Preprint
Article

This version is not peer-reviewed.

Enhancing Fire Resistance: A Thermal and Structural Optimization Approach for Fire Door Frame Using Numerical Simulation

Submitted:

31 December 2025

Posted:

01 January 2026

You are already at the latest version

Abstract
Fire resistance is a critical aspect of passive fire protection, particularly in door systems that must maintain integrity under extreme conditions. This paper presents the thermal and structural performance of a single-leaf sandwich fire door, with the goal of improving its fire resistance through numerical optimization. An initial numerical assessment identified the door frame as the thermally weakest component, guiding the subsequent optimization process. Then, a one-way coupled transient thermal–structural Finite Element Method (FEM) analysis was performed using ANSYS Mechanical to evaluate the influence of frame material, frame geometry, and insulation type and placement on the door–frame assembly when exposed to fire. Results show that the frame material plays a decisive role where aluminum alloys performed poorly, whereas wooden frames significantly reduced temperatures in both the door and frame by approximately 55% relative to the original configuration. Additional improvements were achieved by increasing frame thickness and placing rock wool within the thermal break, resulting in temperature reductions of 58.3% in the door and 57.3% in the frame. However, these thermal improvements had limited impact on structural deformation, which remained nearly unchanged.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated