Submitted:
29 December 2025
Posted:
30 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Raman Data Acquisition
2.4. Data Analysis
3. Results and Discussion

| Wavenumber, cm-1 | Assignment |
|---|---|
| 756, 880, 1359 | Tryptophan, indole ring |
| 830, 855 | Tyrosine, Fermi resonance between ring fundamental and overtone |
| 1003 | Phenylalanine, ring breath |
| 1206 | C–C stretching |
| 1240 | Amide III (β-sheet), N−H in-plane bend, C−N stretch |
| 1399 | Aspartic and glutamic acids, C=O stretch of COO− |
| 1450, 1465 | Aliphatic residues, C–H bending |
| 1552 | Tyrosine, ring stretching |
| 1667 | Amide I, amide C=O stretch, N–H wag |

4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AB | AdaBoost |
| DT | Decision tree |
| GB | Gradient boosting |
| HA | Hyaluronic acid |
| RF | Random forest |
| WPI | Whey protein isolate |
References
- Vaou, N.; Stavropoulou, E.; Voidarou, C. (Chrysa); Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Kumar, Y.; Malav, O.P.; Sazili, A.Q.; Domínguez, R.; Lorenzo, J.M. Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Appl. Sci. 2022, 12, 1424. [CrossRef]
- Senthilkumar, K.; Vijayalakshmi, A.; Jagadeesan, M.; Somasundaram, A.; Pitchiah, S.; Gowri, S.S.; Ali Alharbi, S.; Javed Ansari, M.; Ramasamy, P. Preparation of self-preserving personal care cosmetic products using multifunctional ingredients and other cosmetic ingredients. Sci. Rep. 2024, 14, 19401. [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules 2021, 26, 1537. [CrossRef]
- Rebrosova, K.; Samek, O.; Kizovsky, M.; Bernatova, S.; Hola, V.; Ruzicka, F. Raman Spectroscopy—A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings. Front. Cell. Infect. Microbiol. 2022, 12. [CrossRef]
- Pezzotti, G. Raman spectroscopy in cell biology and microbiology. J. Raman Spectrosc. 2021, 52, 2348–2443. [CrossRef]
- Kočišová, E.; Kuižová, A.; Procházka, M. Analytical applications of droplet deposition Raman spectroscopy. Analyst 2024, 149, 3276–3287. [CrossRef]
- Dodo, K.; Fujita, K.; Sodeoka, M. Raman Spectroscopy for Chemical Biology Research. J. Am. Chem. Soc. 2022, 144, 19651–19667. [CrossRef]
- Koronaki, E.D.; Kaven, L.F.; Faust, J.M.M.; Kevrekidis, I.G.; Mitsos, A. Nonlinear manifold learning determines microgel size from Raman spectroscopy. AIChE J. 2024, 70. [CrossRef]
- Zhang, Y.; Gao, P.; Zhang, N.; Hong, H.; Ruan, J.; Gao, X. Efficient detection of specific pharmaceutical components in compound medications based on Raman spectroscopy. Opt. Commun. 2025, 577, 131470. [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman spectroscopy for food quality assurance and safety monitoring: a review. Curr. Opin. Food Sci. 2022, 47, 100910. [CrossRef]
- Becker, T.; Rousseau, A.-J.; Geubbelmans, M.; Burzykowski, T.; Valkenborg, D. Decision trees and random forests. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 894–897. [CrossRef]
- da Silva, L.P.; Oliveira, M.D.L.; Villa, J.E.L. A comparison of decision tree-based algorithms for food discrimination using vibrational spectroscopy. Food Chem. 2025, 488, 144909. [CrossRef]
- Sevetlidis, V.; Pavlidis, G. Effective Raman spectra identification with tree-based methods. J. Cult. Herit. 2019, 37, 121–128. [CrossRef]
- Sun, Z.; Wang, G.; Li, P.; Wang, H.; Zhang, M.; Liang, X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst. Appl. 2024, 237, 121549. [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
- Wang, M.; Zhang, J. Surface Enhanced Raman Spectroscopy Pb2+ Ion Detection Based on a Gradient Boosting Decision Tree Algorithm. Chemosensors 2023, 11, 509. [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [CrossRef]
- Zhu, J.; Zou, H.; Rosset, S.; Hastie, T.; others Multi-class adaboost. Stat. Interface 2009, 2, 349–360.
- Dietterich, T.G. Ensemble Methods in Machine Learning. In; 2000; pp. 1–15.
- Wolpert, D.H. Stacked generalization. Neural Networks 1992, 5, 241–259. [CrossRef]
- Bates, F.; Busato, M.; Piletska, E.; Whitcombe, M.J.; Karim, K.; Guerreiro, A.; del Valle, M.; Giorgetti, A.; Piletsky, S. Computational design of molecularly imprinted polymer for direct detection of melamine in milk. Sep. Sci. Technol. 2017, 52, 1441–1453. [CrossRef]
- Lu, Y.; Xia, Y.; Liu, G.; Pan, M.; Li, M.; Lee, N.A.; Wang, S. A Review of Methods for Detecting Melamine in Food Samples. Crit. Rev. Anal. Chem. 2017, 47, 51–66. [CrossRef]
- Niazifar, M.; Besharati, M.; Jabbar, M.; Ghazanfar, S.; Asad, M.; Palangi, V.; Eseceli, H.; Lackner, M. Slow-release non-protein nitrogen sources in animal nutrition: A review. Heliyon 2024, 10, e33752. [CrossRef]
- Alizadeh Sani, M.; Jahed-Khaniki, G.; Ehsani, A.; Shariatifar, N.; Dehghani, M.H.; Hashemi, M.; Hosseini, H.; Abdollahi, M.; Hassani, S.; Bayrami, Z.; et al. Metal–Organic Framework Fluorescence Sensors for Rapid and Accurate Detection of Melamine in Milk Powder. Biosensors 2023, 13, 94. [CrossRef]
- Lukacs, M.; Zaukuu, J.-L.Z.; Bazar, G.; Pollner, B.; Fodor, M.; Kovacs, Z. Comparison of Multiple NIR Spectrometers for Detecting Low-Concentration Nitrogen-Based Adulteration in Protein Powders. Molecules 2024, 29, 781. [CrossRef]
- Lukacs, M.; Bazar, G.; Pollner, B.; Henn, R.; Kirchler, C.G.; Huck, C.W.; Kovacs, Z. Near infrared spectroscopy as an alternative quick method for simultaneous detection of multiple adulterants in whey protein-based sports supplement. Food Control 2018, 94, 331–340. [CrossRef]
- Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [CrossRef]
- Yasin, A.; Ren, Y.; Li, J.; Sheng, Y.; Cao, C.; Zhang, K. Advances in Hyaluronic Acid for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10. [CrossRef]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [CrossRef]
- Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 10296. [CrossRef]
- Wang, N.; Zhao, X.; Jiang, Y.; Ban, Q.; Wang, X. Enhancing the stability of oil-in-water emulsions by non-covalent interaction between whey protein isolate and hyaluronic acid. Int. J. Biol. Macromol. 2023, 225, 1085–1095. [CrossRef]
- Henderson, A. Renishaw File Reader 2017.
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
- Mayorova, O.A.; Saveleva, M.S.; Bratashov, D.N.; Prikhozhdenko, E.S. Combination of Machine Learning and Raman Spectroscopy for Determination of the Complex of Whey Protein Isolate with Hyaluronic Acid. Polymers (Basel). 2024, 16, 666. [CrossRef]
- Shevtsova, S.A.; Saveleva, M.S.; Mayorova, O.A.; Prikhozhdenko, E.S. Effect of low concentrations of hyaluronic acid on the structure of whey protein isolate during conjugation: Development and optimization of machine learning models based on adaptive boosting for spectroscopic data analysis. Izv. Saratov Univ. Phys. 2025, 25, 305–315. [CrossRef]
- Kurniasih, A.; Previana, C.N. Implementation of GridSearchCV to Find the Best Hyperparameter Combination for Classification Model Algorithm in Predicting Water Potability. J. Artif. Intell. Eng. Appl. 2025, 4, 1174–1182. [CrossRef]
- Muzayanah, R.; Pertiwi, D.A.A.; Ali, M.; Muslim, M.A. Comparison of gridsearchcv and bayesian hyperparameter optimization in random forest algorithm for diabetes prediction. J. Soft Comput. Explor. 2024, 5, 86–91. [CrossRef]
- Zhang, S.; Zhang, Z.; Lin, M.; Vardhanabhuti, B. Raman Spectroscopic Characterization of Structural Changes in Heated Whey Protein Isolate upon Soluble Complex Formation with Pectin at Near Neutral pH. J. Agric. Food Chem. 2012, 60, 12029–12035. [CrossRef]
- Zhao, Y.; Ma, C.-Y.; Yuen, S.-N.; Phillips, D.L. Study of Succinylated Food Proteins by Raman Spectroscopy. J. Agric. Food Chem. 2004, 52, 1815–1823. [CrossRef]


| Model\ metric |
RF | GB | AB | Voting (hard) | Voting (soft) | Stacking |
|---|---|---|---|---|---|---|
| Accuracy | 0.897 | 0.988 | 0.995 | 0.992 | 0.990 | 0.988 |
| Sensitivity | 1.000 | 0.993 | 1.000 | 0.998 | 0.996 | 0.993 |
| Specificity | 0.587 | 0.973 | 0.980 | 0.973 | 0.973 | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).