Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Simulation of Ion Channel Cluster Activity
- The symmetric lattice with the point in the middle and maximum number of nodes equal to 4 on either side is set.
- The initial positions of the boundaries B1 and B2 are set to - and .
- The initial positions of all reaction coordinates s are randomly chosen between the and (the point is excluded).
- The potential function is calculated according to eq. (3) for each .
- The position of each reaction coordinate is randomly changed by one rcu, with the probabilities of movement to the right and to the left given by eqs. (1) and (2). (If the RC should reach the B1 or B2 positions, it stays in its previous position. If the RC = TP-1 and it should move to TP, it jumps to the TP+1. If the RC = TP+1 and it should move to TP, it jumps to the TP-1.)
- The position of each reaction coordinate in relation to the is checked. If the RC is at the right-hand side of the , the open state is recognized. Otherwise, the closed state is assigned.
- The idealized current through a cluster (I) is evaluated as the number of open channels in the considered cluster (number of s>). If all channels are closed (all s<), I=0.
- Steps 4–7 are repeated for a number of time steps determined by the value of
- The boundaries B1 and B2 are randomly and synchronously moved for one step length toward or away from the TP with equal probability. (If B1 reaches -2 or positions, it is reflected to its previous position. Analogously, if B2 reaches 2 or positions, it is reflected to its previous position.)
- Steps 4–8 are repeated for a desired time series length.
2.2. Sample Entropy
- Consider a time series of N data points, and for this time series, construct a set of subsequences of length , for .
-
To investigate correlations, consider a similarity measure between the sequences. For this purpose, we make use of the Chebyshev distance:Having two sequences apart from each other by less than r, i.e., , with r being the similarity threshold (here: of the dwell time series standard deviation), we consider them matching (they are satisfactorily similar to each other).
- Using the similarity measure, evaluate the probability of finding matching sequences within the considered time series to a given template sequence :where is the number of sequences that meet the similarity criterion , and is the number of different sequences of length m within the record of length N.
- The probability (7) can be averaged over all sequences in the record to give:
-
The Sample Entropy is defined as:SampEn is a the negative natural logarithm of the conditional probability that two sequences similar for m points remain similar for points. Thus, it is a measure of the loss of correlation. In highly correlated process, this is close to 0, while for a sudden correlation drop, one obtains a positive value.
2.3. Shannon Entropy
3. Results
3.1. Simulation of the Collective Gating Model
3.2. Shannon Entropy
3.2.1. Shannon Entropy of Cluster Currents
3.2.2. Shannon Entropy of Dwell Times of Cluster States

3.3. Sample Entropy
3.3.1. Effects of Window Length and Cluster Size on the SampEn Values
3.3.2. Effects of Inter-Channel Cooperation Strength and Mode on the SamEn Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Nch | Number of co-assemblied channels forming a cluster |
| RC | Reaction coordinate |
| SampEn | Sample Entropy |
| TP | Threshold separating open and closed channel states |
| U | Potential function |
References
- Hille, B. Ion channels of excitable membranes, 3rd Ed. ed; 2001. [Google Scholar]
- Männikkö, R.; Kullmann, D.M. Structure–function and pharmacologic aspects of ion channels relevant to neurologic channelopathies. Handbook of Clinical Neurology 2024, 203, 1–23. [Google Scholar]
- McGowan, B.R.; Schwaede, A.N.; De Simone, L.; Rao, V.K. Muscle channelopathies: A review. Annals of the Child Neurology Society 2023, 1, 273–288. [Google Scholar] [CrossRef]
- Schreiber, J.A.; Seebohm, G. Cardiac K+ channels and channelopathies. Pharmacology of Potassium Channels 2021, 113–138. [Google Scholar]
- Prevarskaya, N.; Skryma, R.; Shuba, Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiological reviews 2018, 98, 559–621. [Google Scholar] [CrossRef]
- Wawrzkiewicz-Jałowiecka, A.; Lalik, A.; Lukasiak, A.; Richter-Laskowska, M.; Trybek, P.; Ejfler, M.; Opałka, M.; Wardejn, S.; Delfino, D.V. Potassium channels, glucose metabolism and glycosylation in cancer cells. International Journal of Molecular Sciences 2023, 24, 7942. [Google Scholar] [CrossRef]
- Echeverría, F.; Gonzalez-Sanabria, N.; Alvarado-Sanchez, R.; Fernández, M.; Castillo, K.; Latorre, R. Large conductance voltage-and calcium-activated K+ (BK) channel in health and disease. Frontiers in Pharmacology 2024, 15, 1373507. [Google Scholar] [CrossRef] [PubMed]
- Picci, G.; Marchesan, S.; Caltagirone, C. Ion channels and transporters as therapeutic agents: from biomolecules to supramolecular medicinal chemistry. Biomedicines 2022, 10, 885. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.L.; Stephens, G.J. An introduction to patch clamp recording. Patch Clamp Electrophysiology: Methods and Protocols 2021, 1–19. [Google Scholar]
- Sakmann, B. Single-channel recording; Springer Science & Business Media, 2013. [Google Scholar]
- Meredith, A.L. Alternative splicing. In Textbook of Ion Channels Volume III; CRC Press, 2023; pp. 1–14. [Google Scholar]
- Mittendorf, K.F.; Deatherage, C.L.; Ohi, M.D.; Sanders, C.R. Tailoring of membrane proteins by alternative splicing of pre-mRNA. Biochemistry 2012, 51, 5541–5556. [Google Scholar] [CrossRef]
- Dai, A.; Temporal, S.; Schulz, D. Cell-specific patterns of alternative splicing of voltage-gated ion channels in single identified neurons. Neuroscience 2010, 168, 118–129. [Google Scholar] [CrossRef]
- Lin, W.H.; Wright, D.E.; Muraro, N.I.; Baines, R.A. Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. Journal of neurophysiology 2009, 102, 1994–2006. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.C.; Raingo, J.; Lipscombe, D. Neuronal calcium channels: splicing for optimal performance. Cell calcium 2007, 42, 409–417. [Google Scholar] [CrossRef]
- Sarao, R.; Gupta, S.K.; Auld, V.J.; Dunn, R.J. Developmentaly regulated alternative RNA splicing of rat brain sodium channel mRNAs. Nucleic acids research 1991, 19, 5673–5679. [Google Scholar] [CrossRef]
- Onwuli, D.O.; Beltran-Alvarez, P. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels. Amino Acids 2016, 48, 641–651. [Google Scholar] [CrossRef]
- Laedermann, C.J.; Abriel, H.; Decosterd, I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Frontiers in pharmacology 2015, 6, 263. [Google Scholar] [CrossRef]
- Kyle, B.D.; Braun, A.P. The regulation of BK channel activity by pre-and post-translational modifications. Frontiers in physiology 2014, 5, 316. [Google Scholar] [CrossRef]
- Loh, K.W.Z.; Liang, M.C.; Soong, T.W.; Hu, Z. Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflügers Archiv-European Journal of Physiology 2020, 472, 653–667. [Google Scholar] [CrossRef]
- López, X.; Palacios-Prado, N.; Güiza, J.; Escamilla, R.; Fernández, P.; Vega, J.L.; Rojas, M.; Marquez-Miranda, V.; Chamorro, E.; Cárdenas, A.M.; et al. A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII. Proceedings of the National Academy of Sciences 2021, 118, e2108967118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ponce-Balbuena, D.; Ríos Pérez, E.B.; Xiao, L.; Dooge, H.C.; Valdivia, H.H.; Alvarado, F.J. Preventing the phosphorylation of RyR2 at canonical sites reduces Ca2+ leak and promotes arrhythmia by reactivating the I Na current. Nature Cardiovascular Research 2025, 4, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Ohya, S.; Kito, H.; Hatano, N.; Muraki, K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacology & therapeutics 2016, 160, 11–43. [Google Scholar]
- Dixon, R.E.; Navedo, M.F.; Binder, M.D.; Santana, L.F. Mechanisms and physiological implications of cooperative gating of clustered ion channels. Physiological reviews 2022, 102, 1159–1210. [Google Scholar] [CrossRef]
- Suma, A.; Sigg, D.; Gallagher, S.; Gonnella, G.; Carnevale, V. Ion channels in critical membranes: clustering, cooperativity, and memory effects. PRX Life 2024, 2, 013007. [Google Scholar] [CrossRef]
- Choi, K.H. Cooperative gating between ion channels. General physiology and biophysics 2013, 33, 1–12. [Google Scholar] [CrossRef]
- Nirenberg, V.A.; Yifrach, O. Bridging the molecular-cellular gap in understanding ion channel clustering. Frontiers in Pharmacology 2020, 10, 1644. [Google Scholar] [CrossRef]
- Schwenzer, N.; Teiwes, N.K.; Kohl, T.; Pohl, C.; Giller, M.J.; Lehnart, S.E.; Steinem, C. CaV1. 3 channel clusters characterized by live-cell and isolated plasma membrane nanoscopy. Communications Biology 2024, 7, 620. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, C.; O’Dwyer, S.C.; Manning, D.; Hernandez-Hernandez, G.; Rhana, P.; Fong, Z.; Sato, D.; Clancy, C.E.; Vierra, N.C.; Trimmer, J.S.; et al. The formation of KV2. 1 macro-clusters is required for sex-specific differences in L-type CaV1. 2 clustering and function in arterial myocytes. Communications Biology 2023, 6, 1165. [Google Scholar] [CrossRef] [PubMed]
- Sumino, A.; Yamamoto, D.; Iwamoto, M.; Dewa, T.; Oiki, S. Gating-associated clustering–dispersion dynamics of the KcsA potassium channel in a lipid membrane. The journal of physical chemistry letters 2014, 5, 578–584. [Google Scholar] [CrossRef]
- Undrovinas, A.I.; Fleidervish, I.A.; Makielski, J.C. Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circulation research 1992, 71, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.E.; Moreno, C.M.; Yuan, C.; Opitz-Araya, X.; Binder, M.D.; Navedo, M.F.; Santana, L.F. Graded Ca2+/calmodulin-dependent coupling of voltage-gated CaV1. 2 channels. Elife 2015, 4, e05608. [Google Scholar] [CrossRef]
- Kim, G.E.; Kronengold, J.; Barcia, G.; Quraishi, I.H.; Martin, H.C.; Blair, E.; Taylor, J.C.; Dulac, O.; Colleaux, L.; Nabbout, R.; et al. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell reports 2014, 9, 1661–1672. [Google Scholar] [CrossRef]
- Choi, K.H.; Licht, S. ATP-sensitive potassium channels exhibit variance in the number of open channels below the limit predicted for identical and independent gating. Plos one 2012, 7, e37399. [Google Scholar] [CrossRef]
- O’Connell, K.M.; Loftus, R.; Tamkun, M.M. Localization-dependent activity of the Kv2. 1 delayed-rectifier K+ channel. Proceedings of the National Academy of Sciences 2010, 107, 12351–12356. [Google Scholar] [CrossRef] [PubMed]
- Malik, C.; Ghosh, S. S6 peptide derived from KvAP channel shows cooperativity in gating on bilayer lipid membrane. PLoS One 2013, 8, e78845. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.L.; Barrera, F.N.; Fernández, A.M.; Poveda, J.A.; Renart, M.L.; Encinar, J.A.; Riquelme, G.; González-Ros, J.M. Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. Journal of Biological Chemistry 2006, 281, 18837–18848. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Y.; Zhang, F.F.; Xu, J.; Wang, R.; Chen, J.; Logothetis, D.E.; Zhang, Z. Epilepsy-related slack channel mutants lead to channel over-activity by two different mechanisms. Cell reports 2016, 14, 129–139. [Google Scholar] [CrossRef]
- Wu, J.; Quraishi, I.H.; Zhang, Y.; Bromwich, M.; Kaczmarek, L.K. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell reports 2024, 43. [Google Scholar] [CrossRef]
- Clatot, J.; Coulombe, A.; Deschênes, I.; Guicheney, P.; Neyroud, N. Trafficking and gating cooperation between deficient Nav1. 5-mutant channels to rescue INA. Frontiers in Bioscience-Landmark 2022, 27. [Google Scholar] [CrossRef]
- Ghosh, D.; Nieves-Cintrón, M.; Tajada, S.; Brust-Mascher, I.; Horne, M.C.; Hell, J.W.; Dixon, R.E.; Santana, L.F.; Navedo, M.F. Dynamic L-type CaV1. 2 channel trafficking facilitates CaV1. 2 clustering and cooperative gating. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 2018, 1865, 1341–1355. [Google Scholar] [CrossRef]
- Moreno, C.M.; Dixon, R.E.; Tajada, S.; Yuan, C.; Opitz-Araya, X.; Binder, M.D.; Santana, L.F. Ca2+ entry into neurons is facilitated by cooperative gating of clustered CaV1. 3 channels. Elife 2016, 5, e15744. [Google Scholar] [CrossRef]
- Schaefer, N.; Roemer, V.; Janzen, D.; Villmann, C. Impaired glycine receptor trafficking in neurological diseases. Frontiers in molecular neuroscience 2018, 11, 291. [Google Scholar] [CrossRef]
- Marx, S.O.; Ondrias, K.; Marks, A.R. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 1998, 281, 818–821. [Google Scholar] [CrossRef]
- Shrivastava, R.; Ghosh, S. Collective dynamics of ion channels on bilayer lipid membranes. ACS omega 2021, 6, 7544–7557. [Google Scholar] [CrossRef]
- Keleshian, A.M.; Edeson, R.O.; Liu, G.J.; Madsen, B.W. Evidence for cooperativity between nicotinic acetylcholine receptors in patch clamp records. Biophysical Journal 2000, 78, 1–12. [Google Scholar] [CrossRef]
- Sattler, C.; Eick, T.; Hummert, S.; Schulz, E.; Schmauder, R.; Schweinitz, A.; Unzeitig, C.; Schwede, F.; Benndorf, K. Unravelling the intricate cooperativity of subunit gating in P2X2 ion channels. Scientific reports 2020, 10, 21751. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-heart and Circulatory Physiology 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Physical Review Letters 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Wawrzkiewicz-Jałowiecka, A.; Krasowska, M.; Strzelewicz, A.; Cho, A.D.; Siwy, Z.S. Asymmetric nanopores sustain hours long stationary ion current instabilities with voltage controlled temporal patterns and predictability. Measurement 2025, 249, 116950. [Google Scholar] [CrossRef]
- Borys, P.; Trybek, P.; Dworakowska, B.; Sekrecka-Belniak, A.; Wojcik, M.; Wawrzkiewicz-Jałowiecka, A. Applying Entropic Measures, Spectral Analysis, and EMD to Quantify Ion Channel Recordings: New Insights into Quercetin and Calcium Activation of BK Channels. Entropy 2025, 27, 1047. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. The Bell system technical journal 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Yeung, R. A First Course in Information Theory. In Information Technology Series; Springer US, 2002. [Google Scholar]
- Wawrzkiewicz, A.; Pawelek, K.; Borys, P.; Dworakowska, B.; Grzywna, Z.J. On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory. European Biophysics Journal 2012, 41, 505–526. [Google Scholar] [CrossRef]
- Pfeiffer, P.; Egorov, A.V.; Lorenz, F.; Schleimer, J.H.; Draguhn, A.; Schreiber, S. Clusters of cooperative ion channels enable a membrane-potential-based mechanism for short-term memory. Elife 2020, 9, e49974. [Google Scholar] [CrossRef]
- Naundorf, B.; Wolf, F.; Volgushev, M. Unique features of action potential initiation in cortical neurons. Nature 2006, 440, 1060–1063. [Google Scholar] [CrossRef]
- Kumar, J.; Gupta, P.D.; Ghosh, S. Investigating the role of axonal ion channel cooperativity in action potential dynamics: Studies on Hodgkin-Huxley’s model. Biophysical Chemistry 2024, 311, 107257. [Google Scholar] [CrossRef] [PubMed]
- Spooner, H.C.; Costa, A.D.; Westhoff, M.; Hernández-González, A.; Ibrahimkhail, H.; Yarov-Yarovoy, V.; Horne, M.C.; Dickson, E.J.; Dixon, R.E. 14-3-3 promotes sarcolemmal expression of cardiac CaV1. 2 and nucleates isoproterenol-triggered channel superclustering. Proceedings of the National Academy of Sciences 2025, 122, e2413308122. [Google Scholar] [CrossRef] [PubMed]
- Machura, L.; Wawrzkiewicz-Jałowiecka, A.; Bednarczyk, P.; Trybek, P. Linking the sampling frequency with multiscale entropy to classify mitoBK patch-clamp data. Biomedical Signal Processing and Control 2022, 76, 103680. [Google Scholar] [CrossRef]
- Akilli, M.; Söğüt, F.; Çömelrkoğlu, Ü.; Tuncel, H. Investigation of biophysical properties of ion channels with nonlinear methods. Biochimica et Biophysica Acta (BBA)-Biomembranes 2025, 184437. [Google Scholar] [CrossRef]
- Zhang, H.; Ai, B.; Gong, Z.; Sui, T.; Siwy, Z.S.; Qiu, Y. Ion Transport through Differently Charged Nanoporous Membranes: From a Single Nanopore to Multinanopores. Analytical Chemistry 2025, 97, 19218–19231. [Google Scholar] [CrossRef]












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
