Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Sites, Vegetation and Climate
2.2. Vegetation
2.3. Climate
- P = annual precipitation (mm), and
- PET = annual potential evapotranspiration (mm).
2.4. Cross-Dating, Detrending and Climate–Growth Relationships
- is the value of the variable at time ,
- is a constant term,
- is the autoregressive parameter that measures the influence of the previous observation on the current one, and
- is a white noise error term.
3. Results
3.1. Cross-Dating and Detrending Results
3.2. Ring Width Indices
3.3. Autoregressive Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dobbertin, M. Tree Growth as Indicator of Tree Vitality and of Tree Reaction to Environmental Stress: A Review. Eur J Forest Res 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press, 2012; ISBN 978-1-107-02506-6. [Google Scholar]
- Gazol, A.; Camarero, J.J. Compound Climate Events Increase Tree Drought Mortality across European Forests. Science of The Total Environment 2022, 816, 151604. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Im, E.-S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. Journal of Climate 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe Drought Effects on Mediterranean Woody Flora in Spain. Forest Science 2001, 47, 214–218. [Google Scholar] [CrossRef]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A Multi-Species Synthesis of Physiological Mechanisms in Drought-Induced Tree Mortality. Nat Ecol Evol 2017, 1, 1285–1291. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Carrer, M.; Nola, P.; Motta, R.; Urbinati, C. Contrasting Tree-ring Growth to Climate Responses of Abies Alba toward the Southern Limit of Its Distribution Area. Oikos 2010, 119, 1515–1525. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Manetti, M.C.; Cutini, A. Tree-Ring Growth of Silver Fir (Abies Alba Mill.) in Two Stands under Different Silvicultural Systems in Central Italy. Dendrochronologia 2006, 23, 145–150. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytologist 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Sidor, C.G.; Popa, I.; Vlad, R.; Cherubini, P. Different Tree-Ring Responses of Norway Spruce to Air Temperature across an Altitudinal Gradient in the Eastern Carpathians (Romania). Trees 2015, 29, 985–997. [Google Scholar] [CrossRef]
- Ciais, Ph.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, Chr.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Colangelo, M.; Camarero, J.; Ripullone, F.; Gazol, A.; Sánchez-Salguero, R.; Oliva, J.; Redondo, M. Drought Decreases Growth and Increases Mortality of Coexisting Native and Introduced Tree Species in a Temperate Floodplain Forest. Forests 2018, 9, 205. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Rodriguez-Vallejo, C.; Silveiro, E.; Hortal, A.; Palacios-Rodríguez, G.; Duque-Lazo, J.; Camarero, J.J. Cumulative Drought Stress Leads to a Loss of Growth Resilience and Explains Higher Mortality in Planted than in Naturally Regenerated Pinus Pinaster Stands. Forests 2018, 9, 358. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.; Gazol, A.; Rodríguez-Vallejo, C.; Manzanedo, R.; Palacios-Rodríguez, G.; Camarero, J. Linkages between Climate, Radial Growth and Defoliation in Abies Pinsapo Forests from Southern Spain. Forests 2020, 11, 1002. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.; Trouet, V.; Esper, J. Diverse Climate Sensitivity of Mediterranean Tree-Ring Width and Density. Trees 2010, 24, 261–273. [Google Scholar] [CrossRef]
- Kerhoulas, L.P.; Kane, J.M. Sensitivity of Ring Growth and Carbon Allocation to Climatic Variation Vary within Ponderosa Pine Trees. Tree Physiology 2012, 32, 14–23. [Google Scholar] [CrossRef]
- Lee, E.H.; Wickham, C.; Beedlow, P.A.; Waschmann, R.S.; Tingey, D.T. A Likelihood-Based Time Series Modeling Approach for Application in Dendrochronology to Examine the Growth-Climate Relations and Forest Disturbance History. Dendrochronologia 2017, 45, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Geotechnical Chamber of Greece (GEOTEE). Fir Forest Dieback. In Proceedings of the Two-Day Conference, December 1989; 1991. [Google Scholar]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological Analysis of Fir (A. Borisii-Regis) in Greece in the Frame of Climate Change Investigation. Forests 2022, 13, 879. [Google Scholar] [CrossRef]
- Koulelis, P.P.; Daskalakou, E.N.; Ioannidis, K.E. Impact of Regional Climatic Conditions on Tree Growth on Mainland Greece. Folia Oecologica 2019, 46, 127–136. [Google Scholar] [CrossRef]
- Koulelis, P.; Fassouli, V.; Petrakis, P.V.; Ioannidis, K.E.; Alexandris, S. The Impact of Selected Climatic Factors on the Growth of Greek Fir on Mount Giona in Mainland Greece Based on Tree Ring Analysis 2022.
- Koulelis, P.P.; Petrakis, P.V. Brief Overview of Greek Fir Radial Growth in Response to Climate and European Fir Budworm: Three Case Studies from Giona Mountain, Central Greece. Climate 2023, 11, 78. [Google Scholar] [CrossRef]
- Koulelis, P.P.; Solomou, A.; Fassouli, V.; Petrakis, P.V.; Spanos, I. Radial Growth and Climatic Influences on Greek Fir: Tree Ring Analysis from Kirphi Mountain, Central Greece. Folia Oecologica 2025, 52, 113–123. [Google Scholar] [CrossRef]
- Koutavas, A. Late 20th Century Growth Acceleration in Greek Firs (Abies Cephalonica) from Cephalonia Island, Greece: A CO2 Fertilization Effect? Dendrochronologia 2008, 26, 13–19. [Google Scholar] [CrossRef]
- Papadopoulos, A. Tree-Ring Patterns and Climate Response of Mediterranean Fir Populations in Central Greece. Dendrochronologia 2016, 40, 17–25. [Google Scholar] [CrossRef]
- Sarris, D.; Christodoulakis, D.; Körner, C. Recent Decline in Precipitation and Tree Growth in the Eastern Mediterranean. Global Change Biology 2007, 13, 1187–1200. [Google Scholar] [CrossRef]
- Gentilesca, T.; Camarero, J.; Colangelo, M.; Nolè, A.; Ripullone, F. Drought-Induced Oak Decline in the Western Mediterranean Region: An Overview on Current Evidences, Mechanisms and Management Options to Improve Forest Resilience. iForest 2017, 10, 796–806. [Google Scholar] [CrossRef]
- Brofas, G.; Economidou, E. Le dépérissement du Sapin du Mont Parnasse (Grèce). Le rôle des conditions climatiques et écologiques. ecmed 1994, 20, 1–8. [Google Scholar] [CrossRef]
- Markalas, S. Site and Stand Factors Related to Mortality Rate in a Fir Forest after a Combined Incidence of Drought and Insect Attack. Forest Ecology and Management 1992, 47, 367–374. [Google Scholar] [CrossRef]
- Papadopoulos, M.A. INVESTIGATIONS DENDROCLIMATOLOGIQUES DU SAPIN DE CEPHALONIE EN GRÈCE CENTRALE.
- Papadopoulos, A.; Raftoyannis, Y.; Pantera, A. Fir Decline in Greece: A Dendroclimatological Approach; 2007. [Google Scholar]
- Tsopelas, P.; Angelopoulos, A.; Economou, A.; Soulioti, N. Mistletoe (Viscum Album) in the Fir Forest of Mount Parnis, Greece. Forest Ecology and Management 2004, 202, 59–65. [Google Scholar] [CrossRef]
- Sass-Klaassen, U.; Chowdhury, Q.; Sterck, F.; Zweifel, R. Effects of Water Availability on the Growth and Tree Morphology of Quercus Pubescens Willd. and Pinus Sylvestris L. in the Valais, Switzerland.
- Zheng, P.; Wang, D.; Jia, G.; Yu, X.; Liu, Z.; Wang, Y.; Zhang, Y. Variation in Water Supply Leads to Different Responses of Tree Growth to Warming. Forest Ecosystems 2022, 9, 100003. [Google Scholar] [CrossRef]
- Raftoyannis, Y.; Spanos; I; Central Greece University of Applied Sciences; Department of Forestry; Demokratias 3; GR-36100 Karpenisi; Greece Regeneration of Abies Cephalonica Loudon after a Large Fire in Central Greece. SEEFOR 2014, 6. [CrossRef]
- LignoVision. LignoVision Software. Version 1.40. 2024.
- European Environment Agency (EEA). Natura 2000 Site Factsheet: GR2450005 Notioanatolikos Parnassos – Ethnikos Drymos Parnassou – Dasos Tithoreas, Spilaio Varathro (Annex I Habitat List & Coverage). 2020. Available online: Https://Eunis.Eea.Europa.Eu/Sites/GR2450005.
- National Natural Environment and Climate Change Agency (NECCA) – Management Unit of Parnassos; Oiti National Parks. Vegetation Types on Mt Parnassos – Actions for the Protection and Conservation of Parnassos National Park. 2021. Available online: Https://Necca.Gov.Gr.
- Royal Botanic Gardens; Kew. Plants of the World Online; Available from; Https://Powo.Science.Kew.Org, 2025. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist; Botanic Garden and Botanical Museum Berlin-Dahlem & Hellenic Botanical Society, 2013; ISBN 978-3-921800-88-1. [Google Scholar]
- Faltner, F.; Wessely, J.; Frajman, B. Phylogenetic Data Reveal a Surprising Origin of Euphorbia Orphanidis (Euphorbiaceae) and Environmental Modeling Suggests That Microtopology Limits Its Distribution to Small Patches in Mt. Parnassus (Greece). Front. Plant Sci. 2023, 14, 1116496. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. metz 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. The Water Balance; Laboratory of Climatology: Centerton, 1955. [Google Scholar]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geographical Review 1948, 38, 55. [Google Scholar] [CrossRef]
- UNEP. World Atlas of Desertification; Edward Arnold: London, 1992. [Google Scholar]
- Fady, B; Arbez, M; Ferrandz, P. Variability of Juvenile Greek Firs (Abies Cephalonica Loud.) and Stability of Characteristics with Age. Silvae Genet. 1991, 40(3-4), 91–100. [Google Scholar]
- Aussenac, G. Ecology and Ecophysiology of Circum-Mediterranean Firsin the Context of Climate Change. Ann. For. Sci. 2002, 59, 823–832. [Google Scholar] [CrossRef]
- Politi, P.-I.; Georghiou, K.; Arianoutsou, M. Reproductive Biology of Abies Cephalonica Loudon in Mount Aenos National Park, Cephalonia, Greece. Trees 2011, 25, 655–668. [Google Scholar] [CrossRef]
- Bernabei, M.; Bontadi, J.; Nicolussi, K. Observations on Holocene Subfossil Tree Remains from High-Elevation Sites in the Italian Alps. The Holocene 2018, 28, 2017–2027. [Google Scholar] [CrossRef]
- Papadopoulos, A.M. Resin Tapping History of an Aleppo Pine Forest in Central Greece. TOFSCIJ 2013, 6, 50–53. [Google Scholar] [CrossRef]
- Trouet, V.; Coppin, P.; Beeckman, H. Annual Growth Ring Patterns in Brachystegia Spiciformis Reveal Influence of Precipitation on Tree Growth1. Biotropica 2006, 38, 375–382. [Google Scholar] [CrossRef]
- COFECHA, Version 4.81c. Laboratory of Tree-Ring Research, University of Arizona, 2023.
- Rinntech. TSAP-Win. Version 6.06p; Rinntech: Heidelberg, Germany, 2019. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Climate Appl. Meteor. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D. Basic Chronology Statistics and Assessment. In Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Publishers, 1990; pp. 137–152. [Google Scholar]
- Fritts, HC. Tree Rings and Climate; Academic Press, 1976. [Google Scholar]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Pacheco, A.; Camarero, J.J.; Carrer, M. Linking Wood Anatomy and Xylogenesis Allows Pinpointing of Climate and Drought Influences on Growth of Coexisting Conifers in Continental Mediterranean Climate. Tree Physiol 2016, 36, 502–512. [Google Scholar] [CrossRef]
- Valeriano, C.; Gutiérrez, E.; Colangelo, M.; Gazol, A.; Sánchez-Salguero, R.; Tumajer, J.; Shishov, V.; Bonet, J.A.; Martínez De Aragón, J.; Ibáñez, R.; et al. Seasonal Precipitation and Continentality Drive Bimodal Growth in Mediterranean Forests. Dendrochronologia 2023, 78, 126057. [Google Scholar] [CrossRef]
- Gauli, A.; Neupane, P.R.; Mundhenk, P.; Köhl, M. Effect of Climate Change on the Growth of Tree Species: Dendroclimatological Analysis. Forests 2022, 13, 496. [Google Scholar] [CrossRef]
- Carrer, M.; Urbinati, C. Age-Dependent Tree-Ring Growth Responses to Climate in Larix Decidua and Pinus Cembra. Ecology 2004, 85, 730–740. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Competition Modulates the Adaptation Capacity of Forests to Climatic Stress: Insights from Recent Growth Decline and Death in Relict Stands of the Mediterranean Fir Abies Pinsapo. Journal of Ecology 2010, 98, 592–603. [Google Scholar] [CrossRef]
- Pavão, D.C.; Jevšenak, J.; Engblom, J.; Borges Silva, L.; Elias, R.B.; Silva, L. Tree Growth-Climate Relationship in the Azorean Holly in a Temperate Humid Forest with Low Thermal Amplitude. Dendrochronologia 2023, 77, 126050. [Google Scholar] [CrossRef]
- Ettinger, A.K.; HilleRisLambers, J. Climate Isn’t Everything: Competitive Interactions and Variation by Life Stage Will Also Affect Range Shifts in a Warming World. American J of Botany 2013, 100, 1344–1355. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Chen, A.; Wang, K.; Li, X.; Buermann, W.; Huntingford, C.; Peñuelas, J.; Xu, H.; Myneni, R.B. Seasonal Biological Carryover Dominates Northern Vegetation Growth. Nat Commun 2021, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Rathgeber, C.B.K.; Cuny, H.E.; Fonti, P. Biological Basis of Tree-Ring Formation: A Crash Course. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Vaganov, EA; Hughes, MK; Shashkin, AV. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Springer, 2006. [Google Scholar]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T.; et al. Site- and Species-Specific Responses of Forest Growth to Climate across the European Continent: Climate Sensitivity of Forest Growth across Europe. Global Ecology and Biogeography 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Zweifel, R.; Sterck, F. A Conceptual Tree Model Explaining Legacy Effects on Stem Growth. Front. For. Glob. Change 2018, 1, 9. [Google Scholar] [CrossRef]
- Mu, Y.; Lyu, L.; Li, Y.; Fang, O. Tree-Ring Evidence of Ecological Stress Memory. Proc. R. Soc. B. 2022, 289, 20221850. [Google Scholar] [CrossRef] [PubMed]
- Monserud, R.A.; Marshall, J.D. Time-Series Analysis of 13C from Tree Rings. I. Time Trends and Autocorrelation. Tree Physiology 2001, 21, 1087–1102. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhang, T.; Liu, K.; Guo, K.; Hou, T.; Song, J.; He, Z.; Liang, B. Vegetation Growth Carryover and Lagged Climatic Effect at Different Scales: From Tree Rings to the Early Xylem Growth Season. Forests 2025, 16, 1107. [Google Scholar] [CrossRef]
- Fritts, H.C. Relationships of Ring Widths in Arid-Site Conifers to Variations in Monthly Temperature and Precipitation. Ecological Monographs 1974, 44, 411–440. [Google Scholar] [CrossRef]
- Lopez, E.L.; Kerr, S.A.; Sauchyn, D.J.; Vanderwel, M.C. Variation in Tree Growth Sensitivity to Moisture across a Water-Limited Forest Landscape. Dendrochronologia 2019, 54, 87–96. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Bräuning, A.; Cao, K.-F.; Zhu, S.-D. Growth–Climate Responses of High-Elevation Conifers in the Central Hengduan Mountains, Southwestern China. Forest Ecology and Management 2009, 258, 306–313. [Google Scholar] [CrossRef]
- Lehejček, J.; Vávrů, G.; Wangchuk, S.; Svoboda, M.; Boonen, K. Himalayan Fir Growth in Central Bhutan Reflects Variability in Temperature and Precipitation. J. For. Sci. 2025, 71, 516–524. [Google Scholar] [CrossRef]
- Sperlich, D.; Nadal-Sala, D.; Gracia, C.; Kreuzwieser, J.; Hanewinkel, M.; Yousefpour, R. Gains or Losses in Forest Productivity under Climate Change? The Uncertainty of CO2 Fertilization and Climate Effects. Climate 2020, 8, 141. [Google Scholar] [CrossRef]



| Stand | Place name | Latitude | Longitude | Aspect | Altitude (m) | Mean age of trees (years) | Number of sampled trees |
|---|---|---|---|---|---|---|---|
| S1538 | Fterolakka | 38.566634 °N | 22.546596°E | SE | 1,538 | 77.6 | 10 |
| S1174 | Corycian cave | 38.5163354 °N | 22.509543°E | S | 1,174 | 94.6 | 10 |
| Model | R2 | Adjusted R2 | Std. Error of the Estimate | Durbin–Watson |
|---|---|---|---|---|
| Corycian cave stand | 0.520 | 0.397 | 0.114 | 1.802 |
| Model | Sum of Squares | df | Mean Square | F | Sig. |
|---|---|---|---|---|---|
| Regression | 0.663 | 12 | 0.055 | 4.241 | 0.000 |
| Residual | 0.612 | 47 | 0.013 | ||
| Total | 1.275 | 59 |
| Unstandardized Coefficients | Standardized Coefficients | ||||
|---|---|---|---|---|---|
| Model | B | Std. Error | Beta | t | Sig. |
| Constant | 1.190 | 0.609 | 1.955 | 0.046 | |
| ARWIt−1 | 0.691 | 0.119 | 0.681 | 5.819 | 0.000 |
| SM | 0.000 | 0.002 | −0.040 | −0.142 | 0.888 |
| SM_GS | 0.003 | 0.038 | 0.038 | 0.070 | 0.944 |
| PDSI | −0.023 | 0.041 | −0.370 | −0.577 | 0.567 |
| PDSI_GS | 0.000 | 0.000 | −0.098 | −0.569 | 0.572 |
| PREC | 0.000 | 0.000 | 0.225 | 0.643 | 0.523 |
| PREC_GS | 0.000 | 0.001 | 0.170 | 0.234 | 0.816 |
| ActET | −0.001 | 0.002 | −0.720 | −0.776 | 0.441 |
| ClimWD | −0.002 | 0.004 | −1.469 | −0.635 | 0.528 |
| ClimWD_GS | 0.001 | 0.122 | 0.711 | 0.298 | 0.767 |
| MaxTemp | −0.085 | 0.099 | −0.367 | −0.700 | 0.487 |
| MaxTemp_GS | 0.068 | 0.609 | 0.355 | 0.685 | 0.497 |
| Model | R2 | Adjusted R2 | Std. Error of the Estimate | Durbin–Watson |
|---|---|---|---|---|
| Fterolakka stand |
0.448 | 0.217 | 0.097 | 1.672 |
| Model | Sum of Squares | df | Mean Square | F | Sig. |
|---|---|---|---|---|---|
| Regression | 0.239 | 13 | 0.018 | 1.935 | 0.045 |
| Residual | 0.295 | 31 | 0.010 | ||
| Total | 0.534 | 44 |
| Unstandardized Coefficients | Standardized Coefficients | ||||
|---|---|---|---|---|---|
| Model | B | Std. Error | Beta | t | Sig. |
| Constant | 0.171 | 0.581 | 0.294 | 0.771 | |
| ARWIt−1 | 0.625 | 0.167 | 0.625 | 3.730 | 0.001 |
| SM_GS | 0.001 | 0.001 | 0.172 | 1.169 | 0.251 |
| PDSI_GS | 0.008 | 0.033 | 0.184 | 0.253 | 0.802 |
| PREC_GS | 0.001 | 0.000 | 0.285 | 0.644 | 0.524 |
| ActET_GS | 0.003 | 0.002 | 2.120 | 1.890 | 0.068 |
| ClimWD_GS | 0.004 | 0.005 | 3.235 | 0.884 | 0.384 |
| MaxTemp_GS | −0.238 | 0.112 | −1.510 | −2.128 | 0.041 |
| SM | −0.002 | 0.002 | -0.405 | −1.194 | 0.241 |
| PDSI | 0.003 | 0.034 | 0.069 | 0.102 | 0.919 |
| PREC | 0.002 | 0.000 | 0.699 | 2.520 | 0.017 |
| ActET | −0.003 | 0.001 | −2.068 | −2.155 | 0.039 |
| ClimWD | −0.003 | 0.005 | −2.138 | −0.602 | 0.551 |
| MaxTemp | 0.291 | 0.135 | 1.584 | 2.160 | 0.039 |
| Aspect | Corycian Cave Stand | Fterolakka Stand |
|---|---|---|
| Climate Sensitivity | None. No significant effect was found for any of the tested climate variables after controlling for autocorrelation. | Yes, but complex. Specific climatic factors (growing season and annual temperatures, annual precipitation, and annual actual evapotranspiration) showed significant effects. |
| Lagged Growth Effect | Very strong and highly significant dominating the model’s explanatory power. |
Very strong and highly significant but coexisting with significant climatic effects. |
| Biological Interpretation | Growth is primarily driven by internal tree dynamics and biological inertia, with minimal influence from the tested climate variables. | Growth is influenced by both internal dynamics and external climatic factors, although internal dynamics remain the single most dominant predictor. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
