Pilot Data on Survival Correlations. Cancers (Basel) 2023, 15. [Google Scholar] [CrossRef]
- Benna-Doyle, S.; Baguley, B.J.; Laing, E.; Kiss, N. Nutritional interventions during treatment for ovarian cancer: A narrative review and recommendations for future research. Maturitas 2024, 183, 107938. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN practical guideline: Clinical nutrition in surgery. Clin Nutr 2021, 40, 4745–4761. [Google Scholar] [CrossRef] [PubMed]
- BAPEN. Malnutrition Universal Screening Tool. Available online: https://www.bapen.org.uk/pdfs/must/must_full.pdf.
- Aynaci, G.; Guksu, Z. Nutritional screening and the impact of malnutrition on poor postoperative outcomes in gynecological oncology patients. Prog. Nutr. 2019, 21, 127–134. [Google Scholar] [CrossRef]
- Hertlein, L.; Kirschenhofer, A.; Fürst, S.; Beer, D.; Göß, C.; Lenhard, M.; Friese, K.; Burges, A.; Rittler, P. Malnutrition and clinical outcome in gynecologic patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 174, 137–140. [Google Scholar] [CrossRef]
- Nasser, S.; Bilir, E.; Derin, X.; Richter, R.; Grabowski, J.P.; Ali, P.; Kulbe, H.; Chekerov, R.; Braicu, E.; Sehouli, J. Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study. Cancers 2024, 16. [Google Scholar] [CrossRef]
- Tian, M.; Fu, H.P.; Du, J. Application value of NRS2002 and PG-SGA in nutritional assessment for patients with cervical cancer surgery. Am. J. Transl. Res. 2021, 13, 7186–7192. [Google Scholar]
- Eurich, K.E.; Deckert, A.; Smith, B.; Kolahi, K.; Pennington, K.P. The feasibility of screening for malnutrition in the outpatient setting and the prevalence of malnutrition in patients with newly-diagnosed ovarian carcinoma. Gynecol. Oncol. Rep. 2022, 43. [Google Scholar] [CrossRef]
- Gounitsioti, I.S.; Poulimeneas, D.; Grammatikopoulou, M.G.; Kotzamanidis, C.; Gkiouras, K.; Nigdelis, M.P.; Tsolakidis, D.; Papanikolaou, A.; Tarlatzis, B.C.; Bogdanos, D.P.; et al. Objective and Subjective Appetite Assessment in Patients with Gynecological Cancer: A Pre- and Post-Operative Pilot Study. Int. J. Environ. Res. Public Health 2022, 19. [Google Scholar] [CrossRef]
- Ho, C.Y.; Ibrahim, Z.; Abu Zaid, Z.; Mat Daud, Z.A.; Md Yusop, N.B. Clinical malnutrition predictive model among gynecologic cancer patients prior to elective operation: A cross-sectional study. Clin. Nutr. (Edinb. Scotl. ) 2021, 40, 4373–4379. [Google Scholar] [CrossRef] [PubMed]
- Chantragawee, C.; Achariyapota, V. Utilization of a Scored Patient-Generated Subjective Global Assessment in Detecting a Malnourished Status in Gynecologic Cancer Patients. Asian Pac. J. Cancer Prev.: APJCP 2016, 17, 4401–4404. [Google Scholar] [PubMed]
- Benoit, L.; Boudebza, A.; Bentivegna, E.; Nguyen-Xuan, H.-T.; Azais, H.; Bats, A.-S.; Koual, M. What is the most pertinent definition of malnutrition in epithelial ovarian cancer to assess morbidity and mortality? Gynecol. Oncol. 2024, 181, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Pache, B.; Grass, F.; Hübner, M.; Kefleyesus, A.; Mathevet, P.; Achtari, C. Prevalence and Consequences of Preoperative Weight Loss in Gynecologic Surgery. Nutrients 2019, 11. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; He, F.; Wu, H.; Wang, C.; Fu, C. Preoperative controlling nutritional status (CONUT) score is a prognostic factor for early-stage cervical cancer patients with high-risk factors. Gynecol. Oncol. 2021, 162, 763–769. [Google Scholar] [CrossRef]
- Lee, J.; Chen, T.-C.; Jan, Y.-T.; Li, C.-J.; Chen, Y.-J.; Wu, M.-H. Association of Patient-Reported Outcomes and Nutrition with Body Composition in Women with Gynecologic Cancer Undergoing Post-Operative Pelvic Radiotherapy: An Observational Study. Nutrients 2021, 13. [Google Scholar] [CrossRef]
- Lee, J.; Lin, J.B.; Chen, T.C.; Jan, Y.T.; Sun, F.J.; Chen, Y.J.; Wu, M.H. Progressive Skeletal Muscle Loss After Surgery and Adjuvant Radiotherapy Impact Survival Outcomes in Patients With Early Stage Cervical Cancer. Front. Nutr. 2022, 8. [Google Scholar] [CrossRef]
- Lee, J.; Weng, C.-S.; Chang, C.-L.; Hsu, W.-H.; Jan, Y.-T.; Wu, K.-P. Association of prognostic nutritional index with muscle loss and survival in patients with ovarian cancer treated with primary debulking surgery and chemotherapy. Support. Care Cancer: Off. J. Multinatl. Assoc. Support. Care Cancer 2023, 31, 267. [Google Scholar] [CrossRef]
- Uccella, S.; Mele, M.C.; Quagliozzi, L.; Rinninella, E.; Nero, C.; Cappuccio, S.; Cintoni, M.; Gasbarrini, A.; Scambia, G.; Fagotti, A. Assessment of preoperative nutritional status using BIA-derived phase angle (PM) in patients with advanced ovarian cancer: Correlation with the extent of cytoreduction and complications. Gynecol. Oncol. 2018, 149, 263–269. [Google Scholar] [CrossRef]
- Chen, J.; Jin, L.; Luo, R.; Zhang, X.; Chen, Y.; Han, Z.; Liu, T. Predictive value of preoperative systemic immune-inflammation index and prognostic nutrition index in patients with epithelial ovarian cancer. J. Ovarian Res. 2025, 18, 45. [Google Scholar] [CrossRef]
- Feng, Z.; Wen, H.; Ju, X.; Bi, R.; Chen, X.; Yang, W.; Wu, X. The preoperative prognostic nutritional index is a predictive and prognostic factor of high-grade serous ovarian cancer. BMC Cancer 2018, 18, 883. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, D.; Sonik, R.; De Vitis, L.A.; Rossi, V.; Bazzurini, L.; McGree, M.E.; Fought, A.J.; Mariani, A.; Cliby, W.A.; Kumar, A. Evaluating nutrition in advanced ovarian cancer: which biomarker works best? Gynecol. Oncol. 2024, 188, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Park, H.-P.; Kim, H.S.; Park, S. Preoperative Prognostic Nutritional Index Is a Prognostic Indicator of Cancer-Specific Survival in Patients Undergoing Endometrial Cancer Surgery. J. Korean Med. Sci. 2023, 38, e163. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cong, R.; Wang, Y.T.; Kong, F.F.; Ma, J.; Wu, Q.J.; Ma, X.X. Naples prognostic score is an independent prognostic factor in patients with operable endometrial cancer: Results from a retrospective cohort study. Gynecol. Oncol. 2021, 160, 91–98. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Zhao, Y.; Jiao, X.; Yu, Y.; Li, R.; Zeng, S.; Chi, J.; Ma, G.; Huo, Y.; et al. The impact of preoperative immunonutritional status on prognosis in ovarian cancer: a multicenter real-world study. J. Ovarian Res. 2025, 18, 30. [Google Scholar] [CrossRef]
- Ogura, S.; Seo, K.; Ichihara, M.; Ichizuka, K.; Nagatsuka, M. Clinical Utility of the Geriatric Nutritional Risk Index Before Surgical Intervention for Epithelial Ovarian Cancer Patients: A Retrospective Study. J. Clin. Med. Res. -Can. 2022, 14, 409–415. [Google Scholar] [CrossRef]
- Pergialiotis, V.; Thomakos, N.; Papalios, T.; Lygizos, V.; Vlachos, D.E.; Rodolakis, A.; Haidopoulos, D. Prognostic Nutritional Index as a Predictive Biomarker of Post-Operative Infectious Morbidity in Gynecological Cancer Patients: A Prospective Cohort Study. Nutr. Cancer 2024, 76, 364–371. [Google Scholar] [CrossRef]
- Miao, Y.; Li, S.; Yan, Q.; Li, B.; Feng, Y. Prognostic Significance of Preoperative Prognostic Nutritional Index in Epithelial Ovarian Cancer Patients Treated with Platinum-Based Chemotherapy. Oncol. Res. Treat. 2016, 39, 712–719. [Google Scholar] [CrossRef]
- Zhu, X.L.; Liu, X.J.; Tian, J.B.; He, C.S.; Huang, S. Nutritional assessment of Chinese gynecologic cancer survivors with post-surgical lower limb lymphedema: a cross-sectional study. Front. Nutr. 2024, 11. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin. Res. ed.) 2021, 372, n71. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Barber, T.M.; Mohammed, N.I.; Cappuccio, F.P.; Hardy, R.; Mathur, R.; Banerjee, A.; Gill, P. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: a population-based cohort study. lancet. Diabetes Endocrinol. 2021, 9, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition - An ESPEN Consensus Statement. Clin Nutr 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- van Bokhorst-de van der Schueren, M.A.; Guaitoli, P.R.; Jansma, E.P.; de Vet, H.C. Nutrition screening tools: does one size fit all? A systematic review of screening tools for the hospital setting. Clin Nutr 2014, 33, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Allison, S.P.; Elia, M.; Vellas, B.; Plauth, M. ESPEN guidelines for nutrition screening 2002. Clin Nutr 2003, 22, 415–421. [Google Scholar] [CrossRef]
- Lee, J.L.; Oh, E.S.; Lee, R.W.; Finucane, T.E. Serum Albumin and Prealbumin in Calorically Restricted, Nondiseased Individuals: A Systematic Review. Am. J. Med. 2015, 128, 1023.e1021–1022. [Google Scholar] [CrossRef]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN. J. Parenter. Enter. Nutr. 2012, 36, 275–283. [Google Scholar] [CrossRef]
- Jensen, G.L.; Cederholm, T.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; de Baptista, G.A.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report From the Global Clinical Nutrition Community. JPEN. J. Parenter. Enter. Nutr. 2019, 43, 32–40. [Google Scholar] [CrossRef]
- Ye, X.J.; Ji, Y.B.; Ma, B.W.; Huang, D.D.; Chen, W.Z.; Pan, Z.Y.; Shen, X.; Zhuang, C.L.; Yu, Z. Comparison of three common nutritional screening tools with the new European Society for Clinical Nutrition and Metabolism (ESPEN) criteria for malnutrition among patients with geriatric gastrointestinal cancer: a prospective study in China. BMJ Open 2018, 8, e019750. [Google Scholar] [CrossRef]
- Boléo-Tomé, C.; Monteiro-Grillo, I.; Camilo, M.; Ravasco, P. Validation of the Malnutrition Universal Screening Tool (MUST) in cancer. Br. J. Nutr. 2012, 108, 343–348. [Google Scholar] [CrossRef]
- Torres, M.L.; Hartmann, L.C.; Cliby, W.A.; Kalli, K.R.; Young, P.M.; Weaver, A.L.; Langstraat, C.L.; Jatoi, A.; Kumar, S.; Mariani, A. Nutritional status, CT body composition measures and survival in ovarian cancer. Gynecol Oncol 2013, 129, 548–553. [Google Scholar] [CrossRef]
- Del Grande, M.; Rizzo, S.; Nicolino, G.M.; Colombo, I.; Rossi, L.; Manganaro, L.; Del Grande, F. Computed Tomography-Based Body Composition in Patients With Ovarian Cancer: Association With Chemotoxicity and Prognosis. Front Oncol 2021, 11, 718815. [Google Scholar] [CrossRef]
- Müller, L. AI-based body composition measures in abdominal CT scans: prime time for clinical implementation? Eur. Radiol. 2025, 35, 517–519. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
